1
|
Hasegawa S, Yoshimaru D, Hayashi N, Shibukawa S, Takagi M, Murai H. Analyzing the relationship between specific brain structural changes and the diffusion tensor image analysis along the perivascular space index in idiopathic normal pressure hydrocephalus. J Neurol 2024; 272:56. [PMID: 39666072 DOI: 10.1007/s00415-024-12850-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Diffusion Tensor Image Analysis Along the Perivascular Space (DTI-ALPS) evaluates the glymphatic system in patients with idiopathic normal-pressure hydrocephalus (iNPH). However, white matter compression due to ventricular enlargement may affect the ALPS index. This study aimed to investigate the relationship among the ALPS index, white matter changes, and clinical symptoms in patients with iNPH. METHODS We calculated the ALPS index in 30 patients with iNPH, aged 70 and above, using DTI data and correlated it with various clinical and imaging indices, including the Evans index, callosal angle, cognitive tests, gait assessment (timed up-and-go [TUG] test), cerebrospinal fluid (CSF) medullary pressure, and various DTI indices (axial diffusivity [AD], radial diffusivity [RD], mean diffusivity [MD], fractional anisotropy [FA]). RESULTS Significant negative correlations were observed between the ALPS index and the rate of change in step count in the TUG test after the tap test (r = -0.5014, p = 0.0048), as well as CSF medullary pressure (r = -0.4651, p = 0.0096). Positive correlations were identified between the ALPS index and both AD (r = 0.4984, p = 0.0051) and MD (r = 0.3631, p = 0.0486). CONCLUSION A lower ALPS index was associated with gait improvement following the tap test as well as higher CSF medullary pressure. The ALPS index may detect subtle periventricular compression-induced changes in iNPH. Consequently, it could potentially serve as a predictor for tap test effectiveness in patients with iNPH, offering a new perspective on its application in iNPH diagnosis and treatment.
Collapse
Affiliation(s)
- Shinya Hasegawa
- Department of Radiology, Chiba Saiseikai Narashino Hospital, 1-1-1 Izumicho, Narashino City, Chiba, 275-8580, Japan.
- Graduate School of Radiological Technology, Gunma Prefectural College of Health Sciences, 23-1 Kamiochicho, Maebashi City, Gunma, 371-0052, Japan.
| | - Daisuke Yoshimaru
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan.
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.
- Department of Radiology, Tokyo Medical University, Tokyo, Japan.
| | - Norio Hayashi
- Graduate School of Radiological Technology, Gunma Prefectural College of Health Sciences, 23-1 Kamiochicho, Maebashi City, Gunma, 371-0052, Japan
| | - Shuhei Shibukawa
- Department of Radiology, Tokyo Medical University, Tokyo, Japan
- Faculty of Health Science, Department of Radiological Technology, Juntendo University, Tokyo, Japan
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Mika Takagi
- Department of Radiology, Chiba Saiseikai Narashino Hospital, 1-1-1 Izumicho, Narashino City, Chiba, 275-8580, Japan
| | - Hisayuki Murai
- Department of Neurosurgery, Chiba Saiseikai Narashino Hospital, Chiba, Japan
| |
Collapse
|
2
|
Han Y, Jing Y, Li X, Zhou H, Deng F. Clinical characteristics of post-stroke basal ganglia aphasia and the study of language-related white matter tracts based on diffusion spectrum imaging. Neuroimage 2024; 295:120664. [PMID: 38825217 DOI: 10.1016/j.neuroimage.2024.120664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/12/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Stroke often damages the basal ganglia, leading to atypical and transient aphasia, indicating that post-stroke basal ganglia aphasia (PSBGA) may be related to different anatomical structural damage and functional remodeling rehabilitation mechanisms. The basal ganglia contain dense white matter tracts (WMTs). Hence, damage to the functional tract may be an essential anatomical structural basis for the development of PSBGA. METHODS We first analyzed the clinical characteristics of PSBGA in 28 patients and 15 healthy controls (HCs) using the Western Aphasia Battery and neuropsychological test batteries. Moreover, we investigated white matter injury during the acute stage using diffusion magnetic resonance imaging scans for differential tractography. Finally, we used multiple regression models in correlation tractography to analyze the relationship between various language functions and quantitative anisotropy (QA) of WMTs. RESULTS Compared with HCs, patients with PSBGA showed lower scores for fluency, comprehension (auditory word recognition and sequential commands), naming (object naming and word fluency), reading comprehension of sentences, Mini-Mental State Examination, and Montreal Cognitive Assessment, along with increased scores in Hamilton Anxiety Scale-17 and Hamilton Depression Scale-17 within 7 days after stroke onset (P < 0.05). Differential tractography revealed that patients with PSBGA had damaged fibers, including in the body fibers of the corpus callosum, left cingulum bundles, left parietal aslant tracts, bilateral superior longitudinal fasciculus II, bilateral thalamic radiation tracts, left fornix, corpus callosum tapetum, and forceps major, compared with HCs (FDR < 0.02). Correlation tractography highlighted that better comprehension was correlated with a higher QA of the left inferior fronto-occipital fasciculus (IFOF), corpus callosum forceps minor, and left extreme capsule (FDR < 0.0083). Naming was positively associated with the QA of the left IFOF, forceps minor, left arcuate fasciculus, and uncinate fasciculus (UF) (FDR < 0.0083). Word fluency of naming was also positively associated with the QA of the forceps minor, left IFOF, and thalamic radiation tracts (FDR < 0.0083). Furthermore, reading was positively correlated with the QA of the forceps minor, left IFOF, and UF (FDR < 0.0083). CONCLUSION PSBGA is primarily characterized by significantly impaired word fluency of naming and preserved repetition abilities, as well as emotional and cognitive dysfunction. Damaged limbic pathways, dorsally located tracts in the left hemisphere, and left basal ganglia pathways are involved in PSBGA pathogenesis. The results of connectometry analysis further refine the current functional localization model of higher-order neural networks associated with language functions.
Collapse
Affiliation(s)
- Yue Han
- Department of Neurology, The First Hospital of Jilin University, Changchun, PR China
| | - Yuanyuan Jing
- Department of Neurology, The First Hospital of Jilin University, Changchun, PR China
| | - Xuewei Li
- Department of Radiology, The First Hospital of Jilin University, Changchun, PR China
| | - Hongwei Zhou
- Department of Radiology, The First Hospital of Jilin University, Changchun, PR China.
| | - Fang Deng
- Department of Neurology, The First Hospital of Jilin University, Changchun, PR China.
| |
Collapse
|
3
|
Arai Y, Katagiri N, Tagata H, Uchino T, Saito J, Shido Y, Kamiya K, Hori M, Mizuno M, Nemoto T. Exploring the impact of biological alterations in the superior thalamic radiations on exploratory eye movements in attenuated psychosis syndrome. Front Psychiatry 2024; 15:1323786. [PMID: 38938465 PMCID: PMC11210316 DOI: 10.3389/fpsyt.2024.1323786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 06/03/2024] [Indexed: 06/29/2024] Open
Abstract
Introduction Aberrant fixation and scan paths in visual searches have been repeatedly reported in schizophrenia. The frontal eye fields (FEF) and thalamus may be responsible for fixation and scan paths. These two regions are connected by superior thalamic radiation (STR) in humans. Studies have reported reduced fixation numbers and shortened scan path lengths in individuals with attenuated psychosis syndrome (APS) and schizophrenia. In this study, we hypothesized that STRs in the white matter fiber bundles of impairments underlie abnormalities in fixation and scan path length in individuals with APS. Methods Twenty-one individuals with APS and 30 healthy controls participated in this study. All participants underwent diffusion tensor imaging, and fractional anisotropy (FA) values of the left and right STR were analyzed using the novel method TractSeg. The number of eye fixations (NEF), total eye scanning length (TESL), and mean eye scanning length (MESL), derived using the exploratory eye movement (EEM) test, were adopted to evaluate the fixation and scan path length. We compared the FA values of the bilateral STR and EEM parameters between the APS and healthy control groups. We investigated the correlation between bilateral STR and EEM parameters in the APS and healthy control groups. Results NEF, TESL, MESL, and the FA values of the left STR were significantly reduced in individuals with APS compared to healthy controls. The left STR FA value in the APS group was significantly positively correlated with the MESL (r = 0.567, p = 0.007). In addition, the right STR FA value of the APS group was significantly correlated with the TESL (r = 0.587, p = 0.005) and MESL (r = 0.756, p = 0.7×10-4). Discussion These results demonstrate that biological changes in the STR, which connects the thalamus and FEF, underlie abnormalities in fixation and scanning. Recently, aberrations in the thalamus-frontal connection have been shown to underlie the emergence of psychotic symptoms. STR impairment may be a part of the biological basis of APS in individuals with subthreshold psychotic symptoms.
Collapse
Affiliation(s)
- Yu Arai
- Department of Neuropsychiatry, Toho University Graduate School of Medicine, Tokyo, Japan
- Department of Neuropsychiatry, Toho University Faculty of Medicine, Tokyo, Japan
- Department of Neuropsychiatry, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Japan
| | - Naoyuki Katagiri
- Department of Neuropsychiatry, Toho University Faculty of Medicine, Tokyo, Japan
| | - Hiromi Tagata
- Department of Neuropsychiatry, Toho University Faculty of Medicine, Tokyo, Japan
| | - Takashi Uchino
- Department of Psychiatry and Implementation Science, Toho University Faculty of Medicine, Tokyo, Japan
| | - Junichi Saito
- Department of Neuropsychiatry, Toho University Faculty of Medicine, Tokyo, Japan
| | - Yusuke Shido
- Department of Neuropsychiatry, Toho University Faculty of Medicine, Tokyo, Japan
| | - Kouhei Kamiya
- Department of Radiology, Toho University Omori Medical Center, Tokyo, Japan
| | - Masaaki Hori
- Department of Radiology, Toho University Omori Medical Center, Tokyo, Japan
| | - Masafumi Mizuno
- Department of Neuropsychiatry, Toho University Faculty of Medicine, Tokyo, Japan
- Tokyo Metropolitan Matsuzawa Hospital, Tokyo, Japan
| | - Takahiro Nemoto
- Department of Neuropsychiatry, Toho University Graduate School of Medicine, Tokyo, Japan
- Department of Neuropsychiatry, Toho University Faculty of Medicine, Tokyo, Japan
- Department of Psychiatry and Implementation Science, Toho University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Pyrgelis ES, Velonakis G, Papageorgiou SG, Stefanis L, Kapaki E, Constantinides VC. Imaging Markers for Normal Pressure Hydrocephalus: An Overview. Biomedicines 2023; 11:biomedicines11051265. [PMID: 37238936 DOI: 10.3390/biomedicines11051265] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Idiopathic bormal pressure hydrocephalus (iNPH) is a neurological syndrome that clinically presents with Hakim's triad, namely cognitive impairment, gait disturbances, and urinary incontinence. The fact that iNPH is potentially reversible makes its accurate and early diagnosis of paramount importance. Its main imaging characteristic is the dilation of the brain's ventricular system and the imaging parameters are also included in its diagnostic criteria along with clinical data. There is a variety of different modalities used and a great number of imaging markers that have been described while assessing iNPH patients. The present literature review attempts to describe the most important of these imaging markers and to shed some light on their role in diagnosis, differential diagnosis, and possibly prognosis of this potentially reversible neurological syndrome.
Collapse
Affiliation(s)
- Efstratios-Stylianos Pyrgelis
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Vass. Sophias Ave. 74, 11528 Athens, Greece
- Neurochemistry and Biological Markers Unit, 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Vass. Sophias Ave. 74, 11528 Athens, Greece
| | - Georgios Velonakis
- Research Unit of Radiology, 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, "Attikon" University General Hospital, Rimini 1, Chaidari, 12462 Athens, Greece
| | - Sokratis G Papageorgiou
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Vass. Sophias Ave. 74, 11528 Athens, Greece
| | - Leonidas Stefanis
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Vass. Sophias Ave. 74, 11528 Athens, Greece
| | - Elisabeth Kapaki
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Vass. Sophias Ave. 74, 11528 Athens, Greece
- Neurochemistry and Biological Markers Unit, 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Vass. Sophias Ave. 74, 11528 Athens, Greece
| | - Vasilios C Constantinides
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Vass. Sophias Ave. 74, 11528 Athens, Greece
- Neurochemistry and Biological Markers Unit, 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Vass. Sophias Ave. 74, 11528 Athens, Greece
| |
Collapse
|
5
|
Cai H, Zou Y, Gao H, Huang K, Liu Y, Cheng Y, Liu Y, Zhou L, Zhou D, Chen Q. Radiological biomarkers of idiopathic normal pressure hydrocephalus: new approaches for detecting concomitant Alzheimer's disease and predicting prognosis. PSYCHORADIOLOGY 2022; 2:156-170. [PMID: 38665278 PMCID: PMC10917212 DOI: 10.1093/psyrad/kkac019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 04/28/2024]
Abstract
Idiopathic normal pressure hydrocephalus (iNPH) is a clinical syndrome characterized by cognitive decline, gait disturbance, and urinary incontinence. As iNPH often occurs in elderly individuals prone to many types of comorbidity, a differential diagnosis with other neurodegenerative diseases is crucial, especially Alzheimer's disease (AD). A growing body of published work provides evidence of radiological methods, including multimodal magnetic resonance imaging and positron emission tomography, which may help noninvasively differentiate iNPH from AD or reveal concurrent AD pathology in vivo. Imaging methods detecting morphological changes, white matter microstructural changes, cerebrospinal fluid circulation, and molecular imaging have been widely applied in iNPH patients. Here, we review radiological biomarkers using different methods in evaluating iNPH pathophysiology and differentiating or detecting concomitant AD, to noninvasively predict the possible outcome postshunt and select candidates for shunt surgery.
Collapse
Affiliation(s)
- Hanlin Cai
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yinxi Zou
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Hui Gao
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Keru Huang
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yu Liu
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuting Cheng
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Liu
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Dong Zhou
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Qin Chen
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
6
|
Radwan AM, Sunaert S, Schilling K, Descoteaux M, Landman BA, Vandenbulcke M, Theys T, Dupont P, Emsell L. An atlas of white matter anatomy, its variability, and reproducibility based on constrained spherical deconvolution of diffusion MRI. Neuroimage 2022; 254:119029. [PMID: 35231632 DOI: 10.1016/j.neuroimage.2022.119029] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/19/2022] [Accepted: 02/21/2022] [Indexed: 11/17/2022] Open
Abstract
Virtual dissection of white matter (WM) using diffusion MRI tractography is confounded by its poor reproducibility. Despite the increased adoption of advanced reconstruction models, early region-of-interest driven protocols based on diffusion tensor imaging (DTI) remain the dominant reference for virtual dissection protocols. Here we bridge this gap by providing a comprehensive description of typical WM anatomy reconstructed using a reproducible automated subject-specific parcellation-based approach based on probabilistic constrained-spherical deconvolution (CSD) tractography. We complement this with a WM template in MNI space comprising 68 bundles, including all associated anatomical tract selection labels and associated automated workflows. Additionally, we demonstrate bundle inter- and intra-subject variability using 40 (20 test-retest) datasets from the human connectome project (HCP) and 5 sessions with varying b-values and number of b-shells from the single-subject Multiple Acquisitions for Standardization of Structural Imaging Validation and Evaluation (MASSIVE) dataset. The most reliably reconstructed bundles were the whole pyramidal tracts, primary corticospinal tracts, whole superior longitudinal fasciculi, frontal, parietal and occipital segments of the corpus callosum and middle cerebellar peduncles. More variability was found in less dense bundles, e.g., the fornix, dentato-rubro-thalamic tract (DRTT), and premotor pyramidal tract. Using the DRTT as an example, we show that this variability can be reduced by using a higher number of seeding attempts. Overall inter-session similarity was high for HCP test-retest data (median weighted-dice = 0.963, stdev = 0.201 and IQR = 0.099). Compared to the HCP-template bundles there was a high level of agreement for the HCP test-retest data (median weighted-dice = 0.747, stdev = 0.220 and IQR = 0.277) and for the MASSIVE data (median weighted-dice = 0.767, stdev = 0.255 and IQR = 0.338). In summary, this WM atlas provides an overview of the capabilities and limitations of automated subject-specific probabilistic CSD tractography for mapping white matter fasciculi in healthy adults. It will be most useful in applications requiring a reproducible parcellation-based dissection protocol, and as an educational resource for applied neuroimaging and clinical professionals.
Collapse
Affiliation(s)
- Ahmed M Radwan
- KU Leuven, Department of Imaging and pathology, Translational MRI, Leuven, Belgium; KU Leuven, Leuven Brain Institute (LBI), Department of Neurosciences, Leuven, Belgium.
| | - Stefan Sunaert
- KU Leuven, Department of Imaging and pathology, Translational MRI, Leuven, Belgium; KU Leuven, Leuven Brain Institute (LBI), Department of Neurosciences, Leuven, Belgium; UZ Leuven, Department of Radiology, Leuven, Belgium
| | - Kurt Schilling
- Vanderbilt University Medical Center, Department of Radiology and Radiological Sciences, Nashville, TN, USA
| | | | - Bennett A Landman
- Vanderbilt University, Department of Electrical Engineering and Computer Engineering, Nashville, TN, USA
| | - Mathieu Vandenbulcke
- KU Leuven, Leuven Brain Institute (LBI), Department of Neurosciences, Leuven, Belgium; KU Leuven, Department of Neurosciences, Neuropsychiatry, Leuven, Belgium; KU Leuven, Department of Geriatric Psychiatry, University Psychiatric Center (UPC), Leuven, Belgium
| | - Tom Theys
- KU Leuven, Leuven Brain Institute (LBI), Department of Neurosciences, Leuven, Belgium; KU Leuven, Department of Neurosciences, Research Group Experimental Neurosurgery and Neuroanatomy, Leuven, Belgium; UZ Leuven, Department of Neurosurgery, Leuven, Belgium
| | - Patrick Dupont
- KU Leuven, Leuven Brain Institute (LBI), Department of Neurosciences, Leuven, Belgium; KU Leuven, Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven, Belgium
| | - Louise Emsell
- KU Leuven, Department of Imaging and pathology, Translational MRI, Leuven, Belgium; KU Leuven, Leuven Brain Institute (LBI), Department of Neurosciences, Leuven, Belgium; KU Leuven, Department of Neurosciences, Neuropsychiatry, Leuven, Belgium; KU Leuven, Department of Geriatric Psychiatry, University Psychiatric Center (UPC), Leuven, Belgium
| |
Collapse
|
7
|
Huang W, Fang X, Li S, Mao R, Ye C, Liu W, Lin G. Preliminary Exploration of the Sequence of Nerve Fiber Bundles Involvement for Idiopathic Normal Pressure Hydrocephalus: A Correlation Analysis Using Diffusion Tensor Imaging. Front Neurosci 2022; 15:794046. [PMID: 34975390 PMCID: PMC8718542 DOI: 10.3389/fnins.2021.794046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/24/2021] [Indexed: 12/21/2022] Open
Abstract
The study preliminarily explored the sequence and difference of involvement in different neuroanatomical structures in idiopathic normal pressure hydrocephalus (INPH). We retrospectively analyzed the differences in diffusion tensor imaging (DTI) parameters in 15 ROIs [including the bilateral centrum semiovale (CS), corpus callosum (CC) (body, genu, and splenium), head of the caudate nucleus (CN), internal capsule (IC) (anterior and posterior limb), thalamus (TH), and the bilateral frontal horn white matter hyperintensity (FHWMH)] between 27 INPH patients and 11 healthy controls and the correlation between DTI indices and clinical symptoms, as evaluated by the INPH grading scale (INPHGS), the Mini-Mental State Examination (MMSE), and the timed up and go test (TUG-t), before and 1 month after shunt surgery. Significant differences were observed in DTI parameters from the CS (pFA1 = 0.004, pADC1 = 0.005) and the genu (pFA2 = 0.022; pADC2 = 0.001) and body (pFA3 = 0.003; pADC3 = 0.002) of the CC between the groups. The DTI parameters from the CS were strongly correlated with the MMSE score both pre-operatively and post-operatively. There was association between apparent diffusion coefficient (ADC) values of anterior and posterior limbs of the IC and MMSE. The DTI parameters of the head of the CN were correlated with motion, and the ADC value was significantly associated with the MMSE score. The FA value from TH correlated with an improvement in urination after shunt surgery. We considered that different neuroanatomical structures are affected differently by disease due to their positions in neural pathways and characteristics, which is further reflected in clinical symptoms and the prognosis of shunt surgery.
Collapse
Affiliation(s)
- Wenjun Huang
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Xuhao Fang
- Department of Neurosurgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Shihong Li
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Renling Mao
- Department of Neurosurgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Chuntao Ye
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Wei Liu
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Guangwu Lin
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
8
|
Keser Z, Meier EL, Stockbridge MD, Breining BL, Sebastian R, Hillis AE. Thalamic Nuclei and Thalamocortical Pathways After Left Hemispheric Stroke and Their Association with Picture Naming. Brain Connect 2021; 11:553-565. [PMID: 33797954 DOI: 10.1089/brain.2020.0831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: Previous studies utilized lesion-centric approaches to study the role of the thalamus in language. In this study, we tested the hypotheses that non-lesioned dorsomedial and ventral anterior nuclei (DMVAC) and pulvinar lateral posterior nuclei complexes (PLC) of the thalamus and their projections to the left hemisphere show secondary effects of the strokes, and that their microstructural integrity is closely related to language-related functions. Methods: Subjects with language impairments after a left-hemispheric cortical and/or subcortical, early stroke (n = 31, ≤6 months) or late stroke (n = 30, ≥12 months) sparing thalamus underwent the Boston Naming Test (BNT) and diffusion tensor imaging (DTI). The tissue integrity of DMVAC, PLC, and their cortical projections was quantified with DTI. The right-left asymmetry profiles of these structures were evaluated in relation to the time since stroke. The association between microstructural integrity and BNT score was investigated in relation to stroke chronicity with partial correlation analyses adjusted for confounds. Results: In both early stroke and late stroke groups, left-sided tracts showed significantly higher mean diffusivities (MDs), which were likely due to Wallerian degeneration. Higher MD values of the cortical projections from the left PLC (r = -0.5, p = 0.005) and DMVAC (r = -0.53, p = 0.002) were correlated with lower BNT score in the late stroke but not early stroke group. Conclusion: Nonlesioned thalamic nuclei and thalamocortical pathways show rightward lateralization of the microstructural integrity after a left hemispheric stroke, and this pattern is associated with poorer naming.
Collapse
Affiliation(s)
- Zafer Keser
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Erin L Meier
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Melissa D Stockbridge
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bonnie L Breining
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rajani Sebastian
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Grazzini I, Venezia D, Cuneo GL. The role of diffusion tensor imaging in idiopathic normal pressure hydrocephalus: A literature review. Neuroradiol J 2021; 34:55-69. [PMID: 33263494 PMCID: PMC8041402 DOI: 10.1177/1971400920975153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Idiopathic normal pressure hydrocephalus (iNPH) is a syndrome that comprises a triad of gait disturbance, dementia and urinary incontinence, associated with ventriculomegaly in the absence of elevated intraventricular cerebrospinal fluid (CSF) pressure. It is important to identify patients with iNPH because some of its clinical features may be reversed by the insertion of a CSF shunt. The diagnosis is based on clinical history, physical examination and brain imaging, especially magnetic resonance imaging (MRI). Recently, some papers have investigated the role of diffusion tensor imaging (DTI) in evaluating white matter alterations in patients with iNPH. DTI analysis in specific anatomical regions seems to be a promising MR biomarker of iNPH and could also be used in the differential diagnosis from other dementias. However, there is a substantial lack of structured reviews on this topic. Thus, we performed a literature search and analyzed the most recent and pivotal articles that investigated the role of DTI in iNPH in order to provide an up-to-date overview of the application of DTI in this setting. We reviewed studies published between January 2000 and June 2020. Thirty-eight studies and four reviews were included. Despite heterogeneity in analysis approaches, the majority of studies reported significant correlations between DTI and clinical symptoms in iNPH patients, as well as different DTI patterns in patients with iNPH compared to those with Alzheimer or Parkinson diseases. It remains to be determined whether DTI could predict the success after CSF shunting.
Collapse
Affiliation(s)
- Irene Grazzini
- Department of Radiology, Section of Neuroradiology, San Donato Hospital, Arezzo, Italy
| | - Duccio Venezia
- Department of Radiology, Section of Neuroradiology, San Donato Hospital, Arezzo, Italy
| | | |
Collapse
|
10
|
Griffa A, Van De Ville D, Herrmann FR, Allali G. Neural circuits of idiopathic Normal Pressure Hydrocephalus: A perspective review of brain connectivity and symptoms meta-analysis. Neurosci Biobehav Rev 2020; 112:452-471. [PMID: 32088348 DOI: 10.1016/j.neubiorev.2020.02.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/09/2020] [Accepted: 02/17/2020] [Indexed: 12/13/2022]
Abstract
Idiopathic normal pressure hydrocephalus (iNPH) is a prevalent reversible neurological disorder characterized by impaired locomotion, cognition and urinary control with ventriculomegaly. Symptoms can be relieved with cerebrospinal fluid drainage, which makes iNPH the leading cause of reversible dementia. Because of a limited understanding of pathophysiological mechanisms, unspecific symptoms and the high prevalence of comorbidity (i.e. Alzheimer's disease), iNPH is largely underdiagnosed. For these reasons, there is an urgent need for developing noninvasive quantitative biomarkers for iNPH diagnosis and prognosis. Structural and functional changes of brain circuits in relation to symptoms and treatment response are expected to deliver major advances in this direction. We review structural and functional brain connectivity findings in iNPH and complement those findings with iNPH symptom meta-analyses in healthy populations. Our goal is to reinforce our conceptualization of iNPH as to brain network mechanisms and foster the development of new hypotheses for future research and treatment options.
Collapse
Affiliation(s)
- Alessandra Griffa
- Department of Clinical Neurosciences, Division of Neurology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland; Institute of Bioengineering, Center of Neuroprosthetics, Ecole Polytechnique Fédérale De Lausanne (EPFL), Lausanne, Switzerland.
| | - Dimitri Van De Ville
- Institute of Bioengineering, Center of Neuroprosthetics, Ecole Polytechnique Fédérale De Lausanne (EPFL), Lausanne, Switzerland; Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland.
| | - François R Herrmann
- Department of Rehabilitation and Geriatrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.
| | - Gilles Allali
- Department of Clinical Neurosciences, Division of Neurology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland; Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Neurology, Division of Cognitive & Motor Aging, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA.
| |
Collapse
|
11
|
Lock C, Kwok J, Kumar S, Ahmad-Annuar A, Narayanan V, Ng ASL, Tan YJ, Kandiah N, Tan EK, Czosnyka Z, Czosnyka M, Pickard JD, Keong NC. DTI Profiles for Rapid Description of Cohorts at the Clinical-Research Interface. Front Med (Lausanne) 2019; 5:357. [PMID: 30687707 PMCID: PMC6335243 DOI: 10.3389/fmed.2018.00357] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022] Open
Abstract
Normal pressure hydrocephalus (NPH) is a syndrome comprising gait disturbance, cognitive decline and urinary incontinence that is an unique model of reversible brain injury, but it presents as a challenging spectrum of disease cohorts. Diffusion Tensor Imaging (DTI), with its ability to interrogate structural white matter patterns at a microarchitectural level, is a potentially useful tool for the confirmation and characterization of disease cohorts at the clinical-research interface. However, obstacles to its widespread use involve the need for consistent DTI analysis and interpretation tools across collaborator sites. We present the use of DTI profiles, a simplistic methodology to interpret white matter injury patterns based on the morphology of diffusivity parameters. We examined 13 patients with complex NPH, i.e., patients with NPH and overlay from multiple comorbidities, including vascular risk burden and neurodegenerative disease, undergoing extended CSF drainage, clinical assessments, and multi-modal MR imaging. Following appropriate exclusions, we compared the morphology of DTI profiles in such complex NPH patients (n = 12, comprising 4 responders and 8 non-responders) to exemplar DTI profiles from a cohort of classic NPH patients (n = 16) demonstrating responsiveness of white matter injury to ventriculo-peritoneal shunting. In the cohort of complex NPH patients, mean age was 71.3 ± 7.6 years (10 males, 2 females) with a mean MMSE score of 21.1. There were 5 age-matched healthy controls, mean age was 73.4 ± 7.2 years (1 male, 4 females) and mean MMSE score was 26.8. In the exemplar cohort of classic NPH patients, mean age was 74.7 ± 5.9 years (10 males, 6 females) and mean MMSE score was 24.1. There were 9 age-matched healthy controls, mean age was 69.4 ± 9.7 years (4 males, 5 females) and mean MMSE score was 28.6. We found that, despite the challenges of acquiring DTI metrics from differing scanners across collaborator sites and NPH patients presenting as differing cohorts along the spectrum of disease, DTI profiles for responsiveness to interventions were comparable. Distinct DTI characteristics were demonstrated for complex NPH responders vs. non-responders. The morphology of DTI profiles for complex NPH responders mimicked DTI patterns found in predominantly shunt-responsive patients undergoing intervention for classic NPH. However, DTI profiles for complex NPH non-responders was suggestive of atrophy. Our findings suggest that it is possible to use DTI profiles to provide a methodology for rapid description of differing cohorts of disease at the clinical-research interface. By describing DTI measures morphologically, it was possible to consistently compare white matter injury patterns across international collaborator datasets.
Collapse
Affiliation(s)
- Christine Lock
- Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore
| | - Janell Kwok
- Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore
| | - Sumeet Kumar
- Department of Neuroradiology, National Neuroscience Institute, Singapore, Singapore
| | - Azlina Ahmad-Annuar
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Vairavan Narayanan
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Adeline S L Ng
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Yi Jayne Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Nagaendran Kandiah
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Zofia Czosnyka
- Neurosurgical Division, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Marek Czosnyka
- Neurosurgical Division, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - John D Pickard
- Neurosurgical Division, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Nicole C Keong
- Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|