1
|
Halabian A, Radahmadi M. The neurobiological mechanisms of photoperiod impact on brain functions: a comprehensive review. Rev Neurosci 2024; 35:933-958. [PMID: 39520288 DOI: 10.1515/revneuro-2024-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/19/2024] [Indexed: 11/16/2024]
Abstract
Variations in day length, or photoperiodism, whether natural or artificial light, significantly impact biological, physiological, and behavioral processes within the brain. Both natural and artificial light sources are environmental factors that significantly influence brain functions and mental well-being. Photoperiodism is a phenomenon, occurring either over a 24 h cycle or seasonally and denotes all biological responses of humans and animals to these fluctuations in day and night length. Conversely, artificial light occurrence refers to the presence of light during nighttime hours and/or its absence during the daytime (unnaturally long and short days, respectively). Light at night, which is a form of light pollution, is prevalent in many societies, especially common in certain emergency occupations. Moreover, individuals with certain mental disorders, such as depression, often exhibit a preference for darkness over daytime light. Nevertheless, disturbances in light patterns can have negative consequences, impacting brain performance through similar mechanisms albeit with varying degrees of severity. Furthermore, changes in day length lead to alterations in the activity of receptors, proteins, ion channels, and molecular signaling pathways, all of which can impact brain health. This review aims to summarize the mechanisms by which day length influences brain functions through neural circuits, hormonal systems, neurochemical processes, cellular activity, and even molecular signaling pathways.
Collapse
Affiliation(s)
- Alireza Halabian
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western, Ontario, N6A 3K7 London, ON, Canada
| | - Maryam Radahmadi
- Department of Physiology, School of Medicine, 48455 Isfahan University of Medical Sciences , 81746-73461 Isfahan, Iran
| |
Collapse
|
2
|
Matsuda T, Osaki Y, Maruo K, Matsuda E, Suzuki Y, Suzuki H, Mathis BJ, Shimano H, Mizutani M. Variability of urinary albumin to creatinine ratio and eGFR are independently associated with eGFR slope in Japanese with type 2 diabetes: a three-year, single-center, retrospective cohort study. BMC Nephrol 2024; 25:264. [PMID: 39152372 PMCID: PMC11330002 DOI: 10.1186/s12882-024-03699-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND To evaluate the seasonal variability of urinary albumin to creatinine ratio (UACR) and eGFR and these effects on three-year eGFR slope in persons with type 2 diabetes (T2D). METHODS A total of 1135 persons with T2D were analyzed in this single-center, retrospective cohort study in Japan. The standard deviation (SD) of UACR (SD [UACR]) and SD of eGFR (SD [eGFR]) were calculated for each person's 10-point data during the three years, and a multiple linear regression analysis was performed to evaluate associations with eGFR slope. A sensitivity analysis was performed in a group with no medication changes (n = 801). RESULTS UACR exhibited seasonal variability, being higher in winter and lower in spring, early summer, and autumn especially in the UACR ≥ 30 mg/g subgroup, while eGFR showed no seasonal variability. The eGFR slope was significantly associated with SD (eGFR) (regression coefficient -0.170 [95% CI -0.189--0.151]) and SD (UACR) (0.000 [-0.001-0.000]). SGLT-2 inhibitors, baseline eGFR, and baseline systolic blood pressure (SBP) were also significantly associated. These associated factors, except baseline SBP, were still significant in the sensitivity analysis. CONCLUSIONS The UACR showed clear seasonal variability. Moreover, SD (UACR) and SD (eGFR) were independently associated with a three-year eGFR slope in persons with T2D. TRIAL REGISTRATION This study was not registered for clinical trial registration because it was a retrospective observational study.
Collapse
Affiliation(s)
- Takaaki Matsuda
- Department of Internal Medicine, Kozawa Eye Hospital and Diabetes Center, 246-6 Yoshizawa-cho, Mito, Ibaraki, 310-0845, Japan.
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
- Tsukuba Clinical Research and Development Organization (T-CReDO), University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Yoshinori Osaki
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Kazushi Maruo
- Tsukuba Clinical Research and Development Organization (T-CReDO), University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Erika Matsuda
- Department of Internal Medicine, Kozawa Eye Hospital and Diabetes Center, 246-6 Yoshizawa-cho, Mito, Ibaraki, 310-0845, Japan
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yasuhiro Suzuki
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Institute of Systems and Information Engineering, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
| | - Hiroaki Suzuki
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Department of Food and Health Sciences, Faculty of Human Life Sciences, Jissen Women's University, Hino, Tokyo, 191-8510, Japan
| | - Bryan J Mathis
- Department of Cardiovascular Surgery, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Masakazu Mizutani
- Department of Internal Medicine, Kozawa Eye Hospital and Diabetes Center, 246-6 Yoshizawa-cho, Mito, Ibaraki, 310-0845, Japan
| |
Collapse
|
3
|
Lin Y, Zhang N, Zhang J, Lu J, Liu S, Ma G. Seasonality Affects Fluid Intake Behaviors among Young Adults in Hebei, China. Nutrients 2024; 16:1542. [PMID: 38892476 PMCID: PMC11173941 DOI: 10.3390/nu16111542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Evidence on the association between environmental factors and fluid intake behavior remains limited. The current study aims to explore seasonal variations in fluid intake behaviors among young adults in China. METHODS A prospective cohort of 79 healthy young adults (43 males and 36 females) aged 19-21 in Hebei, China, was assessed for fluid intake behaviors for four seasons. For each assessment, the participants' anthropometric measurements were collected. Temperature and humidity on survey days were measured. Participants' total drinking fluid (TDF) was recorded using a self-administrative 7 d, 24 h fluid intake questionnaire. To calculate water from food (WFF), we weighed all foods consumed by participants. Duplicates of consumed food samples were collected to measure the water content via the drying method. RESULTS The mean total water intake (TWI) was 2761 ± 881, 2551 ± 845, 2210 ± 551, and 1989 ± 579 for spring, summer, fall, and winter, respectively (F(2.37) = 42.29, p < 0.001). The volume and proportion of TWI from TDF and WFF varied across the four seasons. The volume of WFF in spring (1361 ± 281, F(2.61) = 17.21, p < 0.001) and TDF in summer (1218 ± 502, F(2.62) = 9.36, p < 0.001) was among the highest, while participants' fluid intake behaviors in spring and summer were less distinct than the other pairwise comparisons. A moderate association was found between outdoor temperature and TDF (r = 0.53, p < 0.01). Different general estimating equations suggested that gender, seasonality, outdoor temperature, differences in indoor and outdoor temperature, and mean temperature were independent factors of TDF. An interactive effect was found for gender and temperature, showing that the expected TDF of males may increase more as the temperature climbs. CONCLUSIONS Gender, seasonality, and air temperature could significantly affect fluid intake behaviors, including the amount and type of fluid intake. However, the independent effect of BMI and humidity remains unclear.
Collapse
Affiliation(s)
- Yongwei Lin
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (Y.L.); (J.Z.); (J.L.)
| | - Na Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (Y.L.); (J.Z.); (J.L.)
- Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China
| | - Jianfen Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (Y.L.); (J.Z.); (J.L.)
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Junbo Lu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (Y.L.); (J.Z.); (J.L.)
- National Center for Occupational Safety and Health, Beijing 102308, China
| | - Shufang Liu
- School of Public Health, Hebei University Health Science Center, Baoding 071000, China
| | - Guansheng Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (Y.L.); (J.Z.); (J.L.)
- Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China
| |
Collapse
|
4
|
Mishra S, Grewal J, Wal P, Bhivshet GU, Tripathi AK, Walia V. Therapeutic potential of vasopressin in the treatment of neurological disorders. Peptides 2024; 174:171166. [PMID: 38309582 DOI: 10.1016/j.peptides.2024.171166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/18/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Vasopressin (VP) is a nonapeptide made of nine amino acids synthesized by the hypothalamus and released by the pituitary gland. VP acts as a neurohormone, neuropeptide and neuromodulator and plays an important role in the regulation of water balance, osmolarity, blood pressure, body temperature, stress response, emotional challenges, etc. Traditionally VP is known to regulate the osmolarity and tonicity. VP and its receptors are widely expressed in the various region of the brain including cortex, hippocampus, basal forebrain, amygdala, etc. VP has been shown to modulate the behavior, stress response, circadian rhythm, cerebral blood flow, learning and memory, etc. The potential role of VP in the regulation of these neurological functions have suggested the therapeutic importance of VP and its analogues in the management of neurological disorders. Further, different VP analogues have been developed across the world with different pharmacotherapeutic potential. In the present work authors highlighted the therapeutic potential of VP and its analogues in the treatment and management of various neurological disorders.
Collapse
Affiliation(s)
- Shweta Mishra
- SGT College of Pharmacy, SGT University, Gurugram, India
| | - Jyoti Grewal
- Maharisi Markandeshwar University, Sadopur, India
| | - Pranay Wal
- Pranveer Singh Institute of Pharmacy, Kanpur, India
| | | | | | - Vaibhav Walia
- SGT College of Pharmacy, SGT University, Gurugram, India.
| |
Collapse
|
5
|
Timpka S, Melander O, Engström G, Elmståhl S, Nilsson PM, Lind L, Pihlsgård M, Enhörning S. Short-term association between outdoor temperature and the hydration-marker copeptin: a pooled analysis in five cohorts. EBioMedicine 2023; 95:104750. [PMID: 37556945 PMCID: PMC10432996 DOI: 10.1016/j.ebiom.2023.104750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Whereas outdoor temperature is linked to both mortality and hydration status, the hormone vasopressin, measured through the surrogate copeptin, is a marker of cardiometabolic risk and hydration. We recently showed that copeptin has a seasonal pattern with higher plasma concentration in winter. Here, we aimed to investigate the association between outdoor temperature and copeptin. METHODS Copeptin was analysed in fasting plasma from five cohorts in Malmö, Sweden (n = 26,753, 49.7% men, age 18-86 years). We utilized a multivariable adjusted non-linear spline model with four knots to investigate the association between short-term temperature (24 h mean apparent) and log copeptin z-score. FINDINGS We found a distinct non-linear association between temperature and log copeptin z-score, with both moderately low and high temperatures linked to higher copeptin concentration (p < 0.0001). Between 0 °C and nadir at the 75th temperature percentile (corresponding to 14.3 °C), log copeptin decreased 0.13 z-scores (95% CI 0.096; 0.16), which also inversely corresponded to the increase in z-score log copeptin between the nadir and 21.3 °C. INTERPRETATION The J-shaped association between short-term temperature and copeptin resembles the J-shaped association between temperature and mortality. Whereas the untangling of temperature from other seasonal effects on hydration warrants further study, moderately increased water intake constitutes a feasible intervention to lower vasopressin and might mitigate adverse health effects of both moderately cold and hot outdoor temperatures. FUNDING Swedish Research Council, Å Wiberg, M Stephen, A Påhlsson, Crafoord and Swedish Heart-Lung Foundations, Swedish Society for Medical Research and Swedish Society of Medicine.
Collapse
Affiliation(s)
- Simon Timpka
- Perinatal and Cardiovascular Epidemiology, Lund University Diabetes Centre, Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden; Department of Obstetrics and Gynecology, Skåne University Hospital, Malmö, Sweden
| | - Olle Melander
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden; Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | - Gunnar Engström
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Sölve Elmståhl
- Department of Clinical Sciences in Malmö, Division of Geriatric Medicine, Lund University, Malmö, Sweden
| | - Peter M Nilsson
- Internal Medicine - Epidemiology, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Mats Pihlsgård
- Perinatal and Cardiovascular Epidemiology, Lund University Diabetes Centre, Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Sofia Enhörning
- Perinatal and Cardiovascular Epidemiology, Lund University Diabetes Centre, Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden; Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|