1
|
Spedden ME, O’Neill GC, Tierney TM, West TO, Schmidt M, Mellor S, Farmer SF, Bestmann S, Barnes GR. Towards non-invasive imaging through spinal-cord generated magnetic fields. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 6:1470970. [PMID: 39445170 PMCID: PMC11496111 DOI: 10.3389/fmedt.2024.1470970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024] Open
Abstract
Non-invasive imaging of the human spinal cord is a vital tool for understanding the mechanisms underlying its functions in both healthy and pathological conditions. However, non-invasive imaging presents a significant methodological challenge because the spinal cord is difficult to access with conventional neurophysiological approaches, due to its proximity to other organs and muscles, as well as the physiological movements caused by respiration, heartbeats, and cerebrospinal fluid (CSF) flow. Here, we discuss the present state and future directions of spinal cord imaging, with a focus on the estimation of current flow through magnetic field measurements. We discuss existing cryogenic (superconducting) and non-cryogenic (optically-pumped magnetometer-based, OPM) systems, and highlight their strengths and limitations for studying human spinal cord function. While significant challenges remain, particularly in source imaging and interference rejection, magnetic field-based neuroimaging offers a novel avenue for advancing research in various areas. These include sensorimotor processing, cortico-spinal interplay, brain and spinal cord plasticity during learning and recovery from injury, and pain perception. Additionally, this technology holds promise for diagnosing and optimizing the treatment of spinal cord disorders.
Collapse
Affiliation(s)
- Meaghan E. Spedden
- Department of Imaging Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - George C. O’Neill
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Tim M. Tierney
- Department of Imaging Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - Timothy O. West
- Department of Imaging Neuroscience, Institute of Neurology, University College London, London, United Kingdom
- Department of Biomedical Engineering, Imperial College London, London, United Kingdom
| | - Maike Schmidt
- Department of Imaging Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - Stephanie Mellor
- Department of Imaging Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - Simon F. Farmer
- Department for Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Department of Clinical Neurology, The National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Sven Bestmann
- Department of Imaging Neuroscience, Institute of Neurology, University College London, London, United Kingdom
- Department for Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Gareth R. Barnes
- Department of Imaging Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
2
|
Opara J, Odzimek M. Cervical Spondylotic Myelopathy-Diagnostics and Clinimetrics. Diagnostics (Basel) 2024; 14:556. [PMID: 38473028 PMCID: PMC10931031 DOI: 10.3390/diagnostics14050556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Cervical myelopathy is referred to in many ways in the English literature, for example, as cervical spondylotic myelopathy (CSM), spondylotic radiculomyelopathy (SRM) or degenerative cervical myelopathy (DCM). In addition, more frequent occurrences are noted in older adults and to a greater extent in men. The causes of the effects of cervical myelopathy may be the appearance of lesions on the spinal cord, ischemia due to compression of the vertebral artery and repeated micro-injuries during maximal movements-hyperflexion or hyperextension. It is well known that lesions on the spinal cord may occur in a quarter of the population, and this problem is clearly noted in people over 60 years old. The symptoms of SCM develop insidiously, and their severity and side (unilateral or bilateral) are associated with the location and extent of spinal cord compression. Neurological examination most often diagnoses problems in the upper limbs (most often paresis with developing hand muscle atrophy), pyramidal paralysis in one or both lower limbs and disorders in the urinary system. To make a diagnosis of CSM, it is necessary to perform MRI and neurophysiological tests (such as EMG or sensory and/or motor-evoked potentials). The use of appropriately selected scales and specific tests in diagnostics is also crucial. This narrative review article describes the latest knowledge on the diagnosis and clinimetrics of cervical spondylotic myelopathy in adults and provides future directions.
Collapse
Affiliation(s)
- Józef Opara
- Department of Physiotherapy, The Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland
| | - Martyna Odzimek
- Doctoral School, The Jan Kochanowski University, Żeromskiego 5, 25-369 Kielce, Poland
- Institute of Health Sciences, Collegium Medicum, The Jan Kochanowski University, al. IX Wieków Kielce 19A, 25-516 Kielce, Poland
| |
Collapse
|
3
|
Kaptan M, Pfyffer D, Konstantopoulos CG, Law CS, Weber II KA, Glover GH, Mackey S. Recent developments and future avenues for human corticospinal neuroimaging. Front Hum Neurosci 2024; 18:1339881. [PMID: 38332933 PMCID: PMC10850311 DOI: 10.3389/fnhum.2024.1339881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/09/2024] [Indexed: 02/10/2024] Open
Abstract
Non-invasive neuroimaging serves as a valuable tool for investigating the mechanisms within the central nervous system (CNS) related to somatosensory and motor processing, emotions, memory, cognition, and other functions. Despite the extensive use of brain imaging, spinal cord imaging has received relatively less attention, regardless of its potential to study peripheral communications with the brain and the descending corticospinal systems. To comprehensively understand the neural mechanisms underlying human sensory and motor functions, particularly in pathological conditions, simultaneous examination of neuronal activity in both the brain and spinal cord becomes imperative. Although technically demanding in terms of data acquisition and analysis, a growing but limited number of studies have successfully utilized specialized acquisition protocols for corticospinal imaging. These studies have effectively assessed sensorimotor, autonomic, and interneuronal signaling within the spinal cord, revealing interactions with cortical processes in the brain. In this mini-review, we aim to examine the expanding body of literature that employs cutting-edge corticospinal imaging to investigate the flow of sensorimotor information between the brain and spinal cord. Additionally, we will provide a concise overview of recent advancements in functional magnetic resonance imaging (fMRI) techniques. Furthermore, we will discuss potential future perspectives aimed at enhancing our comprehension of large-scale neuronal networks in the CNS and their disruptions in clinical disorders. This collective knowledge will aid in refining combined corticospinal fMRI methodologies, leading to the development of clinically relevant biomarkers for conditions affecting sensorimotor processing in the CNS.
Collapse
Affiliation(s)
- Merve Kaptan
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Dario Pfyffer
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Christiane G. Konstantopoulos
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Christine S.W. Law
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Kenneth A. Weber II
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Gary H. Glover
- Radiological Sciences Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Sean Mackey
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| |
Collapse
|
4
|
Khan AF, Mohammadi E, Haynes G, Hameed S, Rohan M, Anderson DB, Weber KA, Muhammad F, Smith ZA. Evaluating tissue injury in cervical spondylotic myelopathy with spinal cord MRI: a systematic review. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:133-154. [PMID: 37926719 DOI: 10.1007/s00586-023-07990-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/02/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023]
Abstract
PURPOSE Cervical Spondylotic Myelopathy (CSM) is a degenerative condition that leads to loss of cervical spinal cord (CSC) integrity. Various spinal cord Magnetic Resonance Imaging (MRI) methods can identify and characterize the extent of this damage. This systematic review aimed to evaluate the diagnostic, biomarker, and predictive utilities of different spinal cord MRI methods in clinical research studies of CSM. The aim was to provide a comprehensive understanding of the progress in this direction for future studies and effective diagnosis and management of CSM. METHODS A comprehensive literature search was conducted on PubMed and EMBASE from 2010 to 2022 according to PRISMA guidelines. Studies with non-human subjects, less than 3T magnetic field strength, non-clinical design, or not quantitatively focusing on the structural integrity of CSC were excluded. The extracted data from each study included demographics, disease severity, MRI machine characteristics, quantitative metrics, and key findings in terms of diagnostic, biomarker, and predictive utilities of each MRI method. The risk of bias was performed using the guide from AHRQ. The quality of evidence was assessed separately for each type of utility for different MRI methods using GRADE. RESULTS Forty-seven studies met the inclusion criteria, utilizing diffusion-weighted imaging (DTI) (n = 39), magnetization transfer (MT) (n = 6), MR spectroscopy (n = 3), and myelin water imaging (n = 1), as well as a combination of MRI methods (n = 12). The metric fractional anisotropy (FA) showed the highest potential in all facets of utilities, followed by mean diffusivity. Other promising metrics included MT ratio and intracellular volume fraction, especially in multimodal studies. However, the level of evidence for these promising metrics was low due to a small number of studies. Some studies, mainly DTI, also reported the usefulness of spinal cord MRI in mild CSM. CONCLUSIONS Spinal cord MRI methods can potentially facilitate the diagnosis and management of CSM by quantitatively interrogating the structural integrity of CSC. DTI is the most promising MRI method, and other techniques have also shown promise, especially in multimodal configurations. However, this field is in its early stages, and more studies are needed to establish the usefulness of spinal cord MRI in CSM.
Collapse
Affiliation(s)
- Ali Fahim Khan
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, 1000 N Lincoln Blvd, Suite 4000, Oklahoma City, OK, 73104, USA
| | - Esmaeil Mohammadi
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, 1000 N Lincoln Blvd, Suite 4000, Oklahoma City, OK, 73104, USA
| | - Grace Haynes
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, USA
| | - Sanaa Hameed
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, 1000 N Lincoln Blvd, Suite 4000, Oklahoma City, OK, 73104, USA
| | - Michael Rohan
- Laureate Institute for Brain Research, Tulsa, OK, USA
| | - David B Anderson
- School of Health Sciences, The University of Sydney, Sydney, Australia
| | - Kenneth A Weber
- Systems Neuroscience and Pain Laboratory, Division of Pain Medicine, Stanford University School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Fauziyya Muhammad
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, 1000 N Lincoln Blvd, Suite 4000, Oklahoma City, OK, 73104, USA
| | - Zachary A Smith
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, 1000 N Lincoln Blvd, Suite 4000, Oklahoma City, OK, 73104, USA.
| |
Collapse
|