1
|
Hu L, He J, Zhang T, Pan S, Zou H, Lian K, Guo J, Tang Q. Panax notoginseng saponins improve oral submucous fibrosis by inhibiting the Wnt/β-catenin signal pathway. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 137:651-661. [PMID: 38632037 DOI: 10.1016/j.oooo.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/27/2024] [Accepted: 03/17/2024] [Indexed: 04/19/2024]
Abstract
OBJECTIVE Oral submucous fibrosis (OSF) is a chronic, insidious, progressive mucosal disease that may be affected by mutations in the Wnt/β-catenin signaling pathway. Panax notoginseng saponins (PNS) is a powerful anti-fibrosis agent; however, its effect and mechanism in treating OSF remain unclear. This study investigated the effect and mechanism of PNS treatment for OSF. STUDY DESIGN Arecoline was used to induce OSF models in vivo and in vitro, which were then treated with PNS. Hematoxylin-eosin (HE) and Masson trichrome staining were used to observe histopathology changes; E-cadherin and β-catenin were detected by Immunohistochemical assay, and type Ⅰ collagen (CollA1) and β-catenin were detected by immunofluorescent staining. The Wnt/β-catenin pathway and fibrosis signs were assessed using Western Blot and real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS The expression of CollA1, Wnt1, and β-catenin were increased, and E-cadherin, GSK-3β, and β-catenin expression were decreased in OSF models. PNS and inhibitor intervention increased E-cadherin, Wnt1, and β-catenin and decreased CollA1 and GSK-3β in a dose-dependent manner. CONCLUSION PNS can improve OSF by inhibiting the Wnt/β-catenin signal pathway and thus may be used as a potential medicine for the treatment of OSF.
Collapse
Affiliation(s)
- Liang Hu
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, China; School of Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jun He
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, China; School of Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Ting Zhang
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, China; School of Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Shijie Pan
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, China; School of Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Hong Zou
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, China; School of Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Kequan Lian
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, China; School of Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jincai Guo
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, China; Department of Pharmacy, Changsha Stomatological Hospital, Changsha, China.
| | - Qun Tang
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, China; School of Medicine, Hunan University of Chinese Medicine, Changsha, China.
| |
Collapse
|
2
|
Pal S, Sharma D, Yadav NP. Plant leads for mitigation of oral submucous fibrosis: Current scenario and future prospect. Oral Dis 2024; 30:80-99. [PMID: 36565439 DOI: 10.1111/odi.14485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/25/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
The aim of this review is to enumerate medicinal plants and their bioactive compounds that may become potential leads in the mitigation of oral submucous fibrosis (OSMF) in the forthcoming future. It is focused on pathophysiology, risk factors, current treatment regimen, potential plant leads, and future therapies for OSMF. Data were extracted from a vast literature survey by using SciFinder, Web of Science, Google Scholar, and PubMed search engines with relevant keywords. Upon literature survey, we found that the phytochemical 'arecoline' present in the areca nut is the main causative agent of OSMF condition. Currently, OSMF is treated by immunomodulatory and anti-inflammatory agents such as corticosteroids, enzymes (hyaluronidase, chymotrypsin, and collagenase), anti-inflammatory mediators (isoxsuprine and pentoxifylline), dietary supplements (vitamins, antioxidants, and micronutrients), and anti-fibrotic cytokines like interferon-gamma that provides short-term symptomatic relief to OSMF patients. However, some plant leads have been proven effective in alleviating symptoms and mitigating OSMF, which ultimately improves the quality of OSMF patients' life. We concluded that plant drugs like lycopene, curcumin, Aloe vera, colchicine, and Glycyrrhiza glabra are effective against OSMF in various in vitro and/or clinical studies and are being used by modern and traditional practitioners.
Collapse
Affiliation(s)
- Sarita Pal
- Bioprospection and Product Development, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Disha Sharma
- Bioprospection and Product Development, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Narayan Prasad Yadav
- Bioprospection and Product Development, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| |
Collapse
|
3
|
Panda A, Mishra P, Mohanty A, Sundaragiri KS, Singh A, Jha K. Is Epithelial-Mesenchymal Transition a New Roadway in the Pathogenesis of Oral Submucous Fibrosis: A Comprehensive Review. Cureus 2022; 14:e29636. [PMID: 36321045 PMCID: PMC9606484 DOI: 10.7759/cureus.29636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) collectively refers to a series of episodes that reshape polarized, intact epithelial cells into discrete motile cells that can conquer the extracellular matrix (ECM). It performs a pivotal role in embryonic development, wound healing, and tissue repair. Surprisingly, the exact mechanism can also lead to the onset of malignancy and organ fibrosis contributing to scar formation and loss of function. transforming growth factor signaling, WNT signaling, Notch signaling, Hedgehog signaling, and receptor tyrosine kinase signaling, as well as non-transcriptional changes in response to extracellular cues, such as growth factors and cytokines, hypoxia, and contact with the surrounding ECM, are responsible for the initiation of EMT. Although the pathogenesis of oral submucous fibrosis (OSMF) is multifactorial, compelling evidence suggests that it results from collagen deregulation. EMT is one of the spotlight events in the pathogenesis of OSMF, with myofibroblasts and keratinocytes being the victim cells. EMT is an essential step in both physiological and pathological events. The importance of EMT in the malignant development of OSMF and the inflammatory reaction preceding fibrosis implies a new upcoming area of research. This review aims to focus on the EMT events that function as a double-edged sword between wound healing and fibrosis and further discuss the mechanisms along with the molecular pathways that direct changes in gene expression essential for the same in the oral cavity. As OSMF involves a risk of malignant transformation, understanding the cellular and molecular events will open more avenues for therapeutic breakthroughs targeting EMT.
Collapse
|
4
|
Shetty SS, Sharma M, Fonseca FP, Jayaram P, Tanwar AS, Kabekkodu SP, Kapaettu S, Radhakrishnan R. Signaling pathways promoting epithelial mesenchymal transition in oral submucous fibrosis and oral squamous cell carcinoma. JAPANESE DENTAL SCIENCE REVIEW 2020; 56:97-108. [PMID: 32874377 PMCID: PMC7452314 DOI: 10.1016/j.jdsr.2020.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/02/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a critical process that occurs during the embryonic development, wound healing, organ fibrosis and the onset of malignancy. Emerging evidence suggests that the EMT is involved in the invasion and metastasis of cancers. The inflammatory reaction antecedent to fibrosis in the onset of oral submucous fibrosis (OSF) and the role of EMT in its malignant transformation indicates a hitherto unexplored involvement of EMT. This review focuses on the role of EMT markers which are regulators of the EMT mediated complex network of molecular mechanisms involved in the pathogenesis of OSF and OSCC. Further the gene enrichment analysis and pathway analysis supports the association of the upregulated and downregulated genes in various EMT regulating pathways.
Collapse
Affiliation(s)
- Smitha Sammith Shetty
- Department of Oral Pathology, Faculty of Dentistry, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal 576104, India
| | - Mohit Sharma
- Department of Oral Pathology, Sudha Rustagi College of Dental Sciences and Research, Faridabad 121004, India
| | - Felipe Paiva Fonseca
- Department of Oral Surgery and Pathology, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Pradyumna Jayaram
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Ankit Singh Tanwar
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Satyamoorthy Kapaettu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
- Corresponding author.
| |
Collapse
|
5
|
Chiang MH, Lee KT, Chen CH, Chen KK, Wang YH. Photobiomodulation therapy inhibits oral submucous fibrosis in mice. Oral Dis 2020; 26:1474-1482. [PMID: 32391600 PMCID: PMC7540580 DOI: 10.1111/odi.13409] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/22/2020] [Accepted: 05/03/2020] [Indexed: 12/31/2022]
Abstract
Objectives Oral submucous fibrosis (OSMF) is a chronic inflammatory disease and a potentially malignant oral disorder. However, the best therapeutic treatment for OSMF remains uncertain. Our previous study showed that photobiomodulation (PBM) therapy and forskolin could reduce arecoline‐induced fibrosis reactions via the cAMP pathway. The present study aimed to establish an animal model of areca nut extract (ANE)‐induced OSMF and to evaluate the therapeutic potential of PBM and forskolin for ANE‐induced OSMF. Subjects and methods The mice were divided into five groups. The buccal tissues were harvested for histomorphological analysis and immunoblotting. Results Our results showed that PBM significantly reduced the development of ANE‐induced OSMF, quantified by changes in submucosal layer thickness and collagen deposition. Additionally, PBM could extensively reduce the protein expression of the fibrotic marker genes alpha‐smooth muscle actin (α‐SMA) and connective tissue growth factor (CTGF) in buccal submucous lesions. However, forskolin treatment significantly decreased the protein expression of fibrotic marker genes but slightly decreased the observed histomorphological changes. Conclusions We established an ANE‐induced OSMF mouse model, which also provided a model for the development of a therapeutic treatment for OSMF. The anti‐fibrotic effects of PBM and forskolin may be useful for clinical interventions.
Collapse
Affiliation(s)
- Min-Hsuan Chiang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,College of Medicine, Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kun-Tsung Lee
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Oral Hygiene, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hsin Chen
- College of Medicine, Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Physical Medicine and Rehabilitation, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ker-Kong Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yan-Hsiung Wang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,College of Medicine, Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
6
|
Li RL, Wang JX, Chai LJ, Guo H, Wang H, Chen L, Hu LM, Wang SX. Xueshuantong for Injection (Lyophilized, ) Alleviates Streptozotocin-Induced Diabetic Retinopathy in Rats. Chin J Integr Med 2020; 26:825-832. [PMID: 32415646 DOI: 10.1007/s11655-020-3088-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To investigate the ameliorate effect and underlying mechanism of Xueshuantong for Injection (Lyophilized, , XST) in streptozocin (STZ)-induced diabetic retinopathy (DR) rats. METHODS Diabetes mellitus (DM) model was induced by intraperitoneal (i.p.) injection of STZ (60 mg/kg) in Sprague-Dawley rats. Diabetic rats were randomized into 3 groups (n=10) according to a random number table, including DM, XST50 and XST100 groups. XST treatment groups were daily i.p. injected with 50 or 100 mg/kg XST for 60 days, respectively. The control and DM groups were given i.p. injection with saline. Blood glucose level and body weight were recorded every week. Histological changes in the retina tissues were observed with hematoxylin-eosin staining. Apoptosis and inflammation related factors, including cleaved caspase-3, glial fifibrillary acidic protein (GFAP), tumor necrosis factor-α (TNF-α) and intercellular cell adhesion molecule-1 (ICAM-1) were detected by Western blot or real-time polymerase chain reaction. Then, the levels of advanced glycation end product (AGE) and its receptor (RAGE) were investigated. Tight junctions proteins (Zonula occludens-1 (ZO-1), Occludin and Claudin-5) of blood-retinal barrier were detected by Western blot. The levels of retinal fifibrosis, transforming growth factor-β1 (TGF-β1)-Smad2/3 signaling pathway were evaluated at last. RESULTS There was no signifificant difference in the body weight and blood glucose level between XST and DM groups (P>0.05). Compared with the DM group, XST treatment signifificantly increased the retinal thickness of rats (P<0.05 or P<0.01), and suppressed cleaved caspase-3 expression (P<0.01). XST increased the protein expressions of ZO-1, Occludin and Claudin-5 and decreased the mRNA expressions of matrix metalloproteinase 2 (MMP-2) and MMP-9 (P<0.05 or P<0.01). Moreover, XST signifificantly reduced the productions of AGE and RAGE proteins in the retina of rats (P<0.05 or P<0.01), suppressed the over-expression of TNF-α, and decreased the elevated level of ICAM-1 in retina of rats (P<0.05 or P<0.01). XST signifificantly reduced the levels of α-smooth muscle actin (α-SMA), connective tissue growth factor (CTGF), TGF-β1 and phosphorylation of Smad2/3 protein in rats (P<0.05 or P<0.01). CONCLUSIONS XST had protective effects on DR with possible mechanisms of inhibiting the inflammation and apoptosis, up-regulating the expression of tight junction proteins, suppressing the productions of AGE and RAGE proteins, and blocking the TGF-β/Smad2/3 signaling pathway. XST treatment might play a role for the future therapeutic strategy against DR.
Collapse
Affiliation(s)
- Rui-Lin Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Jin-Xin Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Li-Juan Chai
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Hong Guo
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Hong Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Lu Chen
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Li-Min Hu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Shao-Xia Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
7
|
Ginsenosides: potential therapeutic source for fibrosis-associated human diseases. J Ginseng Res 2019; 44:386-398. [PMID: 32372860 PMCID: PMC7195584 DOI: 10.1016/j.jgr.2019.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/25/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
Tissue fibrosis is an eventual pathologic change of numerous chronic illnesses, which is characterized by resident fibroblasts differentiation into myofibroblasts during inflammation, coupled with excessive extracellular matrix deposition in tissues, ultimately leading to failure of normal organ function. Now, there are many mechanistic insights into the pathogenesis of tissue fibrosis, which facilitate the discovery of effective antifibrotic drugs. Moreover, many chronic diseases remain a significant clinical unmet need. For the past five years, many research works have undoubtedly addressed the functional dependency of ginsenosides in different types of fibrosis and the successful remission in various animal models treated with ginsenosides. Caveolin-1, interleukin, thrombospondin-1 (TSP-1), liver X receptors (LXRs), Nrf2, microRNA-27b, PPARδ-STAT3, liver kinase B1 (LKB1)-AMPK, and TGF-β1/Smads are potential therapy targeting using ginsenosides. Ginsenosides can play a targeting role and suppress chronic inflammatory response, collagen deposition, and epithelial-mesenchymal transition (EMT), as well as myofibroblast activation to attenuate fibrosis. In this report, our aim was to focus on the therapeutic prospects of ginsenosides in fibrosis-related human diseases making use of results acquired from various animal models. These findings should provide important therapeutic clues and strategies for the exploration of new drugs for fibrosis treatment.
Collapse
|
8
|
Chiang MH, Chen PH, Chen YK, Chen CH, Ho ML, Wang YH. Characterization of a Novel Dermal Fibrosis Model Induced by Areca Nut Extract that Mimics Oral Submucous Fibrosis. PLoS One 2016; 11:e0166454. [PMID: 27851781 PMCID: PMC5112895 DOI: 10.1371/journal.pone.0166454] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/29/2016] [Indexed: 11/18/2022] Open
Abstract
Oral submucous fibrosis (OSF) is an oral potentially malignant disorder and areca quid chewing is the main etiological factor. However, the molecular mechanism underlying OSF remains unclear, partly due to the lack of an appropriate animal model. The present study aimed to establish and characterize an animal model of areca nut extract (ANE)-induced skin fibrosis that mimics OSF. Mice were divided into 4 groups: the control group; the bleomycin group; and the ANE10 and ANE20 groups, which received 10mg/ml and 20mg/ml subcutaneous (SC) injection of ANE, respectively. Skin fibrosis was evaluated by histological analyses. Additionally, the expression levels of the fibrotic marker genes were determined by immunohistochemical staining and immunoblotting. ANE administration significantly increased dermal thickness and collagen deposition compared with the control group. Moreover, ANE induced the expression of the fibrotic marker genes alpha smooth muscle actin (α-SMA) and connective tissue growth factor (CTGF) in the skin lesions. The SC injection of ANE successfully induced skin fibrosis, exhibiting characteristics similar to those of OSF. This model may facilitate future studies of the mechanism underlying OSF.
Collapse
Affiliation(s)
- Min-Hsuan Chiang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| | - Ping-Ho Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan, Republic of China
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| | - Yuk-Kwan Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
- Oral & Maxillofacial Imaging Center, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
- Division of Oral Pathology & Maxillofacial Radiology, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, Republic of China
| | - Chia-Hsin Chen
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
- Department of Physical Medicine and Rehabilitation, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
- Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| | - Mei-Ling Ho
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| | - Yan-Hsiung Wang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
9
|
Chang MC, Chan CP, Chen YJ, Hsien HC, Chang YC, Yeung SY, Jeng PY, Cheng RH, Hahn LJ, Jeng JH. Areca nut components stimulate ADAM17, IL-1α, PGE2 and 8-isoprostane production in oral keratinocyte: role of reactive oxygen species, EGF and JAK signaling. Oncotarget 2016; 7:16879-94. [PMID: 26919242 PMCID: PMC4941357 DOI: 10.18632/oncotarget.7621] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/09/2016] [Indexed: 11/25/2022] Open
Abstract
Betel quid (BQ) chewing is an etiologic factor of oral submucous fibrosis (OSF) and oral cancer. There are 600 million BQ chewers worldwide. The mechanisms for the toxic and inflammatory responses of BQ are unclear. In this study, both areca nut (AN) extract (ANE) and arecoline stimulated epidermal growth factor (EGF) and interleukin-1α (IL-1α) production of gingival keratinocytes (GKs), whereas only ANE can stimulate a disintegrin and metalloproteinase 17 (ADAM17), prostaglandin E2 (PGE2) and 8-isoprostane production. ANE-induced EGF production was inhibited by catalase. Addition of anti-EGF neutralizing antibody attenuated ANE-induced cyclooxygenase-2 (COX-2), mature ADAM9 expression and PGE2 and 8-isoprostane production. ANE-induced IL-1α production was inhibited by catalase, anti-EGF antibody, PD153035 (EGF receptor antagonist) and U0126 (MEK inhibitor) but not by α-naphthoflavone (cytochrome p450-1A1 inhibitor). ANE-induced ADAM17 production was inhibited by pp2 (Src inhibitor), U0126, α-naphthoflavone and aspirin. AG490 (JAK inhibitor) prevented ANE-stimulated ADAM17, IL-1α, PGE2 production, COX-2 expression, ADAM9 maturation, and the ANE-induced decline in keratin 5 and 14, but showed little effect on cdc2 expression and EGF production. Moreover, ANE-induced 8-isoprostane production by GKs was inhibited by catalase, anti-EGF antibody, AG490, pp2, U0126, α-naphthoflavone, Zinc protoporphyrin (ZnPP) and aspirin. These results indicate that AN components may involve in BQ-induced oral cancer by induction of reactive oxygen species, EGF/EGFR, IL-1α, ADAMs, JAK, Src, MEK/ERK, CYP1A1, and COX signaling pathways, and the aberration of cell cycle and differentiation. Various blockers against ROS, EGF, IL-1α, ADAM, JAK, Src, MEK, CYP1A1, and COX can be used for prevention or treatment of BQ chewing-related diseases.
Collapse
Affiliation(s)
- Mei-Chi Chang
- Team of Biomedical Science, Chang-Gung University of Science and Technology, Kwei-Shan, Taoyuan City, Taiwan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Chiu-Po Chan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Yi-Jane Chen
- Laboratory of Pharmacology, Toxicology and Chemical Carcinogenesis, School of Dentistry and Department of Dentistry, National Taiwan University Hospital and National Taiwan University Medical College, Taipei, Taiwan
| | - Hsiang-Chi Hsien
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Ya-Ching Chang
- Department of Dentistry, Mackay Memorial Hospial, and Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Sin-Yuet Yeung
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Po-Yuan Jeng
- School of Dentistry, University of Cardenal Herrera, CEU, Valencia, Spain
| | - Ru-Hsiu Cheng
- Laboratory of Pharmacology, Toxicology and Chemical Carcinogenesis, School of Dentistry and Department of Dentistry, National Taiwan University Hospital and National Taiwan University Medical College, Taipei, Taiwan
| | - Liang-Jiunn Hahn
- Laboratory of Pharmacology, Toxicology and Chemical Carcinogenesis, School of Dentistry and Department of Dentistry, National Taiwan University Hospital and National Taiwan University Medical College, Taipei, Taiwan
| | - Jiiang-Huei Jeng
- Laboratory of Pharmacology, Toxicology and Chemical Carcinogenesis, School of Dentistry and Department of Dentistry, National Taiwan University Hospital and National Taiwan University Medical College, Taipei, Taiwan
| |
Collapse
|
10
|
Hu W, Zhang Y, Sigdel KR. The effects of Panax notoginseng saponins on the cytokines and peritoneal function in rats with peritoneal fibrosis. Ren Fail 2015; 37:1507-13. [PMID: 26371362 DOI: 10.3109/0886022x.2015.1088350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Due to the long-term and chronic exposure to the peritoneal dialysis fluid, patients could develop peritoneal fibrosis and ultrafiltration failure which compromises treatment efficacy and outcome, and fibrosis is the major cause of peritoneal dialysis (PD) withdraw among patients. METHODS Twenty-one male WISTAR rats were randomly assigned to three groups, namely saline group, standard peritoneal dialysis fluid (PDF) group, and panax notoginseng saponins (PNS) group. Peritoneal fibrosis was induced by daily injection of PDF for 4 weeks. After execution, multiple histological techniques including HE and Masson's trichrome staining and transmission electron microscopy (TEM) were applied to observe the pathological changes and concentrations of multiple cytokines may involve in the process of fibrosis were determined by enzyme-linked immune sorbent assay (ELISA). Biochemistry parameters were determined by automated chemistry analyzer. RESULTS PNS can significantly inhibit the expression of transforming growth factor beta (TGF-β1), connective tissue growth factor (CTGF), and monocyte chemoattractant protein (MCP-1) in the peritoneum of rats. Furthermore, pathological damages, including extracellular matrix deposition, vascularization, and fibroblast, were ameliorated in PNS group when being compared with standard PDF group. Peritoneal functions were improved by regular PNS treatment with significantly elevated ultrafiltration. CONCLUSION PNS is capable of improving peritoneal function in subjects with PDF exposure and can possibly applied in patients with PD after further verification.
Collapse
Affiliation(s)
- Weiping Hu
- a Department of Nephrology , First Affiliated Hospital of Xiamen University , Xiamen , People's Republic of China
| | - Yanlin Zhang
- a Department of Nephrology , First Affiliated Hospital of Xiamen University , Xiamen , People's Republic of China
| | - Keshav Raj Sigdel
- a Department of Nephrology , First Affiliated Hospital of Xiamen University , Xiamen , People's Republic of China
| |
Collapse
|
11
|
Dai JP, Zhu DX, Sheng JT, Chen XX, Li WZ, Wang GF, Li KS, Su Y. Inhibition of Tanshinone IIA, salvianolic acid A and salvianolic acid B on Areca nut extract-induced oral submucous fibrosis in vitro. Molecules 2015; 20:6794-807. [PMID: 25884554 PMCID: PMC6272768 DOI: 10.3390/molecules20046794] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 03/27/2015] [Accepted: 04/08/2015] [Indexed: 02/05/2023] Open
Abstract
Salvia miltiorrhiza Bunge has been reported to possess excellent antifibrotic activity. In this study, we have investigated the effect and mechanism of tanshinone IIA (Tan-IIA), salvianolic acid A (Sal-A) and salvianolic acid B (Sal-B), the important active compounds of Salvia miltiorrhiza Bunge, on areca nut extract (ANE)-induced oral submucous fibrosis (OSF) in vitro. Through human procollagen gene promoter luciferase reporter plasmid assay, hydroxyproline assay, gelatin zymography assay, qRT-PCR, ELISA and Western blot assay, the influence of these three compounds on ANE-stimulated cell viability, collagen accumulation, procollagen gene transcription, MMP-2/-9 activity, MMP-1/-13 and TIMP-1/-2 expression, cytokine secretion and the activation of PI3K/AKT, ERK/JNK/p38 MAPK and TGF-β/Smads pathways were detected. The results showed that Tan-IIA, Sal-A and Sal-B could significantly inhibit the ANE-stimulated abnormal viability and collagen accumulation of mice oral mucosal fibroblasts (MOMFs), inhibit the transcription of procollagen gene COL1A1 and COL3A1, increase MMP-2/-9 activity, decrease TIMP-1/-2 expression and inhibit the transcription and release of CTGF, TGF-β1, IL-6 and TNF-α; Tan-IIA, Sal-A and Sal-B also inhibited the ANE-induced activation of AKT and ERK MAPK pathways in MOMFs and the activation of TGF-β/Smads pathway in HaCaT cells. In conclusion, Tan-IIA, Sal-A and Sal-B possess excellent antifibrotic activity in vitro and can possibly be used to promote the rehabilitation of OSF patients.
Collapse
Affiliation(s)
- Jian-Ping Dai
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Dan-Xia Zhu
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Jiang-Tao Sheng
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Xiao-Xuan Chen
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Wei-Zhong Li
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA.
| | - Ge-Fei Wang
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Kang-Sheng Li
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Yun Su
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|