1
|
Tengbom J, Humoud R, Kontidou E, Jiao T, Yang J, Hedin U, Zhou Z, Jurga J, Collado A, Mahdi A, Pernow J. Red blood cells from patients with ST-elevation myocardial infarction and elevated C-reactive protein levels induce endothelial dysfunction. Am J Physiol Heart Circ Physiol 2024; 327:H1431-H1441. [PMID: 39392478 DOI: 10.1152/ajpheart.00443.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
Endothelial dysfunction is an early consequence of vascular inflammation and a driver of coronary atherosclerotic disease leading to myocardial infarction. The red blood cells (RBCs) mediate endothelial dysfunction in patients at cardiovascular risk, but their role in patients with acute myocardial infarction is unknown. This study aimed to investigate if RBCs from patients with ST-elevation myocardial infarction (STEMI) induced endothelial dysfunction and the role of systemic inflammation in this effect. RBCs from patients with STEMI and aged-matched healthy controls were coincubated with rat aortic segments for 18 h followed by evaluation of endothelium-dependent (EDR) and endothelium-independent relaxation (EIDR). RBCs and aortic segments were also analyzed for arginase and oxidative stress. The patients were divided into groups depending on C-reactive protein (CRP) levels at admission. RBCs from patients with STEMI and CRP levels ≥2 mg/L induced impairment of EDR, but not EIDR, compared with RBCs from STEMI and CRP <2 mg/L and healthy controls. Aortic expression of arginase 1 was increased following incubation with RBCs from patients with STEMI and CRP ≥2, and arginase inhibition prevented the RBC-induced endothelial dysfunction. RBCs from patients with STEMI and CRP ≥2 had increased reactive oxygen species compared with RBCs from patients with CRP <2 and healthy controls. Vascular inhibition of NADPH oxidases and increased dismutation of superoxide improved EDR. RBCs from patients with STEMI and low-grade inflammation induce endothelial dysfunction through a mechanism involving arginase 1 as well as increased RBC and vascular superoxide by NADPH oxidases.NEW & NOTEWORTHY Red blood cells from patients with STEMI and systemic inflammation induce endothelial dysfunction ex vivo. The RBC-induced endothelial dysfunction is mediated through increased arginase 1 and a shift in the redox balance toward oxidative stress. Inhibition of arginase or free radicals attenuates the impairment of endothelial function. The study suggests that red blood cells deserve attention as a key player in systemic inflammation and STEMI.
Collapse
Affiliation(s)
- John Tengbom
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Rawan Humoud
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Eftychia Kontidou
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Tong Jiao
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jiangning Yang
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ulf Hedin
- Department of Vascular Surgery, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Juliane Jurga
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Aida Collado
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ali Mahdi
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - John Pernow
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
2
|
Pernow J, Yang J. Red blood cells: a new target to prevent cardiovascular disease? Eur Heart J 2024; 45:4249-4251. [PMID: 39258963 DOI: 10.1093/eurheartj/ehae454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Affiliation(s)
- John Pernow
- Department of Medicine, Division of Cardiology, Karolinska Inistitutet, 171 76 Stockholm, Sweden
- Department of Cardiology, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Jiangning Yang
- Department of Medicine, Division of Cardiology, Karolinska Inistitutet, 171 76 Stockholm, Sweden
| |
Collapse
|
3
|
Carlström M, Weitzberg E, Lundberg JO. Nitric Oxide Signaling and Regulation in the Cardiovascular System: Recent Advances. Pharmacol Rev 2024; 76:1038-1062. [PMID: 38866562 DOI: 10.1124/pharmrev.124.001060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/30/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
Nitric oxide (NO) from endothelial NO synthase importantly contributes to vascular homeostasis. Reduced NO production or increased scavenging during disease conditions with oxidative stress contribute to endothelial dysfunction and NO deficiency. In addition to the classical enzymatic NO synthases (NOS) system, NO can also be generated via the nitrate-nitrite-NO pathway. Dietary and pharmacological approaches aimed at increasing NO bioactivity, especially in the cardiovascular system, have been the focus of much research since the discovery of this small gaseous signaling molecule. Despite wide appreciation of the biological role of NOS/NO signaling, questions still remain about the chemical nature of NOS-derived bioactivity. Recent studies show that NO-like bioactivity can be efficiently transduced by mobile NO-ferroheme species, which can transfer between proteins, partition into a hydrophobic phase, and directly activate the soluble guanylyl cyclase-cGMP-protein kinase G pathway without intermediacy of free NO. Moreover, interaction between red blood cells and the endothelium in the regulation of vascular NO homeostasis have gained much attention, especially in conditions with cardiometabolic disease. In this review we discuss both classical and nonclassical pathways for NO generation in the cardiovascular system and how these can be modulated for therapeutic purposes. SIGNIFICANCE STATEMENT: After four decades of intensive research, questions persist about the transduction and control of nitric oxide (NO) synthase bioactivity. Here we discuss NO signaling in cardiovascular health and disease, highlighting new findings, such as the important role of red blood cells in cardiovascular NO homeostasis. Nonclassical signaling modes, like the nitrate-nitrite-NO pathway, and therapeutic opportunities related to the NO system are discussed. Existing and potential pharmacological treatments/strategies, as well as dietary components influencing NO generation and signaling are covered.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.C., E.W., J.O.L.); and Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden (E.W.)
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.C., E.W., J.O.L.); and Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden (E.W.)
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.C., E.W., J.O.L.); and Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden (E.W.)
| |
Collapse
|
4
|
Kij A, Bar A, Czyzynska-Cichon I, Przyborowski K, Proniewski B, Mateuszuk L, Kurylowicz Z, Jasztal A, Buczek E, Kurpinska A, Suraj-Prazmowska J, Marczyk B, Matyjaszczyk-Gwarda K, Daiber A, Oelze M, Walczak M, Chlopicki S. Vascular protein disulfide isomerase A1 mediates endothelial dysfunction induced by angiotensin II in mice. Acta Physiol (Oxf) 2024; 240:e14116. [PMID: 38400621 DOI: 10.1111/apha.14116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024]
Abstract
AIM Protein disulfide isomerases (PDIs) are involved in platelet aggregation and intravascular thrombosis, but their role in regulating endothelial function is unclear. Here, we characterized the involvement of vascular PDIA1 in angiotensin II (Ang II)-induced endothelial dysfunction in mice. METHODS Endothelial dysfunction was induced in C57BL/6JCmd male mice via Ang II subcutaneous infusion, and PDIA1 was inhibited with bepristat. Endothelial function was assessed in vivo with magnetic resonance imaging and ex vivo with a myography, while arterial stiffness was measured as pulse wave velocity. Nitric oxide (NO) bioavailability was measured in the aorta (spin-trapping electron paramagnetic resonance) and plasma (NO2 - and NO3 - levels). Oxidative stress, eNOS uncoupling (DHE-based aorta staining), and thrombin activity (thrombin-antithrombin complex; calibrated automated thrombography) were evaluated. RESULTS The inhibition of PDIA1 by bepristat in Ang II-treated mice prevented the impairment of NO-dependent vasodilation in the aorta as evidenced by the response to acetylcholine in vivo, increased systemic NO bioavailability and the aortic NO production, and decreased vascular stiffness. Bepristat's effect on NO-dependent function was recapitulated ex vivo in Ang II-induced endothelial dysfunction in isolated aorta. Furthermore, bepristat diminished the Ang II-induced eNOS uncoupling and overproduction of ROS without affecting thrombin activity. CONCLUSION In Ang II-treated mice, the inhibition of PDIA1 normalized the NO-ROS balance, prevented endothelial eNOS uncoupling, and, thereby, improved vascular function. These results indicate the importance of vascular PDIA1 in regulating endothelial function, but further studies are needed to elucidate the details of the mechanisms involved.
Collapse
Affiliation(s)
- Agnieszka Kij
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Anna Bar
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Izabela Czyzynska-Cichon
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Kamil Przyborowski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Lukasz Mateuszuk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Zuzanna Kurylowicz
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Elzbieta Buczek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Anna Kurpinska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Joanna Suraj-Prazmowska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Brygida Marczyk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | | | - Andreas Daiber
- Laboratory of Molecular Cardiology, Department of Cardiology 1, The Center for Cardiology, University Medical Center, Mainz, Germany
| | - Matthias Oelze
- Laboratory of Molecular Cardiology, Department of Cardiology 1, The Center for Cardiology, University Medical Center, Mainz, Germany
| | - Maria Walczak
- Department of Toxicology, Jagiellonian University Medical College, Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
- Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
5
|
Gallo G, Savoia C. New Insights into Endothelial Dysfunction in Cardiometabolic Diseases: Potential Mechanisms and Clinical Implications. Int J Mol Sci 2024; 25:2973. [PMID: 38474219 DOI: 10.3390/ijms25052973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
The endothelium is a monocellular layer covering the inner surface of blood vessels. It maintains vascular homeostasis regulating vascular tone and permeability and exerts anti-inflammatory, antioxidant, anti-proliferative, and anti-thrombotic functions. When the endothelium is exposed to detrimental stimuli including hyperglycemia, hyperlipidemia, and neurohormonal imbalance, different biological pathways are activated leading to oxidative stress, endothelial dysfunction, increased secretion of adipokines, cytokines, endothelin-1, and fibroblast growth factor, and reduced nitric oxide production, leading eventually to a loss of integrity. Endothelial dysfunction has emerged as a hallmark of dysmetabolic vascular impairment and contributes to detrimental effects on cardiac metabolism and diastolic dysfunction, and to the development of cardiovascular diseases including heart failure. Different biomarkers of endothelial dysfunction have been proposed to predict cardiovascular diseases in order to identify microvascular and macrovascular damage and the development of atherosclerosis, particularly in metabolic disorders. Endothelial dysfunction also plays an important role in the development of severe COVID-19 and cardiovascular complications in dysmetabolic patients after SARS-CoV-2 infection. In this review, we will discuss the biological mechanisms involved in endothelial dysregulation in the context of cardiometabolic diseases as well as the available and promising biomarkers of endothelial dysfunction in clinical practice.
Collapse
Affiliation(s)
- Giovanna Gallo
- Clinical and Molecular Medicine Department, Faculty of Medicine and Psychology, Sant'Andrea Hospital, Sapienza University of Rome, Via di Grottarossa 1035-1039, 00189 Rome, Italy
| | - Carmine Savoia
- Clinical and Molecular Medicine Department, Faculty of Medicine and Psychology, Sant'Andrea Hospital, Sapienza University of Rome, Via di Grottarossa 1035-1039, 00189 Rome, Italy
| |
Collapse
|
6
|
Zakharova IS, Shevchenko AI, Arssan MA, Sleptcov AA, Nazarenko MS, Zarubin AA, Zheltysheva NV, Shevchenko VA, Tmoyan NA, Saaya SB, Ezhov MV, Kukharchuk VV, Parfyonova YV, Zakian SM. iPSC-Derived Endothelial Cells Reveal LDLR Dysfunction and Dysregulated Gene Expression Profiles in Familial Hypercholesterolemia. Int J Mol Sci 2024; 25:689. [PMID: 38255763 PMCID: PMC10815294 DOI: 10.3390/ijms25020689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Defects in the low-density lipoprotein receptor (LDLR) are associated with familial hypercholesterolemia (FH), manifested by atherosclerosis and cardiovascular disease. LDLR deficiency in hepatocytes leads to elevated blood cholesterol levels, which damage vascular cells, especially endothelial cells, through oxidative stress and inflammation. However, the distinctions between endothelial cells from individuals with normal and defective LDLR are not yet fully understood. In this study, we obtained and examined endothelial derivatives of induced pluripotent stem cells (iPSCs) generated previously from conditionally healthy donors and compound heterozygous FH patients carrying pathogenic LDLR alleles. In normal iPSC-derived endothelial cells (iPSC-ECs), we detected the LDLR protein predominantly in its mature form, whereas iPSC-ECs from FH patients have reduced levels of mature LDLR and show abolished low-density lipoprotein uptake. RNA-seq of mutant LDLR iPSC-ECs revealed a unique transcriptome profile with downregulated genes related to monocarboxylic acid transport, exocytosis, and cell adhesion, whereas upregulated signaling pathways were involved in cell secretion and leukocyte activation. Overall, these findings suggest that LDLR defects increase the susceptibility of endothelial cells to inflammation and oxidative stress. In combination with elevated extrinsic cholesterol levels, this may result in accelerated endothelial dysfunction, contributing to early progression of atherosclerosis and other cardiovascular pathologies associated with FH.
Collapse
Affiliation(s)
- Irina S. Zakharova
- Federal Research Centre Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.S.Z.); (A.I.S.); (M.A.A.); (N.V.Z.); (V.A.S.)
| | - Alexander I. Shevchenko
- Federal Research Centre Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.S.Z.); (A.I.S.); (M.A.A.); (N.V.Z.); (V.A.S.)
| | - Mhd Amin Arssan
- Federal Research Centre Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.S.Z.); (A.I.S.); (M.A.A.); (N.V.Z.); (V.A.S.)
| | - Aleksei A. Sleptcov
- Research Institute of Medical Genetics, Tomsk National Research Medical Centre, Russian Academy of Science, 634050 Tomsk, Russia; (A.A.S.); (M.S.N.); (A.A.Z.)
| | - Maria S. Nazarenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Centre, Russian Academy of Science, 634050 Tomsk, Russia; (A.A.S.); (M.S.N.); (A.A.Z.)
| | - Aleksei A. Zarubin
- Research Institute of Medical Genetics, Tomsk National Research Medical Centre, Russian Academy of Science, 634050 Tomsk, Russia; (A.A.S.); (M.S.N.); (A.A.Z.)
| | - Nina V. Zheltysheva
- Federal Research Centre Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.S.Z.); (A.I.S.); (M.A.A.); (N.V.Z.); (V.A.S.)
| | - Vlada A. Shevchenko
- Federal Research Centre Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.S.Z.); (A.I.S.); (M.A.A.); (N.V.Z.); (V.A.S.)
| | - Narek A. Tmoyan
- Federal State Budgetary Institution, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, Ministry of Health of Russian Federation, 121552 Moscow, Russia; (N.A.T.); (M.V.E.); (V.V.K.); (Y.V.P.)
| | - Shoraan B. Saaya
- E.N. Meshalkin National Medical Research Centre, Ministry of Health Care of the Russian Federation, 630055 Novosibirsk, Russia;
| | - Marat V. Ezhov
- Federal State Budgetary Institution, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, Ministry of Health of Russian Federation, 121552 Moscow, Russia; (N.A.T.); (M.V.E.); (V.V.K.); (Y.V.P.)
| | - Valery V. Kukharchuk
- Federal State Budgetary Institution, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, Ministry of Health of Russian Federation, 121552 Moscow, Russia; (N.A.T.); (M.V.E.); (V.V.K.); (Y.V.P.)
| | - Yelena V. Parfyonova
- Federal State Budgetary Institution, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, Ministry of Health of Russian Federation, 121552 Moscow, Russia; (N.A.T.); (M.V.E.); (V.V.K.); (Y.V.P.)
| | - Suren M. Zakian
- Federal Research Centre Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.S.Z.); (A.I.S.); (M.A.A.); (N.V.Z.); (V.A.S.)
| |
Collapse
|
7
|
Belcik JT, Xie A, Muller M, Lindner JR. Influence of Atherosclerotic Risk Factors on the Effectiveness of Therapeutic Ultrasound Cavitation for Flow Augmentation. J Am Soc Echocardiogr 2024; 37:100-107. [PMID: 37678655 DOI: 10.1016/j.echo.2023.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Shear created by inertial cavitation of microbubbles by ultrasound augments limb and myocardial perfusion and can reverse tissue ischemia. Our aim was to determine whether this therapeutic bioeffect is attenuated by atherosclerotic risk factors that are known to impair shear-mediated vasodilation and adversely affect microvascular reactivity. METHODS In mice, lipid-stabilized decafluorobutane microbubbles (2 × 108) were administered intravenously while exposing a proximal hind limb to ultrasound (1.3 MHz, 1.3 mechanical index, pulsing interval 5 seconds) for 10 minutes. Murine strains included wild-type mice and severely hyperlipidemic mice at 15, 35, or 52 weeks of age as a model of aging and elevated cholesterol, and obese db/db mice (≈15 weeks) with severe insulin resistance. Quantitative contrast-enhanced ultrasound perfusion imaging was performed to assess microvascular perfusion in the control and ultrasound-exposed limb. An in situ electrochemical probe and in vivo biophotonic imaging were used to assess limb nitric oxide (NO) and adenosine triphosphosphate concentrations, respectively. RESULTS Microvascular perfusion was significantly increased by several fold in the cavitation-exposed limb versus control limb for all murine strains and ages (P < .001). In wild-type and hyperlipidemic mice, hyperemia from cavitation was attenuated in the 2 older age groups (P < .01). In young mice (15 weeks), perfusion in cavitation-exposed muscle was less in both the hyperlipidemic mice and the obese db/db mice compared with corresponding wild-type mice. Using young hyperlipidemic mice as a model for flow impairment, limb NO production after cavitation was reduced but adenosine triphosphosphate production was unaltered when compared with age-matched wild-type mice. CONCLUSIONS In mice, ultrasound cavitation of microbubbles increases limb perfusion by several fold even in the presence of traditional atherosclerotic risk factors. However, older age, hyperlipidemia, and insulin resistance modestly attenuate the degree of flow augmentation, which could impact the degree of flow response in current clinical trials in patients with critical limb ischemia.
Collapse
Affiliation(s)
- J Todd Belcik
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
| | - Aris Xie
- Division of Cardiovascular Medicine and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia
| | - Matthew Muller
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
| | - Jonathan R Lindner
- Division of Cardiovascular Medicine and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
8
|
Valero P, Cornejo M, Fuentes G, Wehinger S, Toledo F, van der Beek EM, Sobrevia L, Moore-Carrasco R. Platelets and endothelial dysfunction in gestational diabetes mellitus. Acta Physiol (Oxf) 2023; 237:e13940. [PMID: 36700365 DOI: 10.1111/apha.13940] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/06/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
The prevalence of gestational diabetes mellitus (GDM) has increased in recent years, along with the higher prevalence of obesity in women of reproductive age. GDM is a pathology associated with vascular dysfunction in the fetoplacental unit. GDM-associated endothelial dysfunction alters the transfer of nutrients to the foetus affecting newborns and pregnant women. Various mechanisms for this vascular dysfunction have been proposed, of which the most studied are metabolic alterations of the vascular endothelium. However, different cell types are involved in GDM-associated endothelial dysfunction, including platelets. Platelets are small, enucleated cell fragments that actively take part in blood haemostasis and thrombus formation. Thus, they play crucial roles in pathologies coursing with endothelial dysfunction, such as atherosclerosis, cardiovascular diseases, and diabetes mellitus. Nevertheless, platelet function in GDM is understudied. Several reports show a potential relationship between platelet volume and mass with GDM; however, platelet roles and signaling mechanisms in GDM-associated endothelial dysfunction are unclear. This review summarizes the reported findings and proposes a link among altered amount, volume, mass, reactivity, and function of platelets and placenta development, resulting in fetoplacental vascular dysfunction in GDM.
Collapse
Affiliation(s)
- Paola Valero
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, Department of Obstetrics, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Marcelo Cornejo
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, Department of Obstetrics, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Faculty of Health Sciences, Universidad de Talca, Talca, Chile
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands
- Biomedical Department, Faculty of Health Sciences, Universidad de Antofagasta, Antofagasta, Chile
| | - Gonzalo Fuentes
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, Department of Obstetrics, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Faculty of Health Sciences, Universidad de Talca, Talca, Chile
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands
| | - Sergio Wehinger
- Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Fernando Toledo
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, Department of Obstetrics, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán, Chile
| | - Eline M van der Beek
- Department of Pediatrics, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
- Nestlé Institute for Health Sciences, Nestlé Research, Societé des Produits de Nestlé, Lausanne, Switzerland
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, Department of Obstetrics, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
- Medical School (Faculty of Medicine), Sao Paulo State University (UNESP), São Paulo, Brazil
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, Queensland, Australia
- Tecnologico de Monterrey, Eutra, The Institute for Obesity Research (IOR), School of Medicine and Health Sciences, Monterrey, Mexico
| | | |
Collapse
|
9
|
Papadopoulos C, Anagnostopoulos K, Tsiptsios D, Karatzetzou S, Liaptsi E, Lazaridou IZ, Kokkotis C, Makri E, Ioannidou M, Aggelousis N, Vadikolias K. Unexplored Roles of Erythrocytes in Atherothrombotic Stroke. Neurol Int 2023; 15:124-139. [PMID: 36810466 PMCID: PMC9944955 DOI: 10.3390/neurolint15010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Stroke constitutes the second highest cause of morbidity and mortality worldwide while also impacting the world economy, triggering substantial financial burden in national health systems. High levels of blood glucose, homocysteine, and cholesterol are causative factors for atherothrombosis. These molecules induce erythrocyte dysfunction, which can culminate in atherosclerosis, thrombosis, thrombus stabilization, and post-stroke hypoxia. Glucose, toxic lipids, and homocysteine result in erythrocyte oxidative stress. This leads to phosphatidylserine exposure, promoting phagocytosis. Phagocytosis by endothelial cells, intraplaque macrophages, and vascular smooth muscle cells contribute to the expansion of the atherosclerotic plaque. In addition, oxidative stress-induced erythrocytes and endothelial cell arginase upregulation limit the pool for nitric oxide synthesis, leading to endothelial activation. Increased arginase activity may also lead to the formation of polyamines, which limit the deformability of red blood cells, hence facilitating erythrophagocytosis. Erythrocytes can also participate in the activation of platelets through the release of ADP and ATP and the activation of death receptors and pro-thrombin. Damaged erythrocytes can also associate with neutrophil extracellular traps and subsequently activate T lymphocytes. In addition, reduced levels of CD47 protein in the surface of red blood cells can also lead to erythrophagocytosis and a reduced association with fibrinogen. In the ischemic tissue, impaired erythrocyte 2,3 biphosphoglycerate, because of obesity or aging, can also favor hypoxic brain inflammation, while the release of damage molecules can lead to further erythrocyte dysfunction and death.
Collapse
Affiliation(s)
- Charalampos Papadopoulos
- Laboratory of Biochemistry, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Konstantinos Anagnostopoulos
- Laboratory of Biochemistry, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Dimitrios Tsiptsios
- Department of Neurology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Correspondence:
| | - Stella Karatzetzou
- Department of Neurology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Eirini Liaptsi
- Department of Neurology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | | | - Christos Kokkotis
- Department of Physical Education and Sport Science, Democritus University of Thrace, 69100 Komotini, Greece
| | - Evangelia Makri
- Department of Physical Education and Sport Science, Democritus University of Thrace, 69100 Komotini, Greece
| | - Maria Ioannidou
- Department of Physical Education and Sport Science, Democritus University of Thrace, 69100 Komotini, Greece
| | - Nikolaos Aggelousis
- Department of Physical Education and Sport Science, Democritus University of Thrace, 69100 Komotini, Greece
| | | |
Collapse
|