1
|
Taheri M, Tehrani HA, Dehghani S, Alibolandi M, Arefian E, Ramezani M. Nanotechnology and bioengineering approaches to improve the potency of mesenchymal stem cell as an off-the-shelf versatile tumor delivery vehicle. Med Res Rev 2024; 44:1596-1661. [PMID: 38299924 DOI: 10.1002/med.22023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 11/28/2023] [Accepted: 01/10/2024] [Indexed: 02/02/2024]
Abstract
Targeting actionable mutations in oncogene-driven cancers and the evolution of immuno-oncology are the two prominent revolutions that have influenced cancer treatment paradigms and caused the emergence of precision oncology. However, intertumoral and intratumoral heterogeneity are the main challenges in both fields of precision cancer treatment. In other words, finding a universal marker or pathway in patients suffering from a particular type of cancer is challenging. Therefore, targeting a single hallmark or pathway with a single targeted therapeutic will not be efficient for fighting against tumor heterogeneity. Mesenchymal stem cells (MSCs) possess favorable characteristics for cellular therapy, including their hypoimmune nature, inherent tumor-tropism property, straightforward isolation, and multilineage differentiation potential. MSCs can be loaded with various chemotherapeutics and oncolytic viruses. The combination of these intrinsic features with the possibility of genetic manipulation makes them a versatile tumor delivery vehicle that can be used for in vivo selective tumor delivery of various chemotherapeutic and biological therapeutics. MSCs can be used as biofactory for the local production of chemical or biological anticancer agents at the tumor site. MSC-mediated immunotherapy could facilitate the sustained release of immunotherapeutic agents specifically at the tumor site, and allow for the achievement of therapeutic concentrations without the need for repetitive systemic administration of high therapeutic doses. Despite the enthusiasm evoked by preclinical studies that used MSC in various cancer therapy approaches, the translation of MSCs into clinical applications has faced serious challenges. This manuscript, with a critical viewpoint, reviewed the preclinical and clinical studies that have evaluated MSCs as a selective tumor delivery tool in various cancer therapy approaches, including gene therapy, immunotherapy, and chemotherapy. Then, the novel nanotechnology and bioengineering approaches that can improve the potency of MSC for tumor targeting and overcoming challenges related to their low localization at the tumor sites are discussed.
Collapse
Affiliation(s)
- Mojtaba Taheri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Abdul Tehrani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sadegh Dehghani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Xu S, Zhao L, Li Y, Gu X, Liu Z, Han X, Li W, Ma W. Activating the healing process: three-dimensional culture of stem cells in Matrigel for tissue repair. BMC Biotechnol 2024; 24:36. [PMID: 38796454 PMCID: PMC11128131 DOI: 10.1186/s12896-024-00862-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/22/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND To establish a strategy for stem cell-related tissue regeneration therapy, human gingival mesenchymal stem cells (hGMSCs) were loaded with three-dimensional (3D) bioengineered Matrigel matrix scaffolds in high-cell density microtissues to promote local tissue restoration. METHODS The biological performance and stemness of hGMSCs under 3D culture conditions were investigated by viability and multidirectional differentiation analyses. A Sprague‒Dawley (SD) rat full-thickness buccal mucosa wound model was established, and hGMSCs/Matrigel were injected into the submucosa of the wound. Autologous stem cell proliferation and wound repair in local tissue were assessed by histomorphometry and immunohistochemical staining. RESULTS Three-dimensional suspension culture can provide a more natural environment for extensions and contacts between hGMSCs, and the viability and adipogenic differentiation capacity of hGMSCs were significantly enhanced. An animal study showed that hGMSCs/Matrigel significantly accelerated soft tissue repair by promoting autologous stem cell proliferation and enhancing the generation of collagen fibers in local tissue. CONCLUSION Three-dimensional cell culture with hydrogel scaffolds, such as Matrigel, can effectively improve the biological function and maintain the stemness of stem cells. The therapeutic efficacy of hGMSCs/Matrigel was confirmed, as these cells could effectively stimulate soft tissue repair to promote the healing process by activating the host microenvironment and autologous stem cells.
Collapse
Affiliation(s)
- Shukui Xu
- Department of Orthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiahzuang, 050017, China
| | - Liru Zhao
- Department of Orthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiahzuang, 050017, China
| | - Yinghui Li
- Department of Orthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiahzuang, 050017, China
| | - Xiuge Gu
- Department of Orthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiahzuang, 050017, China
| | - Ziyang Liu
- Department of Orthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiahzuang, 050017, China
| | - Xing Han
- Department of Orthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiahzuang, 050017, China
| | - Wenwen Li
- Department of Orthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiahzuang, 050017, China
| | - Wensheng Ma
- Department of Orthodontics, School of Medicine, Tianjin Stomatological Hospital, Nankai University, Tianjin, 300041, China.
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China.
| |
Collapse
|
3
|
Pan Z, Zhang X, Xie W, Cui J, Wang Y, Zhang B, Du L, Zhai W, Sun H, Li Y, Li D. Revisited and innovative perspectives of oral ulcer: from biological specificity to local treatment. Front Bioeng Biotechnol 2024; 12:1335377. [PMID: 38456005 PMCID: PMC10917957 DOI: 10.3389/fbioe.2024.1335377] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Mouth ulcers, a highly prevalent ailment affecting the oral mucosa, leading to pain and discomfort, significantly impacting the patient's daily life. The development of innovative approaches for oral ulcer treatment is of great importance. Moreover, a deeper and more comprehensive understanding of mouth ulcers will facilitate the development of innovative therapeutic strategies. The oral environment possesses distinct traits as it serves as the gateway to the digestive and respiratory systems. The permeability of various epithelial layers can influence drug absorption. Moreover, oral mucosal injuries exhibit distinct healing patterns compared to cutaneous lesions, influenced by various inherent and extrinsic factors. Furthermore, the moist and dynamic oral environment, influenced by saliva and daily physiological functions like chewing and speaking, presents additional challenges in local therapy. Also, suitable mucosal adhesion materials are crucial to alleviate pain and promote healing process. To this end, the review comprehensively examines the anatomical and structural aspects of the oral cavity, elucidates the healing mechanisms of oral ulcers, explores the factors contributing to scar-free healing in the oral mucosa, and investigates the application of mucosal adhesive materials as drug delivery systems. This endeavor seeks to offer novel insights and perspectives for the treatment of oral ulcers.
Collapse
Affiliation(s)
- Ziyi Pan
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
- School of Stomatology, Jilin University, Changchun, China
| | - Xu Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Wangni Xie
- School of Stomatology, Jilin University, Changchun, China
| | - Jing Cui
- School of Stomatology, Jilin University, Changchun, China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Boya Zhang
- School of Stomatology, Jilin University, Changchun, China
| | - Liuyi Du
- School of Stomatology, Jilin University, Changchun, China
| | - Wenhao Zhai
- School of Stomatology, Jilin University, Changchun, China
| | - Hongchen Sun
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
- School of Stomatology, Jilin University, Changchun, China
| | - Yunfeng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, China
| | - Daowei Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
- School of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
4
|
Hu D, Li X, Li J, Tong P, Li Z, Lin G, Sun Y, Wang J. The preclinical and clinical progress of cell sheet engineering in regenerative medicine. Stem Cell Res Ther 2023; 14:112. [PMID: 37106373 PMCID: PMC10136407 DOI: 10.1186/s13287-023-03340-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Cell therapy is an accessible method for curing damaged organs or tissues. Yet, this approach is limited by the delivery efficiency of cell suspension injection. Over recent years, biological scaffolds have emerged as carriers of delivering therapeutic cells to the target sites. Although they can be regarded as revolutionary research output and promote the development of tissue engineering, the defect of biological scaffolds in repairing cell-dense tissues is apparent. Cell sheet engineering (CSE) is a novel technique that supports enzyme-free cell detachment in the shape of a sheet-like structure. Compared with the traditional method of enzymatic digestion, products harvested by this technique retain extracellular matrix (ECM) secreted by cells as well as cell-matrix and intercellular junctions established during in vitro culture. Herein, we discussed the current status and recent progress of CSE in basic research and clinical application by reviewing relevant articles that have been published, hoping to provide a reference for the development of CSE in the field of stem cells and regenerative medicine.
Collapse
Affiliation(s)
- Danping Hu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- HANGZHOU CHEXMED TECHNOLOGY CO., LTD, Hangzhou, 310000, China
| | - Xinyu Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Jie Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Pei Tong
- Hospital of Hunan Guangxiu, Medical College of Hunan Normal University, Hunan Normal University, Changsha, 410008, China
| | - Zhe Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- National Engineering and Research Center of Human Stem Cells, Changsha, 410008, China
- Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha, 410008, China
| | - Yi Sun
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China.
- National Engineering and Research Center of Human Stem Cells, Changsha, 410008, China.
- Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha, 410008, China.
| | - Juan Wang
- Shanghai Biomass Pharmaceutical Product Evaluation Professional Public Service Platform, Center for Pharmacological Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, 200437, China.
| |
Collapse
|
5
|
Thummarati P, Laiwattanapaisal W, Nitta R, Fukuda M, Hassametto A, Kino-oka M. Recent Advances in Cell Sheet Engineering: From Fabrication to Clinical Translation. Bioengineering (Basel) 2023; 10:211. [PMID: 36829705 PMCID: PMC9952256 DOI: 10.3390/bioengineering10020211] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Cell sheet engineering, a scaffold-free tissue fabrication technique, has proven to be an important breakthrough technology in regenerative medicine. Over the past two decades, the field has developed rapidly in terms of investigating fabrication techniques and multipurpose applications in regenerative medicine and biological research. This review highlights the most important achievements in cell sheet engineering to date. We first discuss cell sheet harvesting systems, which have been introduced in temperature-responsive surfaces and other systems to overcome the limitations of conventional cell harvesting methods. In addition, we describe several techniques of cell sheet transfer for preclinical (in vitro and in vivo) and clinical trials. This review also covers cell sheet cryopreservation, which allows short- and long-term storage of cells. Subsequently, we discuss the cell sheet properties of angiogenic cytokines and vasculogenesis. Finally, we discuss updates to various applications, from biological research to clinical translation. We believe that the present review, which shows and compares fundamental technologies and recent advances in cell engineering, can potentially be helpful for new and experienced researchers to promote the further development of tissue engineering in different applications.
Collapse
Affiliation(s)
- Parichut Thummarati
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
- Biosensors and Bioanalytical Technology for Cells and Innovative Testing Device Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wanida Laiwattanapaisal
- Biosensors and Bioanalytical Technology for Cells and Innovative Testing Device Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Rikiya Nitta
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Megumi Fukuda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Artchaya Hassametto
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Masahiro Kino-oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
6
|
An H, Gu Z, Zhou L, Liu S, Li C, Zhang M, Xu Y, Zhang P, Wen Y. Janus mucosal dressing with a tough and adhesive hydrogel based on synergistic effects of gelatin, polydopamine, and nano-clay. Acta Biomater 2022; 149:126-138. [PMID: 35840105 DOI: 10.1016/j.actbio.2022.07.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/21/2022] [Accepted: 07/06/2022] [Indexed: 12/27/2022]
Abstract
There are many problems and challenges related to the treatment of highly prevalent oral mucosal diseases and oral drug delivery because of a large amount of saliva present in the oral cavity, the accompanying oral movements, and unconscious swallowing in the mouth. Therefore, an ideal oral dressing should possess stable adhesion and superior tough strength in the oral cavity. However, this fundamental requirement greatly limits the use of synthetic adhesive dressings for oral dressings. Here, we developed a mussel-inspired Janus gelatin-polydopamine-nano-clay (GPC) hydrogel with controlled adhesion and toughness through the synergistic physical and chemical interaction of gelatin (Gel), nano-clay, and dopamine (DA). The hydrogel not only exhibits strong wet adhesion force (63 kPa) but also has high toughness (1026 ± 100 J m-3). Interfacial adhesion of hydrogels is achieved by modulating the interaction of catechol groups of the hydrogel with specific functional groups (e.g., NH2, SH, OH, and COOH) on the tissue surface. The matrix dissipation of the hydrogel is regulated by physical crosslinking of gelatin, chemical crosslinking of gelatin with polydopamine (Michael addition and Schiff base formation), and nano-clay-induced constraint of the molecular chain. In addition, the GPC hydrogel shows high cell affinity and favors cell adhesion and proliferation. The hydrogel's instant and strong mucoadhesive properties provide a long-lasting therapeutic effect of the drug, thereby enhancing the healing of oral ulcers. Therefore, mussel-inspired wet-adhesion Janus GPC hydrogels can be used as a platform for mucosal dressing and drug delivery systems. STATEMENT OF SIGNIFICANCE: It is a great challenge to treat oral mucosal diseases due to the large amount of saliva present in the oral cavity, the accompanying oral movements, unconscious swallowing, and flushing of drugs in the mouth. To overcome the significant limitations of clinical bioadhesives, such as weakness, toxicity, and poor usage, in the present study, we developed a simple method through the synergistic effects of gelatin, polydopamine, and nano-clay to prepare an optimal mucosal dressing (Janus GPC) that integrates Janus, adhesion, toughness, and drug release property. It fits effectively in the mouth, resists saliva flushing and oral movements, provides oral drug delivery, and reduces patient discomfort. The Janus GPC adhesive hydrogels have great commercial potential to support further the development of innovative therapies for oral mucosal diseases.
Collapse
Affiliation(s)
- Heng An
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering University of Science and Technology Beijing; Beijing 100083, China
| | - Zhen Gu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering University of Science and Technology Beijing; Beijing 100083, China.
| | - Liping Zhou
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering University of Science and Technology Beijing; Beijing 100083, China
| | - Songyang Liu
- Department of Orthopaedics and Trauma Peking University People's Hospital; Beijing 100044, China
| | - Ci Li
- Department of Orthopaedics and Trauma Peking University People's Hospital; Beijing 100044, China
| | - Meng Zhang
- Department of Orthopaedics and Trauma Peking University People's Hospital; Beijing 100044, China
| | - Yongxiang Xu
- Department of Dental Materials, Peking University School and Hospital of Stomatology; Beijing, 100081, China
| | - Peixun Zhang
- Department of Orthopaedics and Trauma Peking University People's Hospital; Beijing 100044, China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering University of Science and Technology Beijing; Beijing 100083, China.
| |
Collapse
|
7
|
Lee DY, Choi YH, Choi JS, Eom MR, Kwon SK. Injection laryngoplasty of human adipose-derived stem cell spheroids with hyaluronic acid-based hydrogel improves the morphological and functional characteristics of geriatric larynx. Biomater Res 2022; 26:13. [PMID: 35382871 PMCID: PMC8981753 DOI: 10.1186/s40824-022-00261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/17/2022] [Indexed: 11/18/2022] Open
Abstract
Aim As the geriatric population increased, the need of treatment for laryngeal atrophy and dysfunction increased. This study was performed to evaluate the effects of injection of human adipose-derived stem cell (hASC) spheroid-loaded catechol-conjugated hyaluronic acid (HA-CA) hydrogel on therapeutic rejuvenation of the geriatric larynx. Methods Stem cell spheroids with hyaluronic acid-based hydrogel were injected into the laryngeal muscles of 18-month-old Sprague–Dawley rats. The effects of hASC spheroids were examined in the following four groups: SHAM, injected with PBS; GEL, injected with HA-CA hydrogel; MONO, injected with single hASCs in HA-CA hydrogel; and SP, injected with hASCs spheroids in HA-CA hydrogel. The rejuvenation efficacy in geriatric laryngeal muscle tissues at 12 weeks postinjection was evaluated and compared by histology, immunofluorescence staining, and functionality analysis. Results Total myofiber cross-sectional area and myofiber number/density, evaluated by detection of myosin heavy chain with antibodies against laminin and fast myosin heavy chain, were significantly higher in the SP group than in the other groups. The lamina propria of the larynx was evaluated by alcian blue staining, which showed that the HA was increased significantly in the SP group compared to the other groups. In functional analysis, the glottal gap area was significantly reduced in the SP group compared to the other groups. The phase difference in the vocal fold during vibration was also smaller in the SP group than in the other groups, but the difference did not reach statistical significance. Conclusion Injection of hASC spheroids with hyaluronic acid-based hydrogel improves the morphological and functional characteristics of geriatric larynx. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s40824-022-00261-x.
Collapse
|
8
|
Yin Z, zhang X, bai Y, Yang Y, Liu B, Fan Z. Dissolvable and layered microneedles composed of hyaluronate/rbFGF/CPC effectively improve the treatment effect on recurrent aphthous ulcers. NEW J CHEM 2022. [DOI: 10.1039/d2nj00054g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Conventional topical medications for recurrent aphthous ulcers (RAU) are limited due to the washing effects of saliva and activities of masticatory muscle decreasing the local effective drug concentration. To overcome...
Collapse
|
9
|
Adipose-Derived Stem Cell-Derived Extracellular Vesicles Inhibit the Fibrosis of Fibrotic Buccal Mucosal Fibroblasts via the MicroRNA-375/FOXF1 Axis. Stem Cells Int 2021; 2021:9964159. [PMID: 34257670 PMCID: PMC8245228 DOI: 10.1155/2021/9964159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/25/2021] [Accepted: 06/07/2021] [Indexed: 01/05/2023] Open
Abstract
Oral submucous fibrosis (OSF) is a precancerous lesion. Adipose-derived stem cell- (ADSC-) derived extracellular vesicles (EVs) (ADSC-EVs) regulate multiple oral diseases. Hence, this study explored the mechanism of ADSC-EVs in OSF. ADSCs were transduced with microRNA- (miR-) 375 mimic. ADSC-EVs and miR-375-overexpressed ADSC-EVs (EVs-miR-375) were extracted and identified. miR-375 expression in EVs and fibrotic buccal mucosal fibroblasts (fBMFs) was detected. EV uptake by fBMFs was observed. The targeted relationship between miR-375 and forkhead box protein F1 (FOXF1) was predicted and verified. After EVs-miR-375 treatment or FOXF1 overexpression, fBMF cell proliferation, migration, invasion, and apoptosis were evaluated, and levels of apoptosis-related proteins (cleaved-caspase-3, Bax, and Bcl-2) and fibrosis markers (α-SMA, collagen I, and collagen III) were detected. Functional rescue experiments were further performed to verify the role of the miR-375/FOXF1 axis in OSF. miR-375 was notably upregulated in EVs-miR-375 and EVs-miR-375-treated fBMFs (all P < 0.001). ADSC-EVs carried miR-375 into fBMFs. fBMFs can internalize ADSC-EVs. EVs-miR-375 treatment markedly inhibited fBMF cell proliferation, migration, invasion, and fibrosis and promoted apoptosis (all P < 0.01). Moreover, miR-375 targeted FOXF1 in fBMFs. FOXF1 overexpression promoted fBMF cell biological behaviors and fibrosis, which were reversed after EVs-miR-375 treatment (P < 0.01 or P < 0.001). We highlighted that ADSC-EVs inhibited fBMF fibrosis and then suppressed OSF progression via the miR-375/FOXF1 axis.
Collapse
|
10
|
Development and optimization of Clotrimazole‒Rosehip oil nanoethosomal-gel for oral thrush and gingivitis. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Choi JS, Lee MS, Kim J, Eom MR, Jeong EJ, Lee M, Park SA, Jeong JH, Kwon SK. Hyaluronic Acid Coating on Hydrophobic Tracheal Scaffold Enhances Mesenchymal Stem Cell Adhesion and Tracheal Regeneration. Tissue Eng Regen Med 2021; 18:225-233. [PMID: 33765289 PMCID: PMC8012419 DOI: 10.1007/s13770-021-00335-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/05/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Long segmental tracheal repair is challenging in regenerative medicine due to low adhesion of stem cells to tracheal scaffolds. Optimal transplantation of stem cells for tracheal defects has not been established. We evaluated the role of hyaluronic acid (HA) coating of tracheal scaffolds in mesenchymal stem cell (MSC) adhesion and tracheal regeneration in a rabbit model. METHODS A three-dimensionally printed tubular tracheal prosthesis was incubated with dopa-HA-fluorescein isothiocyanate in phosphate-buffered saline for 2 days. MSCs were incubated with an HA-coated scaffold, and their adhesion was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. HA coated scaffolds with or without MSC seeding were transplanted at the circumferential tracheal defect in rabbits, and survival, rigid bronchoscopy, radiologic findings, and histologic findings were compared between the two groups. RESULTS HA-coated scaffolds showed better MSC adhesion than non-coated scaffolds. The HA-coated scaffolds with MSC group showed a wider airway and greater mucosal regeneration compared to the HA-coated scaffolds without MSC group. CONCLUSION HA coating of scaffolds can promote MSC adhesion and tracheal regeneration.
Collapse
Affiliation(s)
- Ji Suk Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu Seoul, 03080, Republic of Korea
| | - Min Sang Lee
- School of Pharmacy, Theranostic Macromolecules Research Center, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Jooyoung Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu Seoul, 03080, Republic of Korea
| | - Min Rye Eom
- Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu Seoul, 03080, Republic of Korea
| | - Eun Ji Jeong
- Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu Seoul, 03080, Republic of Korea
| | - Minhyung Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu Seoul, 03080, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu Seoul, 03080, Republic of Korea
| | - Su A Park
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, 156 Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Republic of Korea
| | - Ji Hoon Jeong
- School of Pharmacy, Theranostic Macromolecules Research Center, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea.
| | - Seong Keun Kwon
- Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu Seoul, 03080, Republic of Korea.
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu Seoul, 03080, Republic of Korea.
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu Seoul, 03080, Republic of Korea.
- Cancer Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu Seoul, 03080, Republic of Korea.
| |
Collapse
|
12
|
Park H, Kim IG, Wu Y, Cho H, Shin J, Park SA, Chung E. Experimental investigation of esophageal reconstruction with electrospun polyurethane nanofiber and
3D
printing polycaprolactone scaffolds using a rat model. Head Neck 2020; 43:833-848. [DOI: 10.1002/hed.26540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 10/01/2020] [Accepted: 10/30/2020] [Indexed: 12/23/2022] Open
Affiliation(s)
- Hanaro Park
- Department of Otorhinolaryngology‐Head & Neck Surgery Samsung Changwon Hospital, Sungkyunkwan University School of Medicine Changwon South Korea
| | - In Gul Kim
- Department of Otorhinolaryngology‐Head and Neck Surgery Seoul National University Hospital Seoul South Korea
| | - Yanru Wu
- Department of Biomedical Engineering Inje University Gimhae, Gyeongnam South Korea
| | - Hana Cho
- Department of Otorhinolaryngology‐Head and Neck Surgery Seoul National University Hospital Seoul South Korea
| | - Jung‐Woog Shin
- Department of Biomedical Engineering Inje University Gimhae, Gyeongnam South Korea
| | - Su A Park
- Department of Nature‐Inspired Nanoconvergence Systems Korea Institute of Machinery and Materials Daejeon Republic of Korea
| | - Eun‐Jae Chung
- Department of Otorhinolaryngology‐Head and Neck Surgery Seoul National University Hospital Seoul South Korea
| |
Collapse
|
13
|
Lee JSJ, Kim SJ, Choi JS, Eom MR, Shin H, Kwon SK. Adipose-derived mesenchymal stem cell spheroid sheet accelerates regeneration of ulcerated oral mucosa by enhancing inherent therapeutic properties. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Gong W, Wang F, He Y, Zeng X, Zhang D, Chen Q. Mesenchymal Stem Cell Therapy for Oral Inflammatory Diseases: Research Progress and Future Perspectives. Curr Stem Cell Res Ther 2020; 16:165-174. [PMID: 32713335 DOI: 10.2174/1574888x15666200726224132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/21/2020] [Accepted: 06/03/2020] [Indexed: 02/08/2023]
Abstract
Mesenchymal stem cell (MSC) therapy for clinical diseases associated with inflammation and tissue damage has become a progressive treatment strategy. MSCs have unique biological functions, such as homing, immune regulation, and differentiation capabilities, which provide the prerequisites for the treatment of clinical diseases. Oral diseases are often associated with abnormal immune regulation and epithelial tissue damage. In this review, we summarize previous studies that use MSC therapy to treat various oral inflammatory diseases, including oral ulceration, allergic diseases, chemo/radiotherapy-induced oral mucositis, periodontitis, osteonecrosis of the jaw, Sjögren's syndrome (SS), among other similar diseases. We highlight MSC treatment as a promising approach in the management of oral inflammatory diseases, and discuss the obstacles that remain and must be overcome for MSC treatment to thrive in the future.
Collapse
Affiliation(s)
- Wang Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fei Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuqing He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Dunfang Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
15
|
Gao Y, Jin SZ. Strategies for treating oesophageal diseases with stem cells. World J Stem Cells 2020; 12:488-499. [PMID: 32742566 PMCID: PMC7360987 DOI: 10.4252/wjsc.v12.i6.488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/02/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
There is a wide range of oesophageal diseases, the most general of which are inflammation, injury and tumours, and treatment methods are constantly being developed and updated. With an increasingly comprehensive understanding of stem cells and their characteristics of multilineage differentiation, self-renewal and homing as well as the combination of stem cells with regenerative medicine, tissue engineering and gene therapy, stem cells are playing an important role in the treatment of a variety of diseases. Mesenchymal stem cells have many advantages and are most commonly applied; however, most of these applications have been in experimental studies, with few related clinical trials for comparison. Therefore, the methods, positive significance and limitations of stem cells in the treatment of oesophageal diseases remain incompletely understood. Thus, the purpose of this paper is to review the current literature and summarize the efficacy of stem cells in the treatment of oesophageal diseases, including oesophageal ulceration, acute radiation-induced oesophageal injury, corrosive oesophageal injury, oesophageal stricture formation after endoscopic submucosal dissection and oesophageal reconstruction, as well as gene therapy for oesophageal cancer.
Collapse
Affiliation(s)
- Yang Gao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Shi-Zhu Jin
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| |
Collapse
|
16
|
Faruk EM, Nafea OE, Fouad H, Ebrahim UFA, Hasan RAA. Possible healing effects of Salvadora persica extract (MISWAK) and laser therapy in a rabbit model of a caustic-induced tongue ulcers: histological, immunohistochemical and biochemical study. J Mol Histol 2020; 51:341-352. [PMID: 32472334 DOI: 10.1007/s10735-020-09884-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/23/2020] [Indexed: 12/24/2022]
Abstract
Caustic ingestion is a potentially detrimental event that can cause serious devastating damage on contact with tissues. Local exposure is associated with severe pain, swelling and ulceration. Caustics-induced oral ulcers can be painful enough to compromise the patient's quality of life. Treatment of oral ulcers is crucial in clinical practice. Albeit, some ulcers do not respond adequately to the conventional treatment. The current study was conducted to evaluate the potential healing effects of topical Salvadora persica (SP) extract, low-level laser (LLL) and high-level laser (HLL) therapies in a rabbit model of caustic-induced tongue ulcers and explore the underlying mechanisms. Fifty male rabbits with a caustic induced tongue ulcers were included in the study. Rabbits were equally divided into four groups: positive control (ulcer) group, SP, LLL and HLL groups in addition to the negative control (healthy) group. All treatments were given thrice weekly for 14 days. Results showed that acetic acid-induced tongue ulcers caused extensive structural tongue damage secondary to overexpression of apoptotic BAX, pathological angiogenesis indicated by VEGF overexpression, marked collagen fibers deposition as well as upregulation of tissue pro-inflammatory TNF-α and upregulation of tissue anti-inflammatory IL-10. The healing potential of topical SP, LLL and HLL therapy are mostly comparable. In conclusion, acetic acid-induced extensive tongue damage. Topical SP extract, LLL and HLL are equally effective therapies against caustics-induced tongue ulcers. However, we recommend SP extract, owing to its safety, non-invasiveness, availability and low cost.
Collapse
Affiliation(s)
- Eman Mohamed Faruk
- Histology and Cell Biology Department, Faculty of Medicine, Benha University, Benha, Egypt.
| | - Ola Elsayed Nafea
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Hanan Fouad
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Giza, Egypt
| | | | - Rehab Abd Allah Hasan
- Histology and Cell Biology Department, Faculty of Medicine for Girls (AFMG), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
17
|
Zheng Y, Ke L, Lu Y, Zuo Q, Deng G, Wang H, Zeng X. Enhanced Healing and Antimicrobial Efficacy of Chitosan-g-Polyacrylamide in a Rat Model of Gingival Ulcers. Front Chem 2020; 8:273. [PMID: 32391317 PMCID: PMC7193946 DOI: 10.3389/fchem.2020.00273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/20/2020] [Indexed: 01/31/2023] Open
Abstract
Patients in dental hospitals often experience oral ulcerative lesions, which lead to pain and affect the patient's quality of life. At present, the goal of treating oral ulcerative lesions with drugs is to reduce inflammation and promote ulcer healing. However, very few antibacterial and hemostatic drugs are designed to be suitable for the microenvironment of gingival ulcers. Based on this, we have designed a natural therapeutic agent for oral ulcerative lesions that meets the various requirements of oral ulcerative lesion medication. The chitosan-g-polyacrylamide (CP) copolymer is composed of chitosan as the main chain and polyacrylamide polymers as the side chains. Antibacterial experiments show that this polymer can effectively inhibit the proliferation of Gram-negative (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus). In vitro cell experiments also show that the CP copolymer is non-toxic, which is conducive to ulcer wound healing. Coagulation experiments prove that the CP copolymer can accelerate blood coagulation to stop bleeding. In experiments using a Wistar rat gingival ulcer model, the CP copolymer significantly promoted ulcer healing and shortened the healing time. These results indicate that the CP copolymer may serve as a potential therapeutic agent for oral ulcerative lesions.
Collapse
Affiliation(s)
- Yanfen Zheng
- Department of Oral Mucosal Diseases and Department of Prosthodontics, Stomatological Hospital of Xiamen Medical College, Xiamen, China
| | - Lingjie Ke
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Yin Lu
- Department of Oral Mucosal Diseases and Department of Prosthodontics, Stomatological Hospital of Xiamen Medical College, Xiamen, China
| | - Qiliang Zuo
- Department of Oral Mucosal Diseases and Department of Prosthodontics, Stomatological Hospital of Xiamen Medical College, Xiamen, China
| | - Guanhong Deng
- Department of Oral Mucosal Diseases and Department of Prosthodontics, Stomatological Hospital of Xiamen Medical College, Xiamen, China
| | - Hairui Wang
- Department of Oral Mucosal Diseases and Department of Prosthodontics, Stomatological Hospital of Xiamen Medical College, Xiamen, China
| | - Xiamei Zeng
- Department of Oral Mucosal Diseases and Department of Prosthodontics, Stomatological Hospital of Xiamen Medical College, Xiamen, China
| |
Collapse
|
18
|
D'Esposito V, Lecce M, Marenzi G, Cabaro S, Ambrosio MR, Sammartino G, Misso S, Migliaccio T, Liguoro P, Oriente F, Fortunato L, Beguinot F, Sammartino JC, Formisano P, Gasparro R. Platelet-rich plasma counteracts detrimental effect of high-glucose concentrations on mesenchymal stem cells from Bichat fat pad. J Tissue Eng Regen Med 2020; 14:701-713. [PMID: 32174023 DOI: 10.1002/term.3032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/05/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022]
Abstract
Diabetic patients display increased risk of periodontitis and failure in bone augmentation procedures. Mesenchymal stem cells (MSCs) and platelet-rich plasma (PRP) represent a relevant advantage in tissue repair process and regenerative medicine. We isolated MSCs from Bichat's buccal fat pad (BFP) and measured the effects of glucose and PRP on cell number and osteogenic differentiation potential. Cells were cultured in the presence of 5.5-mM glucose (low glucose [LG]) or 25-mM glucose (high glucose [HG]). BFP-MSC number was significantly lower when cells were cultured in HG compared with those in LG. Following osteogenic differentiation procedures, calcium accumulation, alkaline phosphatase activity, and expression of osteogenic markers were significantly lower in HG compared with LG. Exposure of BFP-MSC to PRP significantly increased cell number and osteogenic differentiation potential, reaching comparable levels in LG and in HG. Thus, high-glucose concentrations impair BFP-MSC growth and osteogenic differentiation. However, these detrimental effects are largely counteracted by PRP.
Collapse
Affiliation(s)
- Vittoria D'Esposito
- URT "Genomics of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Manuela Lecce
- Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Gaetano Marenzi
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, "Federico II" University of Naples, Naples, Italy
| | - Serena Cabaro
- URT "Genomics of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Maria Rosaria Ambrosio
- URT "Genomics of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Gilberto Sammartino
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, "Federico II" University of Naples, Naples, Italy
| | - Saverio Misso
- Unit of Transfusion Medicine, ASL-CE, Caserta, Italy
| | - Teresa Migliaccio
- Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Pasquale Liguoro
- Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Francesco Oriente
- Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Leonzio Fortunato
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Francesco Beguinot
- URT "Genomics of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | | | - Pietro Formisano
- URT "Genomics of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Roberta Gasparro
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, "Federico II" University of Naples, Naples, Italy
| |
Collapse
|
19
|
Chitosan oral patches inspired by mussel adhesion. J Control Release 2020; 317:57-66. [DOI: 10.1016/j.jconrel.2019.11.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 02/06/2023]
|
20
|
Kim IG, Wu Y, Park SA, Cho H, Choi JJ, Kwon SK, Shin JW, Chung EJ. Tissue-Engineered Esophagus via Bioreactor Cultivation for Circumferential Esophageal Reconstruction. Tissue Eng Part A 2019; 25:1478-1492. [DOI: 10.1089/ten.tea.2018.0277] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- In Gul Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University, College of Medicine, Seoul, Republic of Korea
| | - Yanru Wu
- Department of Biomedical Engineering, Inje University, Gimhae, Republic of Korea
| | - Su A. Park
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, Daejeon, Republic of Korea
| | - Hana Cho
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University, College of Medicine, Seoul, Republic of Korea
| | - Jun Jae Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University, College of Medicine, Seoul, Republic of Korea
| | - Seong Keun Kwon
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University, College of Medicine, Seoul, Republic of Korea
| | - Jung-Woog Shin
- Department of Biomedical Engineering, Inje University, Gimhae, Republic of Korea
| | - Eun-Jae Chung
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University, College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
21
|
Mesenchymal stem cell sheets: a new cell-based strategy for bone repair and regeneration. Biotechnol Lett 2019; 41:305-318. [PMID: 30680496 DOI: 10.1007/s10529-019-02649-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/12/2019] [Indexed: 12/31/2022]
Abstract
Mesenchymal stem cells (MSCs), a class of adult stem cells, are considered a promising source for bone regeneration. Although combining MSCs with biomaterial scaffolds offers an interesting clinical strategy for bone tissue engineering, the presence of the scaffolds could induce an undesirable effect on cell-cell interactions. Moreover, before the application of scaffold materials in bone tissue reconstruction, cells must be manipulated with proteolytic enzymes, such as trypsin or dispase that degrade extracellular matrix (ECM) molecules and cell surface proteins, which can result in the cell damage and loss of cellular activity. Therefore, the development of alternative strategies for bone regeneration is required to solve these problems. Recently, a novel tissue engineering technology named 'cell sheet' has been efficaciously utilized in the regeneration of bone, corneal, cardiac, tracheal and periodontal ligament-like tissues. The cell sheet is a layer of cells, which contains intact ECM and cell surface proteins such as growth factor receptors, ion channels and cell-to-cell junction proteins. MSC sheets can be easily fabricated by layering the recovered cell sheets without any scaffolds or complicated manipulation. This review summarizes the current state of the literature regarding the use of MSCs to produce cell sheets and assesses their applicability in bone tissue regeneration and repair.
Collapse
|
22
|
Lee J, Shin D, Roh JL. Treatment of intractable oral ulceration with an oral mucosa equivalent. J Biomed Mater Res B Appl Biomater 2018; 107:1779-1785. [PMID: 30419151 DOI: 10.1002/jbm.b.34270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/01/2018] [Accepted: 10/07/2018] [Indexed: 11/07/2022]
Abstract
The current use of steroids or pharmacological immunomodulators for the treatment of intractable oral ulceration is ineffective, necessitating newer cell-based therapeutic approaches. We examined the potential efficacy of an oral mucosa equivalent developed in this study in an in vivo model of repeat major oral ulceration mimicking the intractable oral ulceration observed clinically. Oral mucosal samples and plasma fibrin were obtained from Sprague-Dawley rats. The oral mucosa equivalents were prepared with cultured mucosal keratinocytes and plasma fibrin mixed with cultured fibroblasts. Ulcers were chemically induced on the rat buccal mucosa thrice in 3 weeks and covered with or without mucosa equivalents. Gross and microscopic findings and mRNA expression levels were compared between the ulcer control and mucosa equivalent groups. Oral mucosal keratinocytes and fibroblasts were cultured in vitro to achieve high viability and colony-forming efficiency. The equivalents showed epithelial and subepithelial structures similar to those of oral mucosa and exhibited high p63 positivity. In the in vivo study, ulceration was resolved earlier without significant granulation or scarring in the equivalent group than in control group (p < 0.05). Microscopic examinations revealed rapid re-epithelialization and less fibrosis in the equivalent group than in the control group (p < 0.05). Mucosa equivalent-covered ulcers showed histological characteristics similar to those of the normal buccal mucosa and exhibited lower expression of TGFB1, ACTA2, and FN1 mRNAs than the control group. The in vitro-engineered oral mucosa equivalent promotes ulcer healing without scarring and functional deficits. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1779-1785, 2019.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of South Korea
| | - Daiha Shin
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of South Korea
| | - Jong-Lyel Roh
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of South Korea
| |
Collapse
|
23
|
Genetic modification to induce CXCR2 overexpression in mesenchymal stem cells enhances treatment benefits in radiation-induced oral mucositis. Cell Death Dis 2018; 9:229. [PMID: 29445104 PMCID: PMC5833705 DOI: 10.1038/s41419-018-0310-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/26/2017] [Accepted: 01/08/2018] [Indexed: 12/13/2022]
Abstract
Radiation-induced oral mucositis affects patient quality of life and reduces tolerance to cancer therapy. Unfortunately, traditional treatments are insufficient for the treatment of mucositis and might elicit severe side effects. Due to their immunomodulatory and anti-inflammatory properties, the transplantation of mesenchymal stem cells (MSCs) is a potential therapeutic strategy for mucositis. However, systemically infused MSCs rarely reach inflamed sites, impacting their clinical efficacy. Previous studies have demonstrated that chemokine axes play an important role in MSC targeting. By systematically evaluating the expression patterns of chemokines in radiation/chemical-induced oral mucositis, we found that CXCL2 was highly expressed, whereas cultured MSCs negligibly express the CXCL2 receptor CXCR2. Thus, we explored the potential therapeutic benefits of the transplantation of CXCR2-overexpressing MSCs (MSCsCXCR2) for mucositis treatment. Indeed, MSCsCXCR2 exhibited enhanced targeting ability to the inflamed mucosa in radiation/chemical-induced oral mucositis mouse models. Furthermore, we found that MSCCXCR2 transplantation accelerated ulcer healing by suppressing the production of pro-inflammatory chemokines and radiogenic reactive oxygen species (ROS). Altogether, these findings indicate that CXCR2 overexpression in MSCs accelerates ulcer healing, providing new insights into cell-based therapy for radiation/chemical-induced oral mucositis.
Collapse
|
24
|
Yorukoglu AC, Kiter AE, Akkaya S, Satiroglu-Tufan NL, Tufan AC. A Concise Review on the Use of Mesenchymal Stem Cells in Cell Sheet-Based Tissue Engineering with Special Emphasis on Bone Tissue Regeneration. Stem Cells Int 2017; 2017:2374161. [PMID: 29230248 PMCID: PMC5694585 DOI: 10.1155/2017/2374161] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/30/2017] [Accepted: 09/12/2017] [Indexed: 12/19/2022] Open
Abstract
The integration of stem cell technology and cell sheet engineering improved the potential use of cell sheet products in regenerative medicine. This review will discuss the use of mesenchymal stem cells (MSCs) in cell sheet-based tissue engineering. Besides their adhesiveness to plastic surfaces and their extensive differentiation potential in vitro, MSCs are easily accessible, expandable in vitro with acceptable genomic stability, and few ethical issues. With all these advantages, they are extremely well suited for cell sheet-based tissue engineering. This review will focus on the use of MSC sheets in osteogenic tissue engineering. Potential application techniques with or without scaffolds and/or grafts will be discussed. Finally, the importance of osteogenic induction of these MSC sheets in orthopaedic applications will be demonstrated.
Collapse
Affiliation(s)
- A. Cagdas Yorukoglu
- Department of Orthopaedics and Traumatology, School of Medicine, Pamukkale University, Denizli, Turkey
| | - A. Esat Kiter
- Department of Orthopaedics and Traumatology, School of Medicine, Pamukkale University, Denizli, Turkey
| | - Semih Akkaya
- Department of Orthopaedics and Traumatology, School of Medicine, Pamukkale University, Denizli, Turkey
| | - N. Lale Satiroglu-Tufan
- Department of Forensic Medicine, Forensic Genetics Laboratory, and Department of Pediatric Genetics, School of Medicine, Ankara University, Ankara, Turkey
| | - A. Cevik Tufan
- Department of Histology and Embryology, School of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| |
Collapse
|
25
|
Sukho P, Cohen A, Hesselink JW, Kirpensteijn J, Verseijden F, Bastiaansen-Jenniskens YM. Adipose Tissue-Derived Stem Cell Sheet Application for Tissue Healing In Vivo: A Systematic Review. TISSUE ENGINEERING PART B-REVIEWS 2017; 24:37-52. [PMID: 28665192 DOI: 10.1089/ten.teb.2017.0142] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adipose tissue-derived stem cells (ASCs) are known to be tissue-healing promoters due to their cellular plasticity and secretion of paracrine factors. Cultured ASC sheets provide a novel method of ASC application and can retain ASCs at the targeted tissue. The purpose of this systematic review is to evaluate preclinical studies using ASC sheet transplantation therapy for promoting tissue healing. First, we searched databases to identify studies of ASC sheet therapy in different experimental animal models, and then determined the quality score of studies using SYRCLE's risk bias tool. A total of 18 included studies examined the role of ASC sheets on tissue healing and function in models for myocardial infarction, dilated cardiomyopathy, full-thickness skin wounds, hind limb ischemia, esophageal strictures, and oral ulcers. ASC sheet application after myocardial infarction improved survival rate, cardiac function, and capillary density and reduced the extent of fibrosis. Application of ASC sheets to a full-thickness skin wound decreased the wound size and stimulated wound maturation. In the hind limb ischemia model, ASC sheet application improved limb perfusion and capillary density, and decreased the amount of ischemic tissue and inflammation. ASC sheet application to mucosal wounds of the digestive tract accelerated wound healing and decreased the degree of stricture and fibrosis. Taken together, transplanted ASC sheets had a positive effect on tissue healing and reconstruction in these preclinical studies. The reported favorable effects of ASC sheet therapy in various tissue healing applications may be implemented in future translational studies. It is suggested that future preclinical animal model studies of ASC sheet therapy should concern standardization of culture techniques and investigate the mechanisms of action. In addition, clearly indicated experimental setups according to the SYRCLE's guidelines should improve study quality and validity.
Collapse
Affiliation(s)
- Panithi Sukho
- 1 Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University , Utrecht, The Netherlands .,2 Department of Otorhinolaryngology, Erasmus MC University Medical Center , Rotterdam, The Netherlands .,3 Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University , Nakhon Pathom, Thailand
| | - Abigael Cohen
- 2 Department of Otorhinolaryngology, Erasmus MC University Medical Center , Rotterdam, The Netherlands
| | - Jan Willem Hesselink
- 1 Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University , Utrecht, The Netherlands
| | - Jolle Kirpensteijn
- 1 Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University , Utrecht, The Netherlands .,4 Hill's Pet Nutrition, Inc. , Topeka, Kansas
| | - Femke Verseijden
- 1 Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University , Utrecht, The Netherlands .,5 Department of Orthopaedics, Erasmus MC University Medical Center , Rotterdam, The Netherlands
| | | |
Collapse
|