1
|
Wang D, Sun Z, Yin Y, Xiang J, Wei Y, Ma Y, Wang L, Liu G. Vitamin D and Atherosclerosis: Unraveling the Impact on Macrophage Function. Mol Nutr Food Res 2024; 68:e2300867. [PMID: 38864846 DOI: 10.1002/mnfr.202300867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/02/2024] [Indexed: 06/13/2024]
Abstract
Vitamin D plays a crucial role in preventing atherosclerosis and in the regulation of macrophage function. This review aims to provide a comprehensive summary of the clinical evidence regarding the impact of vitamin D on atherosclerotic cardiovascular disease, atherosclerotic cerebrovascular disease, peripheral arterial disease, and associated risk factors. Additionally, it explores the mechanistic studies investigating the influence of vitamin D on macrophage function in atherosclerosis. Numerous findings indicate that vitamin D inhibits monocyte or macrophage recruitment, macrophage cholesterol uptake, and esterification. Moreover, it induces autophagy of lipid droplets in macrophages, promotes cholesterol efflux from macrophages, and regulates macrophage polarization. This review particularly focuses on analyzing the molecular mechanisms and signaling pathways through which vitamin D modulates macrophage function in atherosclerosis. It claims that vitamin D has a direct inhibitory effect on the formation, adhesion, and migration of lipid-loaded monocytes, thus exerting anti-atherosclerotic effects. Therefore, this review emphasizes the crucial role of vitamin D in regulating macrophage function and preventing the development of atherosclerosis.
Collapse
Affiliation(s)
- Dongxia Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zhen Sun
- Department of Cardiology, Hebei International Joint Research Center for Structural Heart Disease, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Yajuan Yin
- Department of Cardiology, Hebei International Joint Research Center for Structural Heart Disease, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Jingyi Xiang
- Department of Cardiology, Hebei International Joint Research Center for Structural Heart Disease, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Yuzhe Wei
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Le Wang
- Department of Cardiology, Hebei International Joint Research Center for Structural Heart Disease, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Gang Liu
- Department of Cardiology, Hebei International Joint Research Center for Structural Heart Disease, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| |
Collapse
|
2
|
Jiang M, Wu W, Xiong Z, Yu X, Ye Z, Wu Z. Targeting autophagy drug discovery: Targets, indications and development trends. Eur J Med Chem 2024; 267:116117. [PMID: 38295689 DOI: 10.1016/j.ejmech.2023.116117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 02/25/2024]
Abstract
Autophagy plays a vital role in sustaining cellular homeostasis and its alterations have been implicated in the etiology of many diseases. Drugs development targeting autophagy began decades ago and hundreds of agents were developed, some of which are licensed for the clinical usage. However, no existing intervention specifically aimed at modulating autophagy is available. The obstacles that prevent drug developments come from the complexity of the actual impact of autophagy regulators in disease scenarios. With the development and application of new technologies, several promising categories of compounds for autophagy-based therapy have emerged in recent years. In this paper, the autophagy-targeted drugs based on their targets at various hierarchical sites of the autophagic signaling network, e.g., the upstream and downstream of the autophagosome and the autophagic components with enzyme activities are reviewed and analyzed respectively, with special attention paid to those at preclinical or clinical trials. The drugs tailored to specific autophagy alone and combination with drugs/adjuvant therapies widely used in clinical for various diseases treatments are also emphasized. The emerging drug design and development targeting selective autophagy receptors (SARs) and their related proteins, which would be expected to arrest or reverse the progression of disease in various cancers, inflammation, neurodegeneration, and metabolic disorders, are critically reviewed. And the challenges and perspective in clinically developing autophagy-targeted drugs and possible combinations with other medicine are considered in the review.
Collapse
Affiliation(s)
- Mengjia Jiang
- Department of Pharmacology and Pharmacy, China Jiliang University, China
| | - Wayne Wu
- College of Osteopathic Medicine, New York Institute of Technology, USA
| | - Zijie Xiong
- Department of Pharmacology and Pharmacy, China Jiliang University, China
| | - Xiaoping Yu
- Department of Biology, China Jiliang University, China
| | - Zihong Ye
- Department of Biology, China Jiliang University, China
| | - Zhiping Wu
- Department of Pharmacology and Pharmacy, China Jiliang University, China.
| |
Collapse
|
3
|
Blot G, Karadayi R, Przegralek L, Sartoris TM, Charles-Messance H, Augustin S, Negrier P, Blond F, Muñiz-Ruvalcaba FP, Rivera-de la Parra D, Vignaud L, Couturier A, Sahel JA, Acar N, Jimenez-Corona A, Delarasse C, Garfias Y, Sennlaub F, Guillonneau X. Perilipin 2-positive mononuclear phagocytes accumulate in the diabetic retina and promote PPARγ-dependent vasodegeneration. J Clin Invest 2023; 133:e161348. [PMID: 37781924 PMCID: PMC10702478 DOI: 10.1172/jci161348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/01/2023] [Indexed: 10/03/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM), characterized by hyperglycemia and dyslipidemia, leads to nonproliferative diabetic retinopathy (NPDR). NPDR is associated with blood-retina barrier disruption, plasma exudates, microvascular degeneration, elevated inflammatory cytokine levels, and monocyte (Mo) infiltration. Whether and how the diabetes-associated changes in plasma lipid and carbohydrate levels modify Mo differentiation remains unknown. Here, we show that mononuclear phagocytes (MPs) in areas of vascular leakage in DR donor retinas expressed perilipin 2 (PLIN2), a marker of intracellular lipid load. Strong upregulation of PLIN2 was also observed when healthy donor Mos were treated with plasma from patients with T2DM or with palmitate concentrations typical of those found in T2DM plasma, but not under high-glucose conditions. PLIN2 expression correlated with the expression of other key genes involved in lipid metabolism (ACADVL, PDK4) and the DR biomarkers ANGPTL4 and CXCL8. Mechanistically, we show that lipid-exposed MPs induced capillary degeneration in ex vivo explants that was inhibited by pharmaceutical inhibition of PPARγ signaling. Our study reveals a mechanism linking dyslipidemia-induced MP polarization to the increased inflammatory cytokine levels and microvascular degeneration that characterize NPDR. This study provides comprehensive insights into the glycemia-independent activation of Mos in T2DM and identifies MP PPARγ as a target for inhibition of lipid-activated MPs in DR.
Collapse
Affiliation(s)
- Guillaume Blot
- Institute of Vision, Sorbonne University, INSERM, CNRS, Paris, France
- ED394 Physiology and Physiopathology Doctoral School, Sorbonne University, Paris, France
| | - Rémi Karadayi
- Institute of Vision, Sorbonne University, INSERM, CNRS, Paris, France
| | | | | | - Hugo Charles-Messance
- Institute of Vision, Sorbonne University, INSERM, CNRS, Paris, France
- ED394 Physiology and Physiopathology Doctoral School, Sorbonne University, Paris, France
| | | | - Pierre Negrier
- Institute of Vision, Sorbonne University, INSERM, CNRS, Paris, France
- A. de Rothschild Foundation Hospital, Paris, France
| | - Frédéric Blond
- Institute of Vision, Sorbonne University, INSERM, CNRS, Paris, France
| | | | - David Rivera-de la Parra
- Comprehensive Care Center for Diabetes Patients, Salvador Zubrian National Institute of Health Sciences and Nutrition, Mexico City, Mexico
- Institute of Ophthalmology “Fundación Conde de Valenciana” I.A.P., Mexico City, Mexico
| | - Lucile Vignaud
- Institute of Vision, Sorbonne University, INSERM, CNRS, Paris, France
| | - Aude Couturier
- Institute of Vision, Sorbonne University, INSERM, CNRS, Paris, France
- ED394 Physiology and Physiopathology Doctoral School, Sorbonne University, Paris, France
- Department of Ophthalmology, Hôpital Lariboisière, AP-HP, University of Paris, Paris, France
| | - José-Alain Sahel
- Institute of Vision, Sorbonne University, INSERM, CNRS, Paris, France
- A. de Rothschild Foundation Hospital, Paris, France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- CHNO des Quinze-Vingts, Institut Hospitalo-Universitaire FOReSIGHT, INSERM-DGOS CIC 1423, Paris, France
| | - Niyazi Acar
- Eye and Nutrition Research Group, Center for Taste and Food Sciences, CNRS, INRAE, Institut Agro, Bourgogne Franche-Comté University, Dijon, France
| | - Aida Jimenez-Corona
- Department of Epidemiology and Visual Health, Instituto de Oftalmología Fundación Conde de Valenciana, Mexico City, Mexico
- General Directorate of Epidemiology, Secretariat of Health, Mexico City, Mexico
| | - Cécile Delarasse
- Institute of Vision, Sorbonne University, INSERM, CNRS, Paris, France
| | - Yonathan Garfias
- Department of Biochemistry, School of Medicine, National Autonomous University, Mexico City, Mexico
- Cell and Tissue Biology, Research Unit, Instituto de Oftalmología Fundación Conde de Valenciana”, Mexico City, Mexico
| | - Florian Sennlaub
- Institute of Vision, Sorbonne University, INSERM, CNRS, Paris, France
| | | |
Collapse
|
4
|
Loix M, Wouters E, Vanherle S, Dehairs J, McManaman JL, Kemps H, Swinnen JV, Haidar M, Bogie JFJ, Hendriks JJA. Perilipin-2 limits remyelination by preventing lipid droplet degradation. Cell Mol Life Sci 2022; 79:515. [PMID: 36100764 DOI: 10.1007/s00018-022-04547-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 12/09/2022]
Abstract
Foamy macrophages and microglia containing lipid droplets (LDs) are a pathological hallmark of demyelinating disorders affecting the central nervous system (CNS). We and others showed that excessive accumulation of intracellular lipids drives these phagocytes towards a more inflammatory phenotype, thereby limiting CNS repair. To date, however, the mechanisms underlying LD biogenesis and breakdown in lipid-engorged phagocytes in the CNS, as well as their impact on foamy phagocyte biology and lesion progression, remain poorly understood. Here, we provide evidence that LD-associated protein perilipin-2 (PLIN2) controls LD metabolism in myelin-containing phagocytes. We show that PLIN2 protects LDs from lipolysis-mediated degradation, thereby impairing intracellular processing of myelin-derived lipids in phagocytes. Accordingly, loss of Plin2 stimulates LD turnover in foamy phagocytes, driving them towards a less inflammatory phenotype. Importantly, Plin2-deficiency markedly improves remyelination in the ex vivo brain slice model and in the in vivo cuprizone-induced demyelination model. In summary, we identify PLIN2 as a novel therapeutic target to prevent the pathogenic accumulation of LDs in foamy phagocytes and to stimulate remyelination.
Collapse
Affiliation(s)
- Melanie Loix
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Elien Wouters
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Sam Vanherle
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Jonas Dehairs
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, LKI-Louvain Cancer Institute, KU Leuven-University of Leuven, Leuven, Belgium
| | - James L McManaman
- Department of Obstetrics and Gynaecology, School of Medicine, University of Colorado, Denver, USA
| | - Hannelore Kemps
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Johannes V Swinnen
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, LKI-Louvain Cancer Institute, KU Leuven-University of Leuven, Leuven, Belgium
| | - Mansour Haidar
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Jeroen F J Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Jerome J A Hendriks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.
- University MS Center Hasselt, Pelt, Belgium.
| |
Collapse
|
5
|
Carracedo M, Pawelzik SC, Artiach G, Pouwer MG, Plunde O, Saliba-Gustafsson P, Ehrenborg E, Eriksson P, Pieterman E, Stenke L, Princen HMG, Franco-Cereceda A, Bäck M. The tyrosine kinase inhibitor nilotinib targets discoidin domain receptor 2 in calcific aortic valve stenosis. Br J Pharmacol 2022; 179:4709-4721. [PMID: 35751904 PMCID: PMC9544120 DOI: 10.1111/bph.15911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/16/2022] [Accepted: 04/14/2022] [Indexed: 11/27/2022] Open
Abstract
Background and Purpose Tyrosine kinase inhibitors (TKI) used to treat chronic myeloid leukaemia (CML) have been associated with cardiovascular side effects, including reports of calcific aortic valve stenosis. The aim of this study was to establish the effects of first and second generation TKIs in aortic valve stenosis and to determine the associated molecular mechanisms. Experimental Approach Hyperlipidemic APOE*3Leiden.CETP transgenic mice were treated with nilotinib, imatinib or vehicle. Human valvular interstitial cells (VICs) were isolated and studied in vitro. Gene expression analysis was perfromed in aortic valves from 64 patients undergoing aortic valve replacement surgery. Key Results Nilotinib increased murine aortic valve thickness. Nilotinib, but not imatinib, promoted calcification and osteogenic activation and decreased autophagy in human VICs. Differential tyrosine kinase expression was detected between healthy and calcified valve tissue. Transcriptomic target identification revealed that the discoidin domain receptor DDR2, which is preferentially inhibited by nilotinib, was predominantly expressed in human aortic valves but markedly downregulated in calcified valve tissue. Nilotinib and selective DDR2 targeting in VICs induced a similar osteogenic activation, which was blunted by increasing the DDR2 ligand, collagen. Conclusions and Implications These findings suggest that inhibition of DDR2 by nilotinib promoted aortic valve thickening and VIC calcification, with possible translational implications for cardiovascular surveillance and possible personalized medicine in CML patients.
Collapse
Affiliation(s)
| | - Sven-Christian Pawelzik
- Department of Medicine, Karolinska Institutet.,Theme Heart and Vessels, Division of Valvular and Coronary Disease, Karolinska University Hospital, Stockholm, Sweden
| | | | - Marianne G Pouwer
- Metabolic Health Research, Gaubius Laboratory, The Netherlands Organization of Applied Scientific Research (TNO), Leiden, the Netherlands
| | | | | | | | | | - Elsbet Pieterman
- Metabolic Health Research, Gaubius Laboratory, The Netherlands Organization of Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Leif Stenke
- Department of Medicine, Karolinska Institutet.,Theme Cancer, Division of Hematology, Karolinska University Hospital
| | - Hans M G Princen
- Metabolic Health Research, Gaubius Laboratory, The Netherlands Organization of Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Anders Franco-Cereceda
- Department of Molecular Medicine and Surgery, Karolinska Institutet.,Theme Heart and Vessels, Division of Valvular and Coronary Disease, Karolinska University Hospital, Stockholm, Sweden
| | - Magnus Bäck
- Department of Medicine, Karolinska Institutet.,Theme Heart and Vessels, Division of Valvular and Coronary Disease, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Xie L, Gu Q, Wu X, Yin L. Activation of LXRs Reduces Oxysterol Lipotoxicity in RPE Cells by Promoting Mitochondrial Function. Nutrients 2022; 14:nu14122473. [PMID: 35745203 PMCID: PMC9227277 DOI: 10.3390/nu14122473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023] Open
Abstract
Effective treatments for age-related macular degeneration (AMD), the most prevalent neurodegenerative form of blindness in older adults, are lacking. Genome-wide association studies have identified lipid metabolism and inflammation as AMD-associated pathogenic changes. Liver X receptors (LXRs) play a critical role in intracellular homeostases, such as lipid metabolism, glucose homeostasis, inflammation, and mitochondrial function. However, its specific role in AMD and its underlying molecular mechanisms remain unknown. In this study, we investigated the effects of lipotoxicity in human retinal pigmental epithelial (ARPE-19) cells and evaluated how LXRs reduce 7-ketocholesterol (7KCh) lipotoxicity in RPE cells using models, both in vivo and in vitro. A decrease in oxidative lipid accumulation was observed in mouse retinas following the activation of the LXRs; this result was also confirmed in cell experiments. At the same time, LXRs activation reduced RPE cell apoptosis induced by oxysterols. We found that oxysterols decreased the mitochondrial membrane potential in ARPE-19 cells, while LXR agonists counteracted these effects. In cultured ARPE-19 cells, activating LXRs reduced p62, mTOR, and LC3I/II levels, and the knockdown of LXRs elevated the expression of these proteins, indicating that activating LXRs could boost mitophagy. The findings of this study suggest LXR-active pharmaceuticals as a potential therapeutic target for dry AMD.
Collapse
Affiliation(s)
- Lirong Xie
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People’s Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; (L.X.); (Q.G.); (X.W.)
- Shanghai Key Laboratory of Fundus Disease, Shanghai 200080, China
| | - Qing Gu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People’s Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; (L.X.); (Q.G.); (X.W.)
- Shanghai Key Laboratory of Fundus Disease, Shanghai 200080, China
| | - Xingwei Wu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People’s Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; (L.X.); (Q.G.); (X.W.)
- Shanghai Key Laboratory of Fundus Disease, Shanghai 200080, China
| | - Lili Yin
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People’s Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; (L.X.); (Q.G.); (X.W.)
- Shanghai Key Laboratory of Fundus Disease, Shanghai 200080, China
- Department of Ophthalmology, Shanghai Fourth People’s Hospital Affiliated to Tongji University, Shanghai 200434, China
- Correspondence: ; Tel.: +86-135-8581-9498
| |
Collapse
|
7
|
Lei Y, Chen L, Liu J, Zhong Y, Deng L. The MicroRNA-Based Strategies to Combat Cancer Chemoresistance via Regulating Autophagy. Front Oncol 2022; 12:841625. [PMID: 35211417 PMCID: PMC8861360 DOI: 10.3389/fonc.2022.841625] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
Chemoresistance frequently occurs in cancer treatment, which results in chemotherapy failure and is one of the most leading causes of cancer-related death worldwide. Understanding the mechanism of chemoresistance and exploring strategies to overcome chemoresistance have become an urgent need. Autophagy is a highly conserved self-degraded process in cells. The dual roles of autophagy (pro-death or pro-survival) have been implicated in cancers and chemotherapy. MicroRNA (miRNA) is a class of small non-coding molecules that regulate autophagy at the post-transcriptional level in cancer cells. The association between miRNAs and autophagy in cancer chemoresistance has been emphasized. In this review, we focus on the dual roles of miRNA-mediated autophagy in facilitating or combating chemoresistance, aiming to shed lights on the potential role of miRNAs as targets to overcome chemoresistance.
Collapse
Affiliation(s)
- Yuhe Lei
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lei Chen
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Junshan Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yinqin Zhong
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lijuan Deng
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Robichaud S, Rasheed A, Pietrangelo A, Doyoung Kim A, Boucher DM, Emerton C, Vijithakumar V, Gharibeh L, Fairman G, Mak E, Nguyen MA, Geoffrion M, Wirka R, Rayner KJ, Ouimet M. Autophagy Is Differentially Regulated in Leukocyte and Nonleukocyte Foam Cells During Atherosclerosis. Circ Res 2022; 130:831-847. [PMID: 35137605 DOI: 10.1161/circresaha.121.320047] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Atherosclerosis is characterized by an accumulation of foam cells within the arterial wall, resulting from excess cholesterol uptake and buildup of cytosolic lipid droplets (LDs). Autophagy promotes LD clearance by freeing stored cholesterol for efflux, a process that has been shown to be atheroprotective. While the role of autophagy in LD catabolism has been studied in macrophage-derived foam cells, this has remained unexplored in vascular smooth muscle cell (VSMC)-derived foam cells that constitute a large fraction of foam cells within atherosclerotic lesions. OBJECTIVE We performed a comparative analysis of autophagy flux in lipid-rich aortic intimal populations to determine whether VSMC-derived foam cells metabolize LDs similarly to their macrophage counterparts. METHODS AND RESULTS Atherosclerosis was induced in GFP-LC3 transgenic mice by PCSK9 (proprotein convertase subtilisin/kexin type 9)-adeno-associated viral injection and Western diet feeding. Using flow cytometry of aortic digests, we observed a significant increase in dysfunctional autophagy of VSMC-derived foam cells during atherogenesis relative to macrophage-derived foam cells. Using cell culture models of lipid-loaded VSMC and macrophage, we show that autophagy-mediated cholesterol efflux from VSMC foam cells was poor relative to macrophage foam cells, and largely occurs when HDL (high-density lipoprotein) is used as a cholesterol acceptor, as opposed to apoA-1 (apolipoproteinA-1). This was associated with the predominant expression of ABCG1 in VSMC foam cells. Using metformin, an autophagy activator, cholesterol efflux to HDL was significantly increased in VSMC, but not in macrophage, foam cells. CONCLUSIONS These data demonstrate that VSMC and macrophage foam cells perform cholesterol efflux by distinct mechanisms, and that autophagy flux is highly impaired in VSMC foam cells, but can be induced by pharmacological means. Further investigation is warranted into targeting autophagy specifically in VSMC foam cells, the predominant foam cell subtype of advanced atherosclerotic plaques, to promote reverse cholesterol transport and resolution of the atherosclerotic plaque.
Collapse
Affiliation(s)
- Sabrina Robichaud
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON (S.R., A.R., A.P., A.D.K., D.M.B., V.V., L.G., G.F., M.-A.N., K.J.R., M.O.)
| | - Adil Rasheed
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON (S.R., A.R., A.P., A.D.K., D.M.B., V.V., L.G., G.F., M.-A.N., K.J.R., M.O.)
| | - Antonietta Pietrangelo
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON (S.R., A.R., A.P., A.D.K., D.M.B., V.V., L.G., G.F., M.-A.N., K.J.R., M.O.)
| | - Anne Doyoung Kim
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON (S.R., A.R., A.P., A.D.K., D.M.B., V.V., L.G., G.F., M.-A.N., K.J.R., M.O.)
| | - Dominique M Boucher
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON (S.R., A.R., A.P., A.D.K., D.M.B., V.V., L.G., G.F., M.-A.N., K.J.R., M.O.)
| | - Christina Emerton
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
| | - Viyashini Vijithakumar
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON (S.R., A.R., A.P., A.D.K., D.M.B., V.V., L.G., G.F., M.-A.N., K.J.R., M.O.)
| | - Lara Gharibeh
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON (S.R., A.R., A.P., A.D.K., D.M.B., V.V., L.G., G.F., M.-A.N., K.J.R., M.O.)
| | - Garrett Fairman
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON (S.R., A.R., A.P., A.D.K., D.M.B., V.V., L.G., G.F., M.-A.N., K.J.R., M.O.)
| | - Esther Mak
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
| | - My-Anh Nguyen
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON (S.R., A.R., A.P., A.D.K., D.M.B., V.V., L.G., G.F., M.-A.N., K.J.R., M.O.)
| | - Michele Geoffrion
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
| | - Robert Wirka
- University of North Carolina School of Medicine, Chapel Hill (R.W.)
| | - Katey J Rayner
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON (S.R., A.R., A.P., A.D.K., D.M.B., V.V., L.G., G.F., M.-A.N., K.J.R., M.O.)
| | - Mireille Ouimet
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON (S.R., A.R., A.P., A.D.K., D.M.B., V.V., L.G., G.F., M.-A.N., K.J.R., M.O.)
| |
Collapse
|
9
|
Lin L, Zhang MX, Zhang L, Zhang D, Li C, Li YL. Autophagy, Pyroptosis, and Ferroptosis: New Regulatory Mechanisms for Atherosclerosis. Front Cell Dev Biol 2022; 9:809955. [PMID: 35096837 PMCID: PMC8793783 DOI: 10.3389/fcell.2021.809955] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disorder characterized by the gradual buildup of plaques within the vessel wall of middle-sized and large arteries. The occurrence and development of atherosclerosis and the rupture of plaques are related to the injury of vascular cells, including endothelial cells, smooth muscle cells, and macrophages. Autophagy is a subcellular process that plays an important role in the degradation of proteins and damaged organelles, and the autophagy disorder of vascular cells is closely related to atherosclerosis. Pyroptosis is a proinflammatory form of regulated cell death, while ferroptosis is a form of regulated nonapoptotic cell death involving overwhelming iron-dependent lipid peroxidation. Both of them exhibit distinct features from apoptosis, necrosis, and autophagy in morphology, biochemistry, and genetics. However, a growing body of evidence suggests that pyroptosis and ferroptosis interact with autophagy and participate in the development of cancers, degenerative brain diseases and cardiovascular diseases. This review updated the current understanding of autophagy, pyroptosis, and ferroptosis, finding potential links and their effects on atherogenesis and plaque stability, thus providing ways to develop new pharmacological strategies to address atherosclerosis and stabilize vulnerable, ruptured plaques.
Collapse
Affiliation(s)
- Lin Lin
- Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mu-Xin Zhang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dan Zhang
- Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chao Li
- Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yun-Lun Li
- Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
10
|
A novel therapeutic strategy for atherosclerosis: autophagy-dependent cholesterol efflux. J Physiol Biochem 2022; 78:557-572. [DOI: 10.1007/s13105-021-00870-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/25/2021] [Indexed: 10/19/2022]
|
11
|
Corrigendum. J Intern Med 2021; 290:1278. [PMID: 34506682 PMCID: PMC9050100 DOI: 10.1111/joim.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Yeoh SG, Sum JS, Lai JY, W Isa WYH, Lim TS. Potential of Phage Display Antibody Technology for Cardiovascular Disease Immunotherapy. J Cardiovasc Transl Res 2021; 15:360-380. [PMID: 34467463 DOI: 10.1007/s12265-021-10169-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/22/2021] [Indexed: 11/26/2022]
Abstract
Cardiovascular disease (CVD) is one of the leading causes of death worldwide. CVD includes coronary artery diseases such as angina, myocardial infarction, and stroke. "Lipid hypothesis" which is also known as the cholesterol hypothesis proposes the linkage of plasma cholesterol level with the risk of developing CVD. Conventional management involves the use of statins to reduce the serum cholesterol levels as means for CVD prevention or treatment. The regulation of serum cholesterol levels can potentially be regulated with biological interventions like monoclonal antibodies. Phage display is a powerful tool for the development of therapeutic antibodies with successes over the recent decade. Although mainly for oncology, the application of monoclonal antibodies as immunotherapeutic agents could potentially be expanded to CVD. This review focuses on the concept of phage display for antibody development and discusses the potential target antigens that could potentially be beneficial for serum cholesterol management.
Collapse
Affiliation(s)
- Soo Ghee Yeoh
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Jia Siang Sum
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Jing Yi Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - W Y Haniff W Isa
- School of Medical Sciences, Department of Medicine, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia.
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
13
|
Lioudakis E, Lucitt M. Statin Disruption of Cholesterol Metabolism and Altered Innate Inflammatory Responses in Atherosclerosis. IMMUNOMETABOLISM 2021; 3. [DOI: 10.20900/immunometab20210023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/13/2021] [Indexed: 01/03/2025]
Abstract
Abstract
Atherosclerosis is well recognised as a disease associated with elevated cholesterol levels. Innate monocytes and macrophage cells laden with cholesterol have long been described as key players in driving low grade inflammation characteristic of atherosclerosis. In more recent times it has been shown how various mechanisms controlling metabolic and epigenetic reprogramming of these innate immune cells influence their inflammatory responses. In this review a general role of intracellular metabolism in reprogramming innate immune cells will be discussed with a particular emphasis on evidence supporting how innate reprogramming contributes to the pathophysiology of atherosclerosis. In addition the evidence for the role of statins in altering these metabolic adaptations to control the development and progression of atherosclerotic plaques is discussed.
Collapse
|
14
|
Pu Y, Zhao Q, Men X, Jin W, Yang M. MicroRNA-325 facilitates atherosclerosis progression by mediating the SREBF1/LXR axis via KDM1A. Life Sci 2021; 277:119464. [PMID: 33811891 DOI: 10.1016/j.lfs.2021.119464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/19/2021] [Accepted: 03/27/2021] [Indexed: 02/08/2023]
Abstract
AIMS MicroRNA-325 (miR-325) was significantly upregulated in diabetic atherosclerosis, while its specific role in atherosclerosis has not been established. The present study was set to probe the effects of miR-325 on the atherosclerosis progression and to explore the mechanisms. MATERIALS AND METHODS The ApoE-/- mouse with atherosclerosis was developed to detect the miR-325 expression in atherosclerotic plaques. The pathological symptoms of atherosclerotic mice were observed by injection of miR-325 mimic or inhibitor. Subsequently, the levels of CRP, IL-6, IL-1β and TNF-ɑ in mouse serum were measured by ELISA. Then, miR-325 was overexpressed or silenced in RAW264.7-derived foam cells (FCs), and cholesterol efflux and lipid content were evaluated. Furthermore, miR-325 expression was altered in HA-VSMCs to measure viability and apoptosis. The targets of miR-325 were predicted in a bioinformatics website, and the expression of KDM1A, SREBF1 and PPARγ-LXR-ABCA1 in mouse arterial tissues and cells was detected, followed by rescue experiments. KEY FINDINGS miR-325 was elevated in arterial tissues of atherosclerotic mice, and miR-325 inhibition in mice reduced the contents of total cholesterol, triglyceride, low-density lipoprotein, and CRP, IL-6, IL-1β and TNF-ɑ levels in mouse serum. miR-325 inhibitor facilitated the cholesterol efflux and decreased the lipid content in RAW264.7 cells, and also diminished HA-VSMC viability. miR-325 targeted KDM1A to reduce SREBF1 expression, and further KDM1A suppression inhibited cholesterol efflux in RAW264.7 cells and the activation of PPARγ-LXR-ABCA1 pathway. SIGNIFICANCE miR-325 lowers SREBF1 expression by decreasing KDM1A expression, thereby inhibiting the activation of the PPARγ-LXR-ABCA1 pathway and thus promoting atherosclerosis.
Collapse
Affiliation(s)
- Yanhua Pu
- Department of General Family Medicine No.1, The Fourth Hospital of Jinan, Jinan 250031, Shandong, PR China
| | - Qian Zhao
- Department of General Family Medicine No.1, The Fourth Hospital of Jinan, Jinan 250031, Shandong, PR China
| | - Xuelin Men
- Department of Respiratory Medicine, The Fourth Hospital of Jinan, Jinan 250031, Shandong, PR China
| | - Wei Jin
- Department of Catheter Room, The Fourth Hospital of Jinan, Jinan 250031, Shandong, PR China
| | - Min Yang
- Department of Ultrasound Diagnosis, The Fourth Hospital of Jinan, Jinan 250031, Shandong, PR China.
| |
Collapse
|
15
|
Shen HH, Zhang T, Yang HL, Lai ZZ, Zhou WJ, Mei J, Shi JW, Zhu R, Xu FY, Li DJ, Ye JF, Li MQ. Ovarian hormones-autophagy-immunity axis in menstruation and endometriosis. Am J Cancer Res 2021; 11:3512-3526. [PMID: 33537101 PMCID: PMC7847674 DOI: 10.7150/thno.55241] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/02/2021] [Indexed: 12/11/2022] Open
Abstract
Menstruation occurs in few species and involves a cyclic process of proliferation, breakdown and regeneration under the control of ovarian hormones. Knowledge of normal endometrial physiology, as it pertains to the regulation of menstruation, is essential to understand disorders of menstruation. Accumulating evidence indicates that autophagy in the endometrium, under the regulation of ovarian hormones, can result in the infiltration of immune cells, which plays an indispensable role in the endometrium shedding, tissue repair and prevention of infections during menstruation. In addition, abnormal autophagy levels, together with resulting dysregulated immune system function, are associated with the pathogenesis and progression of endometriosis. Considering its potential value of autophagy as a target for the treatment of menstrual-related and endometrium-related disorders, we review the activity and function of autophagy during menstrual cycles. The role of the estrogen/progesterone-autophagy-immunity axis in endometriosis are also discussed.
Collapse
|
16
|
Ashrafizadeh M, Zarrabi A, Orouei S, Kiavash Hushmandi, Hakimi A, Amirhossein Zabolian, Daneshi S, Samarghandian S, Baradaran B, Najafi M. MicroRNA-mediated autophagy regulation in cancer therapy: The role in chemoresistance/chemosensitivity. Eur J Pharmacol 2020; 892:173660. [PMID: 33310181 DOI: 10.1016/j.ejphar.2020.173660] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/10/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022]
Abstract
Chemoresistance has doubled the effort needed to reach an effective treatment for cancer. Now, scientists should consider molecular pathways and mechanisms involved in chemoresistance to overcome cancer. Autophagy is a "self-digestion" mechanism in which potentially toxic and aged organelles and macromolecules are degraded. Increasing evidence has shown that autophagy possesses dual role in cancer cells (onco-suppressor or oncogene). So, it is vital to identify its role in cancer progression and malignancy. MicroRNAs (miRs) are epigenetic factors capable of modulation of autophagy in cancer cells. In the current review, we emphasize on the relationship between miRs and autophagy in cancer chemotherapy. Besides, we discuss upstream mediators of miR/autophagy axis in cancer chemotherapy including long non-coding RNAs, circular RNAs, Nrf2 c-Myc, and HIF-1α. At the final section, we provide a discussion about how anti-tumor compounds affect miR/autophagy axis in ensuring chemosensitivity. These topics are described in this review to show how autophagy inhibition/induction can lead to chemosensitivity/chemoresistance, and miRs are considered as key players in these discussions.
Collapse
Affiliation(s)
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Sima Orouei
- Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Azadeh Hakimi
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran; Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
17
|
Moghadam ER, Ang HL, Asnaf SE, Zabolian A, Saleki H, Yavari M, Esmaeili H, Zarrabi A, Ashrafizadeh M, Kumar AP. Broad-Spectrum Preclinical Antitumor Activity of Chrysin: Current Trends and Future Perspectives. Biomolecules 2020; 10:E1374. [PMID: 32992587 PMCID: PMC7600196 DOI: 10.3390/biom10101374] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Pharmacological profile of phytochemicals has attracted much attention to their use in disease therapy. Since cancer is a major problem for public health with high mortality and morbidity worldwide, experiments have focused on revealing the anti-tumor activity of natural products. Flavonoids comprise a large family of natural products with different categories. Chrysin is a hydroxylated flavonoid belonging to the flavone category. Chrysin has demonstrated great potential in treating different disorders, due to possessing biological and therapeutic activities, such as antioxidant, anti-inflammatory, hepatoprotective, neuroprotective, etc. Over recent years, the anti-tumor activity of chrysin has been investigated, and in the present review, we provide a mechanistic discussion of the inhibitory effect of chrysin on proliferation and invasion of different cancer cells. Molecular pathways, such as Notch1, microRNAs, signal transducer and activator of transcription 3 (STAT3), nuclear factor-kappaB (NF-κB), PI3K/Akt, MAPK, etc., as targets of chrysin are discussed. The efficiency of chrysin in promoting anti-tumor activity of chemotherapeutic agents and suppressing drug resistance is described. Moreover, poor bioavailability, as one of the drawbacks of chrysin, is improved using various nanocarriers, such as micelles, polymeric nanoparticles, etc. This updated review will provide a direction for further studies in evaluating the anti-tumor activity of chrysin.
Collapse
Affiliation(s)
- Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | - Hui Li Ang
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore;
| | - Sholeh Etehad Asnaf
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, IslamicAzad University, Tehran 165115331, Iran;
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (H.S.); (H.E.)
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (H.S.); (H.E.)
| | - Mohammad Yavari
- Nursing and Midwifery Department, Islamic Azad University, Tehran Medical Sciences Branch, Tehran 1916893813, Iran;
| | - Hossein Esmaeili
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (H.S.); (H.E.)
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Milad Ashrafizadeh
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore;
| |
Collapse
|
18
|
Batista-Gonzalez A, Vidal R, Criollo A, Carreño LJ. New Insights on the Role of Lipid Metabolism in the Metabolic Reprogramming of Macrophages. Front Immunol 2020; 10:2993. [PMID: 31998297 PMCID: PMC6966486 DOI: 10.3389/fimmu.2019.02993] [Citation(s) in RCA: 242] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/05/2019] [Indexed: 12/17/2022] Open
Abstract
Macrophage activation is intimately linked to metabolic reprogramming. Inflammatory (M1) macrophages are able to sustain inflammatory responses and to kill pathogens, mostly by relying on aerobic glycolysis and fatty acid biosynthesis. Glycolysis is a fast way of producing ATP, and fatty acids serve as precursors for the synthesis of inflammatory mediators. On the opposite side, anti-inflammatory (M2) macrophages mediate the resolution of inflammation and tissue repair, switching their metabolism to fatty acid oxidation and oxidative phosphorylation. Over the years, this classical view has been challenged by recent discoveries pointing to a more complex metabolic network during macrophage activation. Lipid metabolism plays a critical role in the activation of both M1 and M2 macrophages. Recent evidence shows that fatty acid oxidation is also essential for inflammasome activation in M1 macrophages, and glycolysis is now known to fuel fatty acid oxidation in M2 macrophages. Ultimately, targeting lipid metabolism in macrophages can improve the outcome of metabolic diseases. Here, we review the main aspects of macrophage immunometabolism from the perspective of the metabolism of lipids. Building a reliable metabolic network during macrophage activation will bring us closer to targeting macrophages for improving human health.
Collapse
Affiliation(s)
- Ana Batista-Gonzalez
- Facultad de Odontología, Instituto de Investigación de Ciencias Odontológicas, Universidad de Chile, Santiago, Chile.,Facultad de Ciencias Químicas y Farmacéuticas and Facultad de Medicina, Advanced Center for Chronic Diseases, Universidad de Chile, Santiago, Chile
| | - Roberto Vidal
- Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile.,Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alfredo Criollo
- Facultad de Odontología, Instituto de Investigación de Ciencias Odontológicas, Universidad de Chile, Santiago, Chile.,Facultad de Ciencias Químicas y Farmacéuticas and Facultad de Medicina, Advanced Center for Chronic Diseases, Universidad de Chile, Santiago, Chile
| | - Leandro J Carreño
- Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile.,Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
19
|
Saliba-Gustafsson P, Pedrelli M, Gertow K, Werngren O, Janas V, Pourteymour S, Baldassarre D, Tremoli E, Veglia F, Rauramaa R, Smit AJ, Giral P, Kurl S, Pirro M, de Faire U, Humphries SE, Hamsten A, Gonçalves I, Orho-Melander M, Franco-Cereceda A, Borén J, Eriksson P, Magné J, Parini P, Ehrenborg E. Subclinical atherosclerosis and its progression are modulated by PLIN2 through a feed-forward loop between LXR and autophagy. J Intern Med 2019; 286:660-675. [PMID: 31251843 PMCID: PMC6899829 DOI: 10.1111/joim.12951] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Hyperlipidaemia is a major risk factor for cardiovascular disease, and atherosclerosis is the underlying cause of both myocardial infarction and stroke. We have previously shown that the Pro251 variant of perilipin-2 reduces plasma triglycerides and may therefore be beneficial to reduce atherosclerosis development. OBJECTIVE We sought to delineate putative beneficial effects of the Pro251 variant of perlipin-2 on subclinical atherosclerosis and the mechanism by which it acts. METHODS A pan-European cohort of high-risk individuals where carotid intima-media thickness has been assessed was adopted. Human primary monocyte-derived macrophages were prepared from whole blood from individuals recruited by perilipin-2 genotype or from buffy coats from the Karolinska University hospital blood central. RESULTS The Pro251 variant of perilipin-2 is associated with decreased intima-media thickness at baseline and over 30 months of follow-up. Using human primary monocyte-derived macrophages from carriers of the beneficial Pro251 variant, we show that this variant increases autophagy activity, cholesterol efflux and a controlled inflammatory response. Through extensive mechanistic studies, we demonstrate that increase in autophagy activity is accompanied with an increase in liver-X-receptor (LXR) activity and that LXR and autophagy reciprocally activate each other in a feed-forward loop, regulated by CYP27A1 and 27OH-cholesterol. CONCLUSIONS For the first time, we show that perilipin-2 affects susceptibility to human atherosclerosis through activation of autophagy and stimulation of cholesterol efflux. We demonstrate that perilipin-2 modulates levels of the LXR ligand 27OH-cholesterol and initiates a feed-forward loop where LXR and autophagy reciprocally activate each other; the mechanism by which perilipin-2 exerts its beneficial effects on subclinical atherosclerosis.
Collapse
Affiliation(s)
- P Saliba-Gustafsson
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine at BioClinicum, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden.,Cardiovascular Medicine, Stanford University School of Medicine, Palo Alto, California, USA
| | - M Pedrelli
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet Huddinge, Huddinge, Sweden
| | - K Gertow
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine at BioClinicum, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - O Werngren
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine at BioClinicum, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - V Janas
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine at BioClinicum, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - S Pourteymour
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine at BioClinicum, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - D Baldassarre
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy.,Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - E Tremoli
- Centro Cardiologico Monzino, IRCCS, Milan, Italy.,Dipartimento di Scienze Farmacologiche e Biomolecolari, Università di Milano, Milan, Italy
| | - F Veglia
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - R Rauramaa
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - A J Smit
- Department of Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - P Giral
- Assistance Publique Hopitaux de Paris, Service Endocrinologie-Metabolisme, Groupe Hospitalier Pitie-Salpetriere, Unites de Prevention Cardiovasculaire, Paris, France
| | - S Kurl
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - M Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - U de Faire
- Division of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - S E Humphries
- Centre for Cardiovascular Genetics, Institute Cardiovascular Science, University College London, London, UK
| | - A Hamsten
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine at BioClinicum, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | | | - I Gonçalves
- Experimental Cardiovascular Research Group and Cardiology Department, Clinical Research Center, Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - M Orho-Melander
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Lund, Sweden
| | - A Franco-Cereceda
- Cardiothoracic Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet at Karolinska University Hospital Solna, Solna, Sweden
| | - J Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - P Eriksson
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine at BioClinicum, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - J Magné
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine at BioClinicum, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden.,St Jude Children's Research Hospital, Department of Immunology, Memphis, Tennessee, USA
| | - P Parini
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet Huddinge, Huddinge, Sweden.,Metabolism Unit, Department of Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - E Ehrenborg
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine at BioClinicum, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|