1
|
Yap AU, Zhang XH, Cao Y, Fu KY. Degenerative temporomandibular joint diseases and their relation with sleep and emotional disturbance. Cranio 2024; 42:762-769. [PMID: 35285424 DOI: 10.1080/08869634.2022.2050976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE The relation of degenerative temporomandibular joint (TMJ) diseases (DJDs) with sleep and emotional disturbance were investigated. METHODS CBCT examination of patients (n = 358) with DC/TMD-defined intra-articular temporomandibular disorders was performed and stratified into NN: no DJD and no arthralgia; NA: no DJD with arthralgia; TO: osteoarthrosis; and TR: osteoarthritis. Sleep and emotional disturbance were assessed with the Pittsburgh Sleep Quality Index (PSQI) and Depression Anxiety Stress Scale-21 (DASS-21). Data were evaluated using non-parametric and multivariate logistic regression analyses (α = 0.05). RESULTS Distributions of NN, NA, TO, and TR groups were 23.2%, 27.1%,19.0%, and 30.7%, respectively. No significant differences in total-PSQI/DASS scores were detected among the four groups. The presence of pain and stress predicted poor quality sleep with odds ratios of 10.75 and 1.07, accordingly. CONCLUSION Sleep quality was affected more by arthralgia and stress than the presence of TMJ DJDs.
Collapse
Affiliation(s)
- Adrian Ujin Yap
- Center for TMD & Orofacial Pain, Peking University, Hospital & School of Stomatology, Beijing, BJ, China
- Department of Dentistry, Ng Teng Fong General Hospital, Jurong East, Singapore
- Faculty of Dentistry, National University of Singapore, Singapore
- National Dental Research Institute Singapore, National Dental Center Singapore and Duke-NUS Medical School, Singapore Health Services, Singapore
| | - Xian-Han Zhang
- Center for TMD & Orofacial Pain, Peking University, Hospital & School of Stomatology, Beijing, BJ, China
- Department of Oral & Maxillofacial Radiology, Peking University School & Hospital of Stomatology: National Clinical Research Center for Oral Diseases, Beijing, BJ, China
| | - Ye Cao
- Center for TMD & Orofacial Pain, Peking University, Hospital & School of Stomatology, Beijing, BJ, China
- Department of Oral & Maxillofacial Radiology, Peking University School & Hospital of Stomatology: National Clinical Research Center for Oral Diseases, Beijing, BJ, China
| | - Kai-Yuan Fu
- Center for TMD & Orofacial Pain, Peking University, Hospital & School of Stomatology, Beijing, BJ, China
- Department of Oral & Maxillofacial Radiology, Peking University School & Hospital of Stomatology: National Clinical Research Center for Oral Diseases, Beijing, BJ, China
| |
Collapse
|
2
|
Zou L, Yang K, Yu Y, Wang C, Zhao J, Lu C, He D. Analysis of joint protein expression profile in anterior disc displacement of TMJ with or without OA. Oral Dis 2024; 30:4463-4482. [PMID: 38251222 DOI: 10.1111/odi.14871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/09/2023] [Accepted: 01/07/2024] [Indexed: 01/23/2024]
Abstract
OBJECTIVE Anterior disc displacement (ADD) is a common clinical issue and may cause osteoarthritis (OA). However, the research of protein changes in synovial fluid as disease development marker and potential treatment clue is still insufficient. MATERIALS AND METHODS We conducted the high-resolution mass spectrometry (MS) of synovial fluid collected from 60 patients with normal disk position to ADD and ADD with osteoarthritis (OA). The proteins with significant changes among the 3 groups were analyzed by biological information and further validated by in primary rat condyle chondrocytes and OA animal model. RESULTS FGL2, THBS4, TNC, FN1, OMD etc. were significantly increased in ADD without OA (p < 0.05), which reflected the active extracellular matrix and collagen metabolism. FGFR1, FBLN2, GRB2 etc. were significantly increased in ADD with OA group (p < 0.05), which revealed an association with apoptosis and ferroptosis. Proteins such as P4HB, CBLN4, FHL1, VIM continuously increase in the whole disease progress (p < 0.05). Both the in vitro and in vivo results are consistent with protein changes detected in MS profile. CONCLUSION This study firstly provides the expression changes of proteins from normal disc condyle relationship toward ADD with OA, which can be selected and studied further as disease progress marker and potential treatment targets.
Collapse
Affiliation(s)
- Luxiang Zou
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- National Clinical Research Center of Stomatology, Shanghai, China
| | - Kaiwen Yang
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- National Clinical Research Center of Stomatology, Shanghai, China
| | - Yeke Yu
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- National Clinical Research Center of Stomatology, Shanghai, China
| | - Chuyao Wang
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- National Clinical Research Center of Stomatology, Shanghai, China
| | - Jieyun Zhao
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- National Clinical Research Center of Stomatology, Shanghai, China
| | - Chuan Lu
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- National Clinical Research Center of Stomatology, Shanghai, China
| | - Dongmei He
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- National Clinical Research Center of Stomatology, Shanghai, China
| |
Collapse
|
3
|
Liu Y, Jia F, Li K, Liang C, Lin X, Geng W, Li Y. Critical signaling molecules in the temporomandibular joint osteoarthritis under different magnitudes of mechanical stimulation. Front Pharmacol 2024; 15:1419494. [PMID: 39055494 PMCID: PMC11269110 DOI: 10.3389/fphar.2024.1419494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
The mechanical stress environment in the temporomandibular joint (TMJ) is constantly changing due to daily mandibular movements. Therefore, TMJ tissues, such as condylar cartilage, the synovial membrane and discs, are influenced by different magnitudes of mechanical stimulation. Moderate mechanical stimulation is beneficial for maintaining homeostasis, whereas abnormal mechanical stimulation leads to degeneration and ultimately contributes to the development of temporomandibular joint osteoarthritis (TMJOA), which involves changes in critical signaling molecules. Under abnormal mechanical stimulation, compensatory molecules may prevent degenerative changes while decompensatory molecules aggravate. In this review, we summarize the critical signaling molecules that are stimulated by moderate or abnormal mechanical loading in TMJ tissues, mainly in condylar cartilage. Furthermore, we classify abnormal mechanical stimulation-induced molecules into compensatory or decompensatory molecules. Our aim is to understand the pathophysiological mechanism of TMJ dysfunction more deeply in the ever-changing mechanical environment, and then provide new ideas for discovering effective diagnostic and therapeutic targets in TMJOA.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Geng
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yanxi Li
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Chen X, Cheng Z, Xu J, Wang Q, Zhao Z, Jiang Q. Causal effects of autoimmune diseases on temporomandibular disorders and the mediating pathways: a Mendelian randomization study. Front Immunol 2024; 15:1390516. [PMID: 39044823 PMCID: PMC11263080 DOI: 10.3389/fimmu.2024.1390516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/28/2024] [Indexed: 07/25/2024] Open
Abstract
Background The role of autoimmune diseases (ADs) in temporomandibular disorders (TMDs) has been emphasized in observational studies. However, whether the causation exists is unclear, and controversy remains about which specific disorder is destructive in TMDs. This Mendelian randomization (MR) study aims to estimate the causal effect of common ADs on TMDs. Methods Genetic data from published genome-wide association studies for fourteen common ADs, specifically multiple sclerosis (MS, N = 15,283), ankylosing spondylitis (AS, N = 22,647), asthma (N = 408,422), celiac disease (N = 15,283), Graves' disease (N = 458,620), Hashimoto thyroiditis (N = 395,640), primary biliary cirrhosis (PBC, N = 11,375), primary sclerosing cholangitis (PSC, N = 14,890), psoriasis vulgaris (N = 483,174), rheumatoid arthritis (RA, N = 417,256), systemic lupus erythematosus (SLE, N = 23,210), Type 1 diabetes (T1D, N = 520,580), inflammatory bowel disease (IBD, N = 34,652), and Sjogren's syndrome (SS, N = 407,746) were collected. Additionally, the latest summary-level data for TMDs (N = 228,812) were extracted from the FinnGen database. The overall effects of each immune traits were assessed via inverse-variance weighted (IVW), weighted median, and MR-Egger methods, and performed extensive sensitivity analyses. Finally, 731 immune cell phenotypes (N = 3,757) were analyzed for their mediating role in the significant causality. Results Univariable MR analyses revealed that genetically predicted RA (IVW OR: 1.12, 95% CI: 1.05-1.19, p < 0.001) and MS (IVW OR: 1.06, 95% CI: 1.03-1.10, p = 0.001) were associated with increased risk of TMDs. Two out of 731 immune cell phenotypes were identified as causal mediators in the associations of RA with TMDs, including "CD25++ CD8+ T cell % CD8+ T cell" (mediation proportion: 6.2%) and "CD3 on activated CD4 regulatory T cell" (5.4%). Additionally, "CD127 on granulocyte" mediated 10.6% of the total effect of MS on TMDs. No reverse directions, heterogeneity, and pleiotropy were detected in the analyses (p > 0.05). Conclusion This MR study provides new evidence regarding the causal impact of genetic predisposition to RA or MS on the increased risk of TMDs, potentially mediated by the modulation of immune cells. These findings highlight the importance for clinicians to pay more attention to patients with RA or MS when consulting for temporomandibular discomfort. The mediating role of specific immune cells is proposed but needs further investigation.
Collapse
Affiliation(s)
- Xin Chen
- Department of Oral and Maxillofacial Surgery, Jiangyin People’s Hospital Affiliated to Nantong University, Jiangyin, China
| | - Zheng Cheng
- Department of Oral and Maxillofacial Surgery, Jiangyin People’s Hospital Affiliated to Nantong University, Jiangyin, China
| | - Junyu Xu
- Department of Oral and Maxillofacial Surgery, Jiangyin People’s Hospital Affiliated to Nantong University, Jiangyin, China
| | - Qianyi Wang
- Department of Cardiology, Jiangyin People’s Hospital Affiliated to Nantong University, Jiangyin, China
| | - Zhibai Zhao
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Qianglin Jiang
- Department of Oral and Maxillofacial Surgery, Jiangyin People’s Hospital Affiliated to Nantong University, Jiangyin, China
| |
Collapse
|
5
|
Luo H, Li L, Han S, Liu T. The role of monocyte/macrophage chemokines in pathogenesis of osteoarthritis: A review. Int J Immunogenet 2024; 51:130-142. [PMID: 38462560 DOI: 10.1111/iji.12664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/08/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024]
Abstract
Osteoarthritis (OA) is one of the most common degenerative diseases characterised by joint pain, swelling and decreased mobility, with its main pathological features being articular synovitis, cartilage degeneration and osteophyte formation. Inflammatory cytokines and chemokines secreted by activated immunocytes can trigger various inflammatory and immune responses in articular cartilage and synovium, contributing to the genesis and development of OA. A series of monocyte/macrophage chemokines, including monocyte chemotaxis protein (MCP)-1/CCL2, MCP2/CCL8, macrophage inflammatory protein (MIP)-1α/CCL3, MIP-1β/CCL4, MIP-3α/CCL20, regulated upon activation, normal T-cell expressed and secreted /CCL5, CCL17 and macrophage-derived chemokine/CCL22, was proven to transmit cell signals by binding to G protein-coupled receptors on recipient cell surface, mediating and promoting inflammation in OA joints. However, the underlying mechanism of these chemokines in the pathogenesis of OA remains still elusive. Here, published literature was reviewed, and the function and mechanisms of monocyte/macrophage chemokines in OA pathogenesis were summarised. The symptoms and disease progression of OA were found to be effectively alleviated when the expression of these chemokines is inhibited. Elucidating these mechanisms could contribute to further understand how OA develops and provide potential targets for the early diagnosis of arthritis and drug treatment to delay or even halt OA progression.
Collapse
Affiliation(s)
- Hao Luo
- Department of Orthopaedics, The People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China
| | - Linfeng Li
- Department of Orthopaedics, The People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China
| | - Song Han
- Department of Orthopaedics, The People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tao Liu
- Department of Orthopaedics, The People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
6
|
Wolfe PN, Stoker AM, Leary E, Crist BD, Bozynski CC, Cook JL. Evaluation of Serum and Urine Biomarker Panels for Developmental Dysplasia of the Hip Prior to Onset of Secondary Osteoarthritis. Cartilage 2024; 15:164-174. [PMID: 37051936 PMCID: PMC11368892 DOI: 10.1177/19476035231163032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 04/14/2023] Open
Abstract
OBJECTIVE Evaluate serum and urine biomarker panels for their capabilities in discriminating between individuals (13- to 34-years-olds) with healthy hips versus those with developmental dysplasia of the hip (DDH) prior to diagnosis of secondary hip osteoarthritis (OA). DESIGN Urine and serum were collected from individuals (15-33 years old) with DDH, prior to and following diagnosis of hip OA, and from age-matched healthy-hip controls. Samples were analyzed for panels of protein biomarkers with potential for differentiation of hip status using receiver operator characteristic curve (area under curve [AUC]) assessments. RESULTS Multiple urine and serum biomarker panels effectively differentiated individuals with DDH from healthy-hip controls in a population at risk for developing secondary hip OA with the best performing panel demonstrating an AUC of 0.959. The panel comprised of two serum and two urinary biomarkers provided the highest combined values for sensitivity, 0.85, and specificity, 1.00, while a panel of four serum biomarkers provided the highest sensitivity, 0.93, while maintaining adequate specificity, 0.71. CONCLUSION Results of this study indicate that panels of protein biomarkers measured in urine and serum may be able to differentiate young adults with DDH from young adults with healthy hips. These data suggest the potential for clinical application of a routine diagnostic method for cost-effective and timely screening for DDH in at-risk populations. Further development and validation of these biomarker panels may result in highly sensitive and specific tools for early diagnosis, staging, and prognostication of DDH, as well as treatment decision making and monitoring capabilities. LEVEL OF EVIDENCE III.
Collapse
Affiliation(s)
- Preston N. Wolfe
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, MO, USA
| | - Aaron M. Stoker
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, MO, USA
| | - Emily Leary
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, MO, USA
- School of Medicine, University of Missouri, Columbia, MO, USA
| | - Brett D. Crist
- Department of Orthopaedic Surgery, University of Missouri, Columbia, MO, USA
| | - Chantelle C. Bozynski
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, MO, USA
| | - James L. Cook
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, MO, USA
- Department of Orthopaedic Surgery, University of Missouri, Columbia, MO, USA
| |
Collapse
|
7
|
Li C, Liu Y, Deng M, Li J, Li S, Li X, Zuo Y, Shen C, Wang Y. Comparison of the therapeutic effects of mesenchymal stem cells derived from human dental pulp (DP), adipose tissue (AD), placental amniotic membrane (PM), and umbilical cord (UC) on postmenopausal osteoporosis. Front Pharmacol 2024; 15:1349199. [PMID: 38601464 PMCID: PMC11004311 DOI: 10.3389/fphar.2024.1349199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Background: Osteoporosis is a systemic bone disease characterized by bone loss and microstructural degeneration. Recent preclinical and clinical trials have further demonstrated that the transplantation of mesenchymal stem cells (MSCs) derived from human adipose tissue (AD), dental pulp (DP), placental amniotic membrane (AM), and umbilical cord (UC) tissues can serve as an effective form of cell therapy for osteoporosis. However, MSC-mediated osteoimmunology and the ability of these cells to regulate osteoclast-osteoblast differentiation varies markedly among different types of MSCs. Methods: In this study, we investigated whether transplanted allogeneic MSCs derived from AD, DP, AM, and UC tissues were able to prevent osteoporosis in an ovariectomy (OVX)-induced mouse model of osteoporosis. The homing and immunomodulatory ability of these cells as well as their effects on osteoblastogenesis and the maintenance of bone formation were compared for four types of MSCs to determine the ideal source of MSCs for the cell therapy-based treatment of OVX-induced osteoporosis. The bone formation and bone resorption ability of these four types of MSCs were analyzed using micro-computed tomography analyses and histological staining. In addition, cytokine array-based analyses of serological markers and bioluminescence imaging assays were employed to evaluate cell survival and homing efficiency. Immune regulation was determined by flow cytometer assay to reflect the mechanisms of osteoporosis treatment. Conclusion: These analyses demonstrated that MSCs isolated from different tissues have the capacity to treat osteoporosis when transplanted in vivo. Importantly, DP-MSCs infusion was able to maintain trabecular bone mass more efficiently with corresponding improvements in trabecular bone volume, mineral density, number, and separation. Among the tested MSC types, DP-MSCs were also found to exhibit greater immunoregulatory capabilities, regulating the Th17/Treg and M1/M2 ratios. These data thus suggest that DP-MSCs may represent an effective tool for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Chuncai Li
- Stem Cells Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Hospital of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yincong Liu
- Stem Cells Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingxing Deng
- Stem Cells Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Li
- Sichuan Provincial Cells Tissue Bank, Chengdu, China
| | - Shengqi Li
- Sichuan Provincial Cells Tissue Bank, Chengdu, China
| | - Xiaoyu Li
- Stem Cells Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuling Zuo
- Stem Cells Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Hospital of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chongyang Shen
- Stem Cells Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yichao Wang
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Yap AU, Lei J, Park JW, Liu C, Kim SH, Lee BM, Fu KY. Age distribution of East Asian TMD patients and age-related differences in DC/TMD axis I findings. Cranio 2024:1-10. [PMID: 38369853 DOI: 10.1080/08869634.2024.2316081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
OBJECTIVES The pattern of age distribution in East Asian temporomandibular disorder (TMD) patients and age-related differences in DC/TMD diagnostic subtypes/categories were evaluated. SUBJECTS AND METHODS TMD patients from two University-based centers in China and South Korea were enrolled. Axis I physical diagnoses were rendered according to DC/TMD. Patients were categorized into six age groups (15-24, 25-34, 35-44, 45-54, 55-64, and 65-84 years; Groups A-F respectively). RESULTS Youths/young adults (Groups A-C) formed 74.1% of TMD patients. TMJ disc displacements (74.9%), arthralgia (49.2%), and degenerative joint disease [DJD] (36.8%) were the most common TMD subtypes. The majority had combined (54.0%) and chronic (58.5%) TMDs. Youths/young adults and middle-aged/old adults had substantially lower frequencies of merely pain-related (6.2-14.5%) and intra-articular (13.8-16.8%) TMDs correspondingly. "Being female" increased the prospects of pain-related/combined TMDs by 96%/49%, respectively. CONCLUSIONS East Asian TMD patients comprised mostly of youths/young adults who had an alarmingly high prevalence of TMJ DJD.
Collapse
Affiliation(s)
- Adrian Ujin Yap
- Center for TMD & Orofacial Pain, Peking University School & Hospital of Stomatology, Beijing, China
- Department of Dentistry, Ng Teng Fong General Hospital and Faculty of Dentistry, National University Health System, Singapore, Singapore
- National Dental Research Institute Singapore, National Dental Centre Singapore and Duke-NUS Medical School, Singapore Health Services, Singapore, Singapore
| | - Jie Lei
- Center for TMD & Orofacial Pain, Peking University School & Hospital of Stomatology, Beijing, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Beijing, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Ji Woon Park
- Dental Research Institute, Seoul National University, Seoul, Korea
- Department of Dental Biomaterials Science, Seoul National University School of Dentistry, Seoul, Korea
- Department of Oral Medicine, Seoul National University Dental Hospital, Seoul, Korea
| | - Chengge Liu
- Center for TMD & Orofacial Pain, Peking University School & Hospital of Stomatology, Beijing, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Beijing, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Seong Hae Kim
- Department of Oral Medicine, Seoul National University Dental Hospital, Seoul, Korea
- Department of Oral Medicine & Oral Diagnosis, Seoul National University School of Dentistry, Seoul, Korea
| | - Byeong-Min Lee
- Dental Research Institute, Seoul National University, Seoul, Korea
| | - Kai-Yuan Fu
- Center for TMD & Orofacial Pain, Peking University School & Hospital of Stomatology, Beijing, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Beijing, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| |
Collapse
|
9
|
Liu X, Li H, Feng Y, Guo H, Li Y, Ke J, Long X. Resatorvid alleviates experimental inflammatory TMJOA by restraining chondrocyte pyroptosis and synovial inflammation. Arthritis Res Ther 2023; 25:230. [PMID: 38031141 PMCID: PMC10685467 DOI: 10.1186/s13075-023-03214-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023] Open
Abstract
OBJECTIVES Innate immunity plays a significant role in the pathogenesis of temporomandibular joint osteoarthritis (TMJOA), which is characterized by synovial inflammation and condylar cartilage degradation. We are urged to investigate the impact of Resatorvid, a preventative drug that inhibits Toll-like receptor 4 (TLR4), on experimental inflammatory TMJOA pathology. METHODS An intra-articular injection of complete Freund's adjuvant (CFA) was used to induce an experimental inflammatory mouse TMJOA model, and TLR4 expression was identified by immunofluorescent labeling. Intraperitoneal injections of Resatorvid were administered to CFA-induced TMJOA mice, and the pathology of TMJOA animals with and without Resatorvid treatment was examined by H&E, Safranin-O/Fast Green, and TRAP staining, as well as micro-CT, immunohistochemistry, and immunofluorescence. The impact of Resatorvid on chondrocyte pyroptosis and macrophage inflammation was further investigated using ATDC5 chondrocytes and RAW264.7 macrophages pretreated with relevant antagonists. RESULTS CFA-induced TMJOA mice revealed remarkable synovial inflammation, together with a time course of cartilage degradation and bone destruction, with TLR4 elevated in the synovium and condylar cartilage. Prophylactic treatment with Resatorvid mitigated synovial inflammation, cartilage degeneration, and bone destruction in CFA-induced TMJOA mice and downregulated MyD88/NF-κB expression. Ex vivo studies demonstrated that Resatorvid treatment alleviated NOD-like receptor protein 3 (NLRP3)-mediated chondrocyte pyroptosis and degeneration and relieved macrophage inflammation by preventing reactive oxygen species (ROS) production through NLRP3 signaling. CONCLUSION Prophylactic treatment with Resatorvid alleviates TMJOA pathology by inhibiting chondrocyte pyroptosis and degeneration, as well as ROS-induced macrophage inflammation, through TLR4/MyD88/NF-κB/NLRP3.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, Hubei, China
| | - Huimin Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, Hubei, China
| | - Yaping Feng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, Hubei, China
| | - Huilin Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, Hubei, China
| | - Yingjie Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, Hubei, China
| | - Jin Ke
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, Hubei, China.
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China.
| | - Xing Long
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, Hubei, China.
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
10
|
Wang J, Zhao F, Xu L, Wang J, Zhai J, Ren L, Zhu G. C-C Motif Chemokine Ligand 5 (CCL5) Promotes Irradiation-Evoked Osteoclastogenesis. Int J Mol Sci 2023; 24:16168. [PMID: 38003358 PMCID: PMC10671276 DOI: 10.3390/ijms242216168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The imbalance that occurs in bone remodeling induced by irradiation (IR) is the disruption of the balance between bone formation and bone resorption. In this study, primary osteocytes (OCYs) of femoral and tibial origin were cultured and irradiated. It was observed that irradiated OCY showed extensive DNA damage, which led to the initiation of a typical phenotype of cellular senescence, including the secretion of senescence-associated secretory phenotype (SASP), especially the C-C motif chemokine ligand 5 (CCL5). In order to explore the regulation of osteoclastogenic potential by IR-induced senescent OCYs exocytosis factor CCL5, the conditioned medium (CM) of OCYs was co-cultured with RAW264.7 precursor cells. It was observed that in the irradiated OCY co-cultured group, the migration potential increased compared with the vehicle culture group, accompanied by an enhancement of typical mature OCs; the expression of the specific function of enzyme tartrate-resistant acid phosphatase (TRAP) increased; and the bone-destructive function was enhanced. However, a neutralizing antibody to CCL5 could reverse the extra-activation of osteoclastogenesis. Accordingly, the overexpression of p-STAT3 in irradiated OCY was accompanied by CCL5. It was concluded that CCL5 is a potential key molecule and the interventions targeting CCL5 could be a potential strategy for inhibiting osteoclastogenesis and restoring bone remodeling.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guoying Zhu
- Department of Radiological Hygiene, Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai 200032, China; (J.W.); (F.Z.); (L.X.); (J.W.); (J.Z.); (L.R.)
| |
Collapse
|
11
|
Yap AU, Lei J, Zhang XH, Fu KY. TMJ degenerative joint disease: relationships between CBCT findings, clinical symptoms, and signs. Acta Odontol Scand 2023; 81:562-568. [PMID: 37211630 DOI: 10.1080/00016357.2023.2215317] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
OBJECTIVES The relationships between cone-beam computed tomography (CBCT) findings, Temporomandibular disorder (TMD) symptoms, and signs were investigated in patients with TMJ degenerative joint disease (DJD). MATERIAL AND METHODS Adult patients with Diagnostic Criteria for TMDs (DC/TMD)-defined intra-articular conditions were enrolled and subjected to CBCT assessment. The participants were organized into three groups, namely no (NT), early (ET), and late (LT) TMJ DJD based on radiographic findings. TMD symptoms/signs were appraised using the DC/TMD methodology. Statistical analyses were performed using Chi-square/non-parametric tests and Kappa statistics (α = 0.05). RESULTS The mean age of the participants (n = 877) was 30.60 ± 11.50 years (86.6% women). NT, ET, and LT were observed in 39.7%, 17.0%, and 43.3% of the study sample. Significant differences in the prevalence of TMD symptoms (TMD pain, TMJ sounds, opening, and closing difficulty) and signs (TMD/TMJ pain, TMJ clicking/crepitus, and opening limitation) were discerned among the three groups (p ≤ .001). TMD/TMJ pain and opening difficulty/limitation were more prevalent in early rather than late degenerative changes. While moderate agreements between symptoms and signs were observed for TMD pain/opening limitation, the concurrence for TMJ sounds was fair. CONCLUSIONS Young adults with TMJ sounds and pain should be examined with CBCT to establish the extent/progress of osseous changes.
Collapse
Affiliation(s)
- Adrian Ujin Yap
- Center for TMD & Orofacial Pain, Peking University School & Hospital of Stomatology, Beijing, P.R. China
- Department of Dentistry, Ng Teng Fong General Hospital, and Faculty of Dentistry, National University Health System, Singapore
- National Dental Research Institute Singapore, National Dental Centre Singapore and Duke-NUS Medical School, Singapore Health Services, Singapore
| | - Jie Lei
- Center for TMD & Orofacial Pain, Peking University School & Hospital of Stomatology, Beijing, P.R. China
- Department of Oral & Maxillofacial Radiology, Peking University School & Hospital of Stomatology, Beijing, P.R. China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Beijing, P.R. China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, P.R. China
- Beijing Key Laboratory of Digital Stomatology, Beijing, P.R. China
| | - Xiao-Han Zhang
- Center for TMD & Orofacial Pain, Peking University School & Hospital of Stomatology, Beijing, P.R. China
- Department of Oral & Maxillofacial Radiology, Peking University School & Hospital of Stomatology, Beijing, P.R. China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Beijing, P.R. China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, P.R. China
- Beijing Key Laboratory of Digital Stomatology, Beijing, P.R. China
| | - Kai-Yuan Fu
- Center for TMD & Orofacial Pain, Peking University School & Hospital of Stomatology, Beijing, P.R. China
- Department of Oral & Maxillofacial Radiology, Peking University School & Hospital of Stomatology, Beijing, P.R. China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Beijing, P.R. China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, P.R. China
- Beijing Key Laboratory of Digital Stomatology, Beijing, P.R. China
| |
Collapse
|
12
|
Qiao Y, Li J, Yuh C, Ko F, Mercuri LG, Alkhudari J, Pourzal R, Oh CD. Chemokine Regulation in Temporomandibular Joint Disease: A Comprehensive Review. Genes (Basel) 2023; 14:408. [PMID: 36833336 PMCID: PMC9956915 DOI: 10.3390/genes14020408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/18/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Temporomandibular joint disorders (TMDs) are conditions that affect the muscles of mastication and joints that connect the mandible to the base of the skull. Although TMJ disorders are associated with symptoms, the causes are not well proven. Chemokines play an important role in the pathogenesis of TMJ disease by promoting chemotaxis inflammatory cells to destroy the joint synovium, cartilage, subchondral bone, and other structures. Therefore, enhancing our understanding of chemokines is critical for developing appropriate treatment of TMJ. In this review, we discuss chemokines including MCP-1, MIP-1α, MIP-3a, RANTES, IL-8, SDF-1, and fractalkine that are known to be involved in TMJ diseases. In addition, we present novel findings that CCL2 is involved in β-catenin-mediated TMJ osteoarthritis (OA) and potential molecular targets for the development of effective therapies. The effects of common inflammatory factors, IL-1β and TNF-α, on chemotaxis are also described. In conclusion, this review aims to provide a theoretical basis for future chemokine-targeted therapies for TMJ OA.
Collapse
Affiliation(s)
- Yusen Qiao
- Department of Orthopedic Surgery, 1st Affiliated Hospital of Soochow University, Suzhou 215005, China
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Jun Li
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19107, USA
| | - Catherine Yuh
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Frank Ko
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Louis G. Mercuri
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Bioengineering, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Jad Alkhudari
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Robin Pourzal
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Chun-do Oh
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
13
|
Association between an Increased Serum CCL5 Level and Pathophysiology of Degenerative Joint Disease in the Temporomandibular Joint in Females. Int J Mol Sci 2023; 24:ijms24032775. [PMID: 36769097 PMCID: PMC9917489 DOI: 10.3390/ijms24032775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Degenerative joint disease of the temporomandibular joints (DJD-TMJ) clinically manifests with symptoms such as orofacial pain, joint sounds and limited jaw movements. Our research group previously reported the functional necessity of a chemokine-chemokine receptor axis of CCL5-CCR5 in osteoclasts. Accumulated studies reported that this axis was involved in the pathogenesis of bone and joint destructive diseases, suggesting CCL5 as a potent biomarker. This study investigated whether or not the serum level of CCL5 can be a biomarker of DJD-TMJ and concomitantly analyzed changes in the serum and urine levels of bone markers to see whether or not changes in the rate of bone metabolism were predisposing. We enrolled 17 female subjects with diagnosed DJD-TMJ and sexually and age-matched 17 controls. The serum CCL5 level in DJD-TMJ subjects was significantly higher than that in the control subjects. Multivariate analyses indicated an association between an augmented CCL5 level and the rate of bone metabolism, especially in relatively young DJD-TMJ subjects without other systemic symptoms. A principal component analysis of serum markers and our pharmacological experiment using a postmenopausal model of ovariectomized rats suggested that an augmented serum CCL5 level specifically reflected DJD-TMJ and that covert changes in the rate of bone metabolism predisposed individuals to DJD-TMJ.
Collapse
|
14
|
Pendyala M, Woods PS, Brubaker DK, Blaber EA, Schmidt TA, Chan DD. Endogenous production of hyaluronan, PRG4, and cytokines is sensitive to cyclic loading in synoviocytes. PLoS One 2022; 17:e0267921. [PMID: 36576921 PMCID: PMC9797074 DOI: 10.1371/journal.pone.0267921] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 12/09/2022] [Indexed: 12/29/2022] Open
Abstract
Synovial fluid is composed of hyaluronan and proteoglycan-4 (PRG4 or lubricin), which work synergistically to maintain joint lubrication. In diseases like osteoarthritis, hyaluronan and PRG4 concentrations can be altered, resulting in lowered synovial fluid viscosity, and pro-inflammatory cytokine concentrations within the synovial fluid increase. Synovial fibroblasts within the synovium are responsible for contributing to synovial fluid and can be targeted to improve endogenous production of hyaluronan and PRG4 and to alter the cytokine profile. We cyclically loaded SW982 synoviocytes to 0%, 5%, 10%, or 20% strain for three hours at 1 Hz. To assess the impact of substrate stiffness, we compared the 0% strain group to cells grown on tissue culture plastic. We measured the expression of hyaluronan turnover genes, hyaluronan localization within the cell layer, hyaluronan concentration, PRG4 concentration, and the cytokine profile within the media. Our results show that the addition of cyclic loading increased HAS3 expression, but not in a magnitude-dependent response. Hyaluronidase expression was impacted by strain magnitude, which is exemplified by the decrease in hyaluronan concentration due to cyclic loading. We also show that PRG4 concentration is increased at 5% strain, while higher strain magnitude decreases overall PRG4 concentration. Finally, 10% and 20% strain show a distinct, more pro-inflammatory cytokine profile when compared to the unloaded group. Multivariate analysis showed distinct separation between certain strain groups in being able to predict strain group, hyaluronan concentration, and PRG4 concentration from gene expression or cytokine concentration data, highlighting the complexity of the system. Overall, this study shows that cyclic loading can be used tool to modulate the endogenous production of hyaluronan, PRG4, and cytokines from synovial fibroblasts.
Collapse
Affiliation(s)
- Meghana Pendyala
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Paige S Woods
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Douglas K Brubaker
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Elizabeth A Blaber
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- Blue Marble Space Institute of Science at NASA Ames Research Center, Moffett Field, California, United States of America
| | - Tannin A Schmidt
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Deva D Chan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
15
|
Morris JL, Letson HL, Biros E, McEwen PC, Dobson GP. Female rats have a different healing phenotype than males after anterior cruciate ligament rupture with no intervention. Front Med (Lausanne) 2022; 9:976980. [DOI: 10.3389/fmed.2022.976980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/24/2022] [Indexed: 11/15/2022] Open
Abstract
Little is known on the sex-specific healing responses after an anterior cruciate ligament (ACL) rupture. To address this, we compared male and female Sprague-Dawley rats following non-surgical ACL rupture. Hematology, inflammation, joint swelling, range of motion, and pain-sensitivity were analyzed at various times over 31-days. Healing was assessed by histopathology and gene expression changes in the ACL remnant and adjacent joint tissues. In the first few days, males and females showed similar functional responses after rupture, despite contrasting hematology and systemic inflammatory profiles. Sex-specific differences were found in inflammatory, immune and angiogenic potential in the synovial fluid. Histopathology and increased collagen and fibronectin gene expression revealed significant tissue remodeling in both sexes. In the ACL remnant, however, Acta2 gene expression (α-SMA production) was 4-fold higher in males, with no change in females, indicating increased fibroblast-to-myofibroblast transition with higher contractile elements (stiffness) in males. Females had 80% lower Pparg expression, which further suggests reduced cellular differentiation potential in females than males. Sex differences were also apparent in the infrapatellar fat pad and articular cartilage. We conclude females and males showed different patterns of healing post-ACL rupture over 31-days, which may impact timing of reconstruction surgery, and possibly clinical outcome.
Collapse
|
16
|
Feng SY, Lei J, Li YX, Shi WG, Wang RR, Yap AU, Wang YX, Fu KY. Increased joint loading induces subchondral bone loss of the temporomandibular joint via the RANTES-CCRs-Akt2 axis. JCI Insight 2022; 7:158874. [PMID: 36173680 PMCID: PMC9675482 DOI: 10.1172/jci.insight.158874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/21/2022] [Indexed: 12/15/2022] Open
Abstract
Early-stage temporomandibular joint osteoarthritis (TMJOA) is characterized by excessive subchondral bone loss. Emerging evidence suggests that TMJ disc displacement is involved, but the pathogenic mechanism remains unclear. Here, we established a rat model of TMJOA that simulated disc displacement with a capacitance-based force-sensing system to directly measure articular surface pressure in vivo. Micro-CT, histological staining, immunofluorescence staining, IHC staining, and Western blot were used to assess pathological changes and underlying mechanisms of TMJOA in the rat model in vivo as well as in RAW264.7 cells in vitro. We found that disc displacement led to significantly higher pressure on the articular surface, which caused rapid subchondral bone loss via activation of the RANTES-chemokine receptors-Akt2 (RANTES-CCRs-Akt2) axis. Inhibition of RANTES or Akt2 attenuated subchondral bone loss and resulted in improved subchondral bone microstructure. Cytological studies substantiated that RANTES regulated osteoclast formation by binding to its receptor CCRs and activating the Akt2 pathway. The clinical evidence further supported that RANTES was a potential biomarker for predicting subchondral bone loss in early-stage TMJOA. Taken together, this study demonstrates important functions of the RANTES-CCRs-Akt2 axis in the regulation of subchondral bone remodeling and provides further knowledge of how disc displacement causes TMJOA.
Collapse
Affiliation(s)
- Shi-Yang Feng
- Center for Temporomandibular Disorders & Orofacial Pain, and,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China.,National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Jie Lei
- Center for Temporomandibular Disorders & Orofacial Pain, and,National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Yu-Xiang Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Ge Shi
- Center for Temporomandibular Disorders & Orofacial Pain, and,National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Ran-Ran Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Adrian Ujin Yap
- Center for Temporomandibular Disorders & Orofacial Pain, and,Department of Dentistry, Ng Teng Fong General Hospital and Faculty of Dentistry, National University Health System, Singapore, Singapore.,National Dental Research Institute Singapore, National Dental Centre Singapore and Duke-NUS Medical School, Singapore Health Services, Singapore, Singapore
| | - Yi-Xiang Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China.,National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Kai-Yuan Fu
- Center for Temporomandibular Disorders & Orofacial Pain, and,National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| |
Collapse
|
17
|
Yap AU, Cao Y, Zhang MJ, Lei J, Fu KY. Comparison of emotional disturbance, sleep, and life quality in adult patients with painful temporomandibular disorders of different origins. Clin Oral Investig 2021; 25:4097-4105. [PMID: 33404766 DOI: 10.1007/s00784-020-03740-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVES This study compared the differences in emotional disturbance, sleep, and life quality among adult patients with temporomandibular (TMD) muscle and/or joint pain. MATERIALS AND METHODS The study involved an analytical cross-sectional design. A total of 420 consecutive patients diagnosed with pain-related TMDs based on the Diagnostic Criteria for TMDs (DC/TMD) were recruited from a TMD referral centre and stratified into three groups, namely muscle pain (MP; n = 50), joint pain (JP; n = 329), and combined muscle-joint pain (CP; n = 41). Emotional disturbance, sleep quality, and oral health-related quality of life (OHRQoL) were assessed with the Depression, Anxiety, and Stress Scale-21 (DASS-21), Pittsburgh Sleep Quality Index (PSQI), and Oral Health Impact Profile-TMDs (OHIP-TMDs) respectively. Statistical analyses were performed using the chi-square test, one-way ANOVA, and Pearson's correlation (p < 0.05). RESULTS Mean age for the three pain groups (females = 349; males = 71) ranged from 37.15 ± 14.91 to 38.60 ± 14.37 years (p = 0.973). Ranking of depression, anxiety, and stress scores was as follows: CP > MP > JP. Significant differences in emotional disturbances were observed (p < 0.001). CP patients had significantly poorer sleep quality than those with JP (p = 0.004). Moreover, OHRQoL was also significantly more impaired as compared to both MP (p = 0.006) and JP (p < 0.001) patients. Correlations between global PSQI and OHIP-TMDs scores were weak to moderate (rs = 0.30-0.47). CONCLUSIONS Patients with combined muscle-joint pain presented higher levels of emotional disturbance than those with only MP or JP. They also had significantly poorer sleep quality and lower OHRQoL. CLINICAL RELEVANCE Emotional and sleep health must be considered in the management of painful TMDs.
Collapse
Affiliation(s)
- Adrian Ujin Yap
- Center for TMD & Orofacial Pain, Peking University School & Hospital of Stomatology, No. 22 Zhong Guan Cun South Ave, Beijing, 100081, China.,Department of Dentistry, Ng Teng Fong General Hospital, National University Health System, Singapore, Singapore.,Faculty of Dentistry, National University of Singapore, Singapore, Singapore.,Duke-NUS Medical School, Singapore and National Dental Research Institute Singapore, National Dental Centre Singapore, Singapore, Singapore
| | - Ye Cao
- Center for TMD & Orofacial Pain, Peking University School & Hospital of Stomatology, No. 22 Zhong Guan Cun South Ave, Beijing, 100081, China.,Department of Oral & Maxillofacial Radiology, Peking University School & Hospital of Stomatology, Beijing, China.,National Clinical Research Center for Oral Diseases, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China.,Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Min-Juan Zhang
- Center for TMD & Orofacial Pain, Peking University School & Hospital of Stomatology, No. 22 Zhong Guan Cun South Ave, Beijing, 100081, China.,Department of Oral & Maxillofacial Radiology, Peking University School & Hospital of Stomatology, Beijing, China.,National Clinical Research Center for Oral Diseases, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China.,Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Jie Lei
- Center for TMD & Orofacial Pain, Peking University School & Hospital of Stomatology, No. 22 Zhong Guan Cun South Ave, Beijing, 100081, China.,Department of Oral & Maxillofacial Radiology, Peking University School & Hospital of Stomatology, Beijing, China.,National Clinical Research Center for Oral Diseases, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China.,Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Kai-Yuan Fu
- Center for TMD & Orofacial Pain, Peking University School & Hospital of Stomatology, No. 22 Zhong Guan Cun South Ave, Beijing, 100081, China. .,Department of Oral & Maxillofacial Radiology, Peking University School & Hospital of Stomatology, Beijing, China. .,National Clinical Research Center for Oral Diseases, Beijing, China. .,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China. .,Beijing Key Laboratory of Digital Stomatology, Beijing, China.
| |
Collapse
|