1
|
Levati L, Tabolacci C, Facchiano A, Facchiano F, Alvino E, Antonini Cappellini GC, Scala E, Bonmassar L, Caporali S, Lacal PM, Bresin A, De Galitiis F, Russo G, D'Atri S. Circulating interleukin-8 and osteopontin are promising biomarkers of clinical outcomes in advanced melanoma patients treated with targeted therapy. J Exp Clin Cancer Res 2024; 43:226. [PMID: 39143551 PMCID: PMC11325673 DOI: 10.1186/s13046-024-03151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Circulating cytokines can represent non-invasive biomarkers to improve prediction of clinical outcomes of cancer patients. Here, plasma levels of IL-8, CCL4, osteopontin, LIF and BDNF were determined at baseline (T0), after 2 months of therapy (T2) and, when feasible, at progression (TP), in 70 melanoma patients treated with BRAF and MEK inhibitors. The association of baseline cytokine levels with clinical response, progression-free survival (PFS) and overall survival (OS) was evaluated. METHODS Cytokine concentrations were measured using the xMAP technology. Their ability to discriminate between responding (Rs) and non-responding (NRs) patients was assessed by Receiver Operating Characteristics analysis. PFS and OS were estimated with the Kaplan-Meier method. The Cox proportional hazard model was used in the univariate and multivariate analyses to estimate crude and adjusted hazard ratios with 95% confidence intervals. RESULTS CCL4 and LIF were undetectable in the majority of samples. The median osteopontin concentration at T0 and T2 was significantly higher in NRs than in Rs. The median T0 and T2 values of IL-8 were also higher in NRs than in Rs, although the statistical significance was not reached. No differences were detected for BDNF. In 39 Rs with matched T0, T2, and TP samples, osteopontin and IL-8 significantly decreased from T0 to T2 and rose again at TP, while BDNF levels remained unchanged. In NRs, none of the cytokines showed a significant decrease at T2. Only osteopontin demonstrated a good ability to discriminate between Rs and NRs. A high IL-8 T0 level was associated with significantly shorter PFS and OS and higher risk of progression and mortality, and remained an independent negative prognostic factor for OS in multivariate analysis. An elevated osteopontin T0 concentration was also significantly associated with worse OS and increased risk of death. Patients with high IL-8 and high osteopontin showed the lowest PFS and OS, and in multivariate analysis this cytokine combination remained independently associated with a three- to six-fold increased risk of mortality. CONCLUSION Circulating IL-8 and osteopontin appear useful biomarkers to refine prognosis evaluation of patients undergoing targeted therapy, and deserve attention as potential targets to improve its clinical efficacy.
Collapse
Affiliation(s)
- Lauretta Levati
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
- Present Address: Research Coordination and Support Service, Istituto Superiore Di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Antonio Facchiano
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Ester Alvino
- Institute of Translational Pharmacology, National Council of Research, Via Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Gian Carlo Antonini Cappellini
- Department of Oncology and Dermatological Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
- Present Address: UOC Oncologia, Interpresidio ASL RM2, Via Dei Monti Tiburtini 387, 00157, Rome, Italy
| | - Enrico Scala
- Clinical and Laboratory Molecular Allergy Unit, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Laura Bonmassar
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Simona Caporali
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
- Present Address: Regional Transplant Center Lazio (CRTL), San Camillo Hospital, Circonvallazione Gianicolense 87, 00152, Rome, Italy
| | - Pedro Miguel Lacal
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Antonella Bresin
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Federica De Galitiis
- Department of Oncology and Dermatological Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Giandomenico Russo
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Stefania D'Atri
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy.
| |
Collapse
|
2
|
Shi J, Yang Z, Zhang Y, Abdelrehem A, Wu Z, Zhang B, Xiao M, Zhang S, Zhang Z, Wang L. Distinctive mesenchymal-like neurofibroma stem cells shape NF1 clinical phenotypes controlled by BDNF microenvironment. Transl Oncol 2024; 40:101852. [PMID: 38042136 PMCID: PMC10716025 DOI: 10.1016/j.tranon.2023.101852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/23/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023] Open
Abstract
BACKGROUND Neurofibroma type I (NF1) often presents with multiple clinical phenotypes due to mutations of NF1 gene. The aim of this study was to determine the phenotypic and therapeutic relevance of tumor microenvironment in NF1 patients. METHODS Tumor stem cells (TSCs) from NF1 were isolated and cultured using fluorescence activated cell sorting (FACS) and colony formation experiments. Then, flow cytometry was used to detect the surface markers, osteogenic and adipogenic differentiation were performed as well. Its tumorigenesis ability was confirmed by subcutaneous tumorigenesis in nude mice. Immunohistochemical staining was performed on neurofibroma tissues from the head and trunk with different phenotypes. The expression of BDNF in neurofibroma tissues was detected by Elisa and immunohistochemical staining. Western Blotting was used to detect the expression of p38 MAPK pathway in TSCs. The effect of BDNF neutralizing antibody on the tumorigenesis of TSCs was observed. RESULTS Herein, we advocate that NF1 contain a new subgroup of mesenchymal-like neurofibroma stem cells (MNSCs). Such colony-forming MNSCs preserved self-renewal, multiple differentiation and tumorigenic capabilities. More interestingly, the MNSCs isolated from neurofibroma tissues of the same patient with different phenotypes presented site-specific capabilities. Moreover, different levels of brain-derived neurotrophic factor (BDNF) in neurofibroma tissues can impact the MNSCs by activating the TrkB/p38 MAPK pathway. Systemic administration of BDNF neutralizing antibodies inhibited MNSCs' characteristics. CONCLUSIONS We demonstrated that BDNF can modulate MNSCs and thereby controlling different tumor phenotypes between the head and trunk regions. Application of BDNF neutralizing antibodies may inhibit p38 MAPK pathway, therefore providing a promising strategy for managing NF1.
Collapse
Affiliation(s)
- Jingcun Shi
- Department of Oral and Maxillofacial Surgery - Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Zihui Yang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shanxi Clinical Research Center for Oral Diseases, Department of Maxillofacial Oncology, School of Stomatology, Air Force Medical University, Xian, China
| | - Yuhan Zhang
- Department of Oral and Maxillofacial Surgery - Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Ahmed Abdelrehem
- Buraidah Central Hospital, Saudi Arabia; Department of Craniomaxillofacial and Plastic Surgery, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Ziqian Wu
- Department of Oral and Maxillofacial Surgery - Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Bingqing Zhang
- Department of Oral and Maxillofacial Surgery - Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Meng Xiao
- Department of Oral and Maxillofacial Surgery - Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Shijian Zhang
- Department of Oral and Maxillofacial Surgery - Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Zhang
- Department of Oral and Maxillofacial Surgery - Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Wang
- Department of Oral and Maxillofacial Surgery - Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China; Department of Stomatology, Fengcheng Hospital, Fengxian District, Shanghai 201411, China.
| |
Collapse
|
3
|
Khan F, Khan S, Nabeka H, Mimuro H, Nishizono A, Hamada F, Matsuda S. Neurotoxic stimulation alters prosaposin levels in the salivary systems of rats. Cell Tissue Res 2024; 395:159-169. [PMID: 38082139 DOI: 10.1007/s00441-023-03847-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/15/2023] [Indexed: 02/03/2024]
Abstract
Prosaposin (PSAP), a potent neurotrophic factor, is found in neuronal and non-neuronal tissues and various biological fluids. Neuropathological conditions often alter PSAP production in neural tissues. However, little is known about its alterations in non-neural tissues, particularly in the salivary glands, which are natural reservoirs of various neurotrophic factors. In this study, we explored whether neurotoxic stimulation by kainic acid (KA), a glutamate analog, altered PSAP levels in the salivary system of rats. The results revealed that KA injection did not alter total saliva production. However, KA-induced neurotoxic stimulation significantly increased the PSAP level in the secreted saliva but decreased it in the serum. In addition, KA-induced elevated immunoreactivities of PSAP and its receptors have been observed in the granular convoluted tubule (GCT) cells of the submandibular gland (SMG), a major salivary secretory organ. Indeed, a large number of PSAP-expressing immunogold particles were observed in the secretory granules of the SMG. Furthermore, KA-induced overexpression of PSAP was co-localized with secretogranin in secretory acini (mostly in GCT cells) and the ductal system of the SMG, suggesting the release of excess PSAP from the salivary glands into the oral cavity. In conclusion, the salivary system produces more PSAP during neurotoxic conditions, which may play a protective role in maintaining the secretory function of the salivary glands and may work in distant organs.
Collapse
Affiliation(s)
- Farzana Khan
- Research Center for Global and Local Infectious Diseases, Oita University, Yufu, Oita, 879-5593, Japan
- Department of Developmental Biology and Functional Genomics, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0295, Japan
| | - Sakirul Khan
- Research Center for Global and Local Infectious Diseases, Oita University, Yufu, Oita, 879-5593, Japan.
- Department of Developmental Biology and Functional Genomics, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0295, Japan.
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu, Oita, 879-5593, Japan.
| | - Hiroaki Nabeka
- Department of Developmental Biology and Functional Genomics, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0295, Japan
- Department of Physiological Chemistry, College of Pharmaceutical Sciences, School of Clinical Pharmacy, Matsuyama University, Matsuyama, Ehime, 790-8578, Japan
| | - Hitomi Mimuro
- Research Center for Global and Local Infectious Diseases, Oita University, Yufu, Oita, 879-5593, Japan
| | - Akira Nishizono
- Research Center for Global and Local Infectious Diseases, Oita University, Yufu, Oita, 879-5593, Japan
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu, Oita, 879-5593, Japan
| | - Fumihiko Hamada
- Department of Human Anatomy, Faculty of Medicine, Oita University, Yufu, Oita, 879-5593, Japan
| | - Seiji Matsuda
- Department of Developmental Biology and Functional Genomics, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
4
|
Yang X, Yang Y, Gao F, Lu K, Wang C. N-Acetyl Serotonin Provides Neuroprotective Effects by Inhibiting Ferroptosis in the Neonatal Rat Hippocampus Following Hypoxic Brain Injury. Mol Neurobiol 2023; 60:6307-6315. [PMID: 37452222 DOI: 10.1007/s12035-023-03464-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 06/23/2023] [Indexed: 07/18/2023]
Abstract
Hypoxic-ischemic encephalopathy is the main cause of infant brain damage, perinatal death, and chronic neonatal disability worldwide. Ferroptosis is a new form of cell death that is closely related to hypoxia-induced brain damage. N-Acetyl serotonin (NAS) exerts neuroprotective effects, but its effects and underlying mechanisms in hypoxia-induced brain damage remain unclear. In the present study, 5-day-old neonatal Sprague-Dawley rats were exposed to hypoxia for 7 days to establish a hypoxia model. Histochemical staining was used to measure the effects of hypoxia on the rat hippocampus. The hippocampal tissue in the hypoxia group showed significant atrophy. Hypoxia significantly increased the levels of prostaglandin-endoperoxide synthase 2 (PTGS2) and the iron metabolism-related protein transferrin receptor 1 (TfR1) and decreased the levels of glutathione peroxidase 4 (GPX4). These changes resulted in mitochondrial damage, causing neuronal ferroptosis in the hippocampus. More importantly, NAS may improve mitochondrial function and alleviate downstream ferroptosis and damage to the hippocampus following hypoxia. In conclusion, we found that NAS could suppress neuronal ferroptosis in the hippocampus following hypoxic brain injury. These discoveries highlight the potential use of NAS as a treatment for neuronal damage through the suppression of ferroptosis, suggesting new treatment strategies for hypoxia-induced brain damage.
Collapse
Affiliation(s)
- Xiaomei Yang
- Department of Anesthesiology, Qilu Hospital of Shangdong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Department of Anesthesiology, School of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yue Yang
- Department of Anesthesiology, Qilu Hospital of Shangdong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Feng Gao
- Biomedical Isotope Research Center, School of Basic Medical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Kangping Lu
- Department of Anesthesiology, School of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Chunling Wang
- Department of Anesthesiology, Qilu Hospital of Shangdong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
5
|
Molecular Targets in Salivary Gland Cancers: A Comprehensive Genomic Analysis of 118 Mucoepidermoid Carcinoma Tumors. Biomedicines 2023; 11:biomedicines11020519. [PMID: 36831055 PMCID: PMC9953533 DOI: 10.3390/biomedicines11020519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/24/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
INTRODUCTION Salivary gland carcinomas (SGC) are histologically diverse cancers and next-generation sequencing (NGS) to identify key molecular targets is an important aspect in the management of advanced cases. METHODS DNA was extracted from paraffin embedded tissues of advanced SGC and comprehensive genomic profiling (CGP) was carried out to evaluate for base substitutions, short insertions, deletions, copy number changes, gene fusions and rearrangements. Tumor mutation burden (TMB) was calculated on approximately 1.25 Mb. Some 324 genes in the FoundationOne CDX panel were analyzed. RESULTS Mucoepidermoid carcinoma (MECa) mutations were assessed. CDKN2A and CDKN2B GA were common in mucoepidermoid carcinoma (MECa) (52.5 and 30.5%). PIK3CA was also common in MECa (16.9%). ERBB2 amplification/short variants (amp/SV) were found in MECa (5.9/0%). HRAS GA was common in MECa (14.4%) as well. Other targets, including BAP1, PTEN, and KRAS, were noted but had a low incidence. In terms of immunotherapy (IO)-predictive markers, TMB > 10 was more common in MECa (16.9%). PDL1 high was also seen in MECa (4.20%). CONCLUSION SGC are rare tumors with no FDA-approved treatment options. This large dataset reveals many opportunities for IO and targeted therapy contributing to the continuously increased precision in the selection of treatment for these patients.
Collapse
|
6
|
Su B, Cheng S, Wang L, Wang B. MicroRNA-139-5p acts as a suppressor gene for depression by targeting nuclear receptor subfamily 3, group C, member 1. Bioengineered 2022; 13:11856-11866. [PMID: 35543383 PMCID: PMC9276025 DOI: 10.1080/21655979.2022.2059937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
MicroRNA-139-5p (miR-139-5p) is one of the most differentially expressed miRNAs in the brain between healthy people and depressed patients. However, its function in depression is unclear. Therefore, we investigated the function of miR-139-5p in depression. Here, miR-139-5p expression was found to be upregulated in the model group. MiR-139-5p inhibition could increase sucrose preference and decrease mice immobility time after chronic corticosterone (CORT) injection. Furthermore, compared with the antago-NC group, 3 weeks of antagomiR-139-5p treatment significantly decreased miR-139-5p level in model group hippocampus, increased sucrose preference index, reduced neuron damages, and enhanced the levels of nuclear receptor subfamily 3 group C member 1 (NR3C1), brain-derived neurotrophic factor (BDNF), phosphorylated/total tyrosine kinase receptor B (p-TrkB/TrkB), phosphorylated/total cAMP-response element-binding protein (p-CREB/CREB) and phosphorylated/total extracellular regulated protein kinases (p-ERK/ERK). Moreover, as a potential target for miR-139-5p, NR3C1 level was reduced by miR-139-5p mimic. Altogether, by activating the BDNF-TrkB signaling pathway, miR-139-5p inhibition plays an antidepressant-like role and might serve as an effective depression target (Fig. graphical abstract).
Collapse
Affiliation(s)
- Bing Su
- Psychology Department, Qingdao Mental Health Center, Qingdao University, Qingdao City, Shandong Province, China
| | - Suohua Cheng
- Psychology Department, Qingdao Mental Health Center, Qingdao University, Qingdao City, Shandong Province, China
| | - Lei Wang
- Psychology Department, Qingdao Mental Health Center, Qingdao University, Qingdao City, Shandong Province, China
| | - Bing Wang
- Pharmacy Department, Qingdao Women and Children's Hospital, Qingdao City, Shandong Province, China
| |
Collapse
|
7
|
Grayson M, Arris D, Wu P, Merlo J, Ibrahim T, Mei C, Valenzuela V, Ganatra S, Ruparel S. Oral squamous cell carcinoma-released brain-derived neurotrophic factor contributes to oral cancer pain by peripheral tropomyosin receptor kinase B activation. Pain 2022; 163:496-507. [PMID: 34321412 PMCID: PMC8678394 DOI: 10.1097/j.pain.0000000000002382] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/14/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Oral cancer pain is debilitating and understanding mechanisms for it is critical to develop novel treatment strategies treatment strategies. Brain-derived neurotrophic factor (BDNF) signaling is elevated in oral tumor biopsies and is involved with tumor progression. Whether BDNF signaling in oral tumors contributes to cancer-induced pain is not known. The current study evaluates a novel peripheral role of BDNF-tropomyosin receptor kinase B (TrkB) signaling in oral cancer pain. Using human oral squamous cell carcinoma (OSCC) cells and an orthotopic mouse tongue cancer pain model, we found that BDNF levels were upregulated in superfusates and lysates of tumor tongues and that BDNF was expressed by OSCC cells themselves. Moreover, neutralization of BDNF or inhibition of TrkB activity by ANA12, within the tumor-bearing tongue reversed tumor-induced pain-like behaviors in a sex-dependent manner. Oral squamous cell carcinoma conditioned media also produced pain-like behaviors in naïve male mice that was reversed by local injection of ANA12. On a physiological level, using single-fiber tongue-nerve electrophysiology, we found that acutely blocking TrkB receptors reversed tumor-induced mechanical sensitivity of A-slow high threshold mechanoreceptors. Furthermore, single-cell reverse transcription polymerase chain reaction data of retrogradely labeled lingual neurons demonstrated expression of full-form TrkB and truncated TrkB in distinct neuronal subtypes. Last but not the least, intra-TG siRNA for TrkB also reversed tumor-induced orofacial pain behaviors. Our data suggest that TrkB activities on lingual sensory afferents are partly controlled by local release of OSCC-derived BDNF, thereby contributing to oral cancer pain. This is a novel finding and the first demonstration of a peripheral role for BDNF signaling in oral cancer pain.
Collapse
Affiliation(s)
- Max Grayson
- Department of Endodontics, University of Texas Health San Antonio, Texas, USA
| | - Dominic Arris
- Department of Pharmacology and Physiology, University of Texas Health San Antonio, Texas, USA
| | - Ping Wu
- Department of Endodontics, University of Texas Health San Antonio, Texas, USA
| | - Jaclyn Merlo
- Department of Microbiology and Immunology, University of Texas Health San Antonio, Texas, USA
| | - Tarek Ibrahim
- Department of Endodontics, University of Texas Health San Antonio, Texas, USA
| | - Chang Mei
- Department of Endodontics, University of Texas Health San Antonio, Texas, USA
| | - Vanessa Valenzuela
- Department of Endodontics, University of Texas Health San Antonio, Texas, USA
| | - Shilpa Ganatra
- Department of Endodontics, University of Texas Health San Antonio, Texas, USA
| | - Shivani Ruparel
- Department of Endodontics, University of Texas Health San Antonio, Texas, USA
| |
Collapse
|
8
|
Guzel T, Mech K, Iwanowska M, Wroński M, Słodkowski M. Brain derived neurotrophic factor declines after complete curative resection in gastrointestinal cancer. PeerJ 2021; 9:e11718. [PMID: 34395067 PMCID: PMC8327966 DOI: 10.7717/peerj.11718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/13/2021] [Indexed: 11/20/2022] Open
Abstract
Background Brain derived neurotrophic factor (BDNF) is a neurotrophin involved in neural and metabolic diseases, but it is also one of the crucial factors in cancer development and metastases. In the current study, we investigated serum BDNF concentrations in patients that underwent surgical treatment for colorectal cancer or pancreatic cancer. Methods Serum BDNF concentrations were measured with standard enzyme-linked immunosorbent assays, before and on the third day after the operation, in 50 consecutive patients with colorectal cancer and 25 patients with pancreatic cancer (tumours in the head of pancreas). We compared pre- and postoperative BDNF levels, according to the subsequent TNM stage, histologic stage, lymph node involvement, neuro- or angio-invasion, and resection range. Results In the pancreatic cancer group, BDNF concentrations fell significantly postoperatively (p = 0.011). In patients that underwent resections, BDNF concentrations fell (p = 0.0098), but not in patients that did not undergo resections (i.e., laparotomy alone). There were significant pre- and postoperative differences in BDNF levels among patients with (p = 0.021) and without (p = 0.034) distant metastases. Significant reductions in BDNF were observed postoperatively in patients with small tumours (i.e., below the median size; p = 0.023), in patients with negative angio- or lymphatic invasion (p = 0.028, p = 0.011, respectively), and in patients with lymph node ratios above 0.17 (p = 0.043). In the colon cancer group, the serum BDNF concentrations significantly fell postoperatively in the entire group (p = 0.0076) and in subgroups of patients with or without resections (p = 0.034, p = 0.0179, respectively). Significant before-after differences were found in subgroups with angioinvasions (p = 0.050) and in those without neuroinvasions (p = 0.049). Considering the TNM stages, the postoperative BDNF concentration fell in groups with (p = 0.0218) and without (p = 0.034) distant metastases and in patients with tumours below the median size (p = 0.018). Conclusion Our results suggested that BDNF might play an important role in gastrointestinal cancer development. BDNF levels were correlated with tumour volume, and with neuro-, angio- and lymphatic invasions. In pancreatic cancer, BDNF concentrations varied according to the surgical procedure and they fell significantly after tumour resections. Thus, BDNF may serve as a potential marker of complete resections in underdiagnosed patients. However, this hypothesis requires further investigation. In contrast, no differences according to the procedure was made in patients with colon cancer.
Collapse
Affiliation(s)
- Tomasz Guzel
- Department of General, Gastroenterology and Oncologic Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Mech
- Department of General, Gastroenterology and Oncologic Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Marzena Iwanowska
- Department of Laboratory Diagnostics, Medical University of Warsaw, Warsaw, Poland
| | - Marek Wroński
- Department of General, Gastroenterology and Oncologic Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Słodkowski
- Department of General, Gastroenterology and Oncologic Surgery, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
9
|
Dornelles FML, Wagner VP, Fonseca FP, Ariotti C, Carrard VC, Vargas PA, Sánchez-Romero C, Beovide V, Bologna-Molina R, Martins MD. BDNF/TrkB/Akt Signaling Pathway Epithelial Odontogenic Tumors and Keratocyst: An Immunohistochemical Study Comparative With Dental Germs. Appl Immunohistochem Mol Morphol 2021; 29:366-373. [PMID: 32941187 DOI: 10.1097/pai.0000000000000874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Odontogenic lesions (OL) are an important group of oral and maxillofacial diseases represented by odontogenic cysts, benign, and malignant tumors. The brain-derived neurotrophic factor (BDNF)/ tropomyosin receptor kinase B (TrkB) signaling pathway has multiple biological actions and has been identified as an important pathway in the proliferation, invasion, and survival of different epithelial tumors. Its role in the development of OL, however, has so far been unexplored. Our aim was to evaluate the BDNF/TrkB/Akt/p-RPS6 signaling pathway in OL of epithelial origin. This cross-sectional study comprised 3 cases of tooth germs, 25 cases of odontogenic keratocyst (OK), 29 cases of ameloblastoma (Am), and 6 cases of ameloblastic carcinoma. Immunohistochemical staining for BDNF, TrkB, p-Akt, and p-RPS6 was performed. OLs were evaluated according to the pattern of immunohistochemical expression in epithelial cells and by semiquantitative scores that considered the intensity of staining and percentage of positive cells. BDNF stromal expression was also assessed. No significant differences were observed with respect to the percentage of positive cases for all markers. Regarding the immunoreactive scores, BDNF and p-RPS6 expressions were similar in the odontogenic epithelium of all OL. However, TrkB and p-Akt were overexpressed in OK compared with ameloblastic carcinoma. In Am, epithelial BDNF was significantly higher compared with stromal expression. In conclusion, BDNF seems to participate in the development of cystic, benign, and malignant odontogenic epithelium to similar degrees. The acquisition of the invasive or malignant phenotype in odontogenic neoplasms is not associated with alterations in the BDNF/TrkB/Akt/RPS6 axis, which could be implicated in the differentiation process.
Collapse
Affiliation(s)
- Florencia M L Dornelles
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul
- Molecular Pathology Area, School of Dentistry, Universidad de La Republica (UDELAR), Montevideo, Uruguay
| | - Vivian P Wagner
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba
| | - Felipe P Fonseca
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Carla Ariotti
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul
| | - Vinicius C Carrard
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul
| | - Pablo A Vargas
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba
- Department of Oral Pathology and Oral Biology, School of Dentistry, University of Pretoria, Pretoria, South Africa
| | - Celeste Sánchez-Romero
- Molecular Pathology Area, School of Dentistry, Universidad de La Republica (UDELAR), Montevideo, Uruguay
| | - Veronica Beovide
- Molecular Pathology Area, School of Dentistry, Universidad de La Republica (UDELAR), Montevideo, Uruguay
| | - Ronell Bologna-Molina
- Molecular Pathology Area, School of Dentistry, Universidad de La Republica (UDELAR), Montevideo, Uruguay
| | - Manoela D Martins
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba
| |
Collapse
|
10
|
Miranda-Galvis M, Loveless R, Kowalski LP, Teng Y. Impacts of Environmental Factors on Head and Neck Cancer Pathogenesis and Progression. Cells 2021; 10:cells10020389. [PMID: 33668576 PMCID: PMC7917998 DOI: 10.3390/cells10020389] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 02/08/2023] Open
Abstract
Epidemiological and clinical studies over the past two decades have provided strong evidence that genetic elements interacting with environmental components can individually and collectively influence one’s susceptibility to cancer. In addition to tumorigenic properties, numerous environmental factors, such as nutrition, chemical carcinogens, and tobacco/alcohol consumption, possess pro-invasive and pro-metastatic cancer features. In contrast to traditional cancer treatment, modern therapeutics not only take into account an individual’s genetic makeup but also consider gene–environment interactions. The current review sharpens the focus by elaborating on the impact that environmental factors have on the pathogenesis and progression of head and neck cancer and the underlying molecular mechanisms involved. Recent advances, challenges, and future perspectives in this area of research are also discussed. Inhibiting key environmental drivers of tumor progression should yield survival benefits for patients at any stage of head and neck cancer.
Collapse
Affiliation(s)
- Marisol Miranda-Galvis
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (M.M.-G.); (R.L.)
| | - Reid Loveless
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (M.M.-G.); (R.L.)
| | - Luiz Paulo Kowalski
- Department of Head and Neck Surgery and Otorhinolaryngology, A.C. Camargo Cancer Center, São Paulo 01509, Brazil;
- Head and Neck Surgery Department, Medical School, University of São Paulo, São Paulo 01509, Brazil
| | - Yong Teng
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (M.M.-G.); (R.L.)
- Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Medical Laboratory, Imaging and Radiologic Sciences, College of Allied Health, Augusta University, Augusta, GA 30912, USA
- Correspondence: ; Tel.: +1-70-6446-5611; Fax: +1-70-6721-9415
| |
Collapse
|
11
|
Ribeiro JT, Thieme S, Zettermann P, Leite AA, Zanella VG, Pilar EFS, Fonseca FP, Mesquita RA, Vargas PA, Dos Santos JN, Martins MD. Immunoexpression of BDNF, TrkB, and p75NTR receptors in peripheral neural lesions of the head and neck. J Oral Pathol Med 2020; 50:492-501. [PMID: 33222311 DOI: 10.1111/jop.13145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 10/20/2020] [Accepted: 11/11/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) and neurotrophin receptors have been recognized as fundamental regulators of normal brain development, homeostasis, and plasticity. They have also been studied in the behavior of central nervous system tumors. Here, we studied the pattern of BDNF, TrkB and p75NTR immunoexpression in peripheral benign and malignant neural lesions in head and neck. METHODS This cross-sectional analytical study included 79 cases of head and neck neural lesions. Nineteen cases of traumatic neuromas (TN), 20 cases of granular cell tumors (GCT), 16 cases of neurofibromas (NF), 20 cases of schwannomas (SC), and 4 malignant peripheral nerve sheath tumor (MPNST) were submitted to immunohistochemistry with BDNF, TrkB, and p75NTR antibodies. A semi-quantitative analysis was performed. RESULTS The analysis of BDNF demonstrated a high percentage of positive cells in TN, GCT and SC with a decrease in cases of NF and MPNST. TrkB presented a lower significant immunoexpression in GCT in relation to the TN, NF, SC, and MPNST (P < .0001); and TN showed less percentage of positive cell compared to SC (P = .0017). Regarding p75NTR, the percentage of positive cell was significantly reduced in MPNST compared GCT (P = .009), NF (P = .0138) and SC (P = .0069). Also, a decrease in TN compared to GCT (P = .007) was observed. CONCLUSIONS Our results showed the immunoreactivity of BDNF, TrkB, and p75NTR in head and neck peripheral neural lesions. Reduction of BDNF and p75NTR in MPNST might suggest down-regulation during the acquisition of malignant phenotype.
Collapse
Affiliation(s)
- Julia Turra Ribeiro
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Stéfanie Thieme
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Paula Zettermann
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Amanda Almeida Leite
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | - Virgilio Gonzales Zanella
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Head and Neck Surgery Department, Hospital Santa Rita, Complexo Hospitalar Santa Casa, Porto Alegre, Brazil
| | - Emily Ferreira Salles Pilar
- Experimental Pathology Unit, Clinics Hospital of Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Felipe Paiva Fonseca
- Department of Oral Surgery and Pathology, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Alves Mesquita
- Department of Oral Surgery and Pathology, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Pablo Agustin Vargas
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | - Jean Nunes Dos Santos
- Department of Oral Pathology, School of Dentistry, Federal University of Bahia, Salvador, Brazil
| | - Manoela Domingues Martins
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Head and Neck Surgery Department, Hospital Santa Rita, Complexo Hospitalar Santa Casa, Porto Alegre, Brazil.,Department of Oral Medicine, Porto Alegre Clinics Hospital (HCPA/UFRGS), Porto Alegre, Brazil
| |
Collapse
|
12
|
TrkB-Targeted Therapy for Mucoepidermoid Carcinoma. Biomedicines 2020; 8:biomedicines8120531. [PMID: 33255325 PMCID: PMC7759804 DOI: 10.3390/biomedicines8120531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/10/2020] [Accepted: 11/22/2020] [Indexed: 12/21/2022] Open
Abstract
The brain-derived neurotrophic factor (BDNF)/tyrosine receptor kinase B (TrkB) pathway was previously associated with key oncogenic outcomes in a number of adenocarcinomas. The aim of our study was to determine the role of this pathway in mucoepidermoid carcinoma (MEC). Three MEC cell lines (UM-HMC-2, H253 and H292) were exposed to Cisplatin, the TrkB inhibitor, ANA-12 and a combination of these drugs. Ultrastructural changes were assessed through transmission electron microscopy; scratch and Transwell assays were used to assess migration and invasion; and a clonogenic assay and spheroid-forming assay allowed assessment of survival and percentage of cancer stem cells (CSC). Changes in cell ultrastructure demonstrated Cisplatin cytotoxicity, while the effects of ANA-12 were less pronounced. Both drugs, used individually and in combination, delayed MEC cell migration, invasion and survival. ANA-12 significantly reduced the number of CSC, but the Cisplatin effect was greater, almost eliminating this cell population in all MEC cell lines. Interestingly, the spheroid forming capacity recovered, following the combination therapy, as compared to Cisplatin alone. Our studies allowed us to conclude that the TrkB inhibition, efficiently impaired MEC cell migration, invasion and survival in vitro, however, the decrease in CSC number, following the combined treatment of ANA-12 and Cisplatin, was less than that seen with Cisplatin alone; this represents a limiting factor.
Collapse
|
13
|
Thomaz A, Jaeger M, Brunetto AL, Brunetto AT, Gregianin L, de Farias CB, Ramaswamy V, Nör C, Taylor MD, Roesler R. Neurotrophin Signaling in Medulloblastoma. Cancers (Basel) 2020; 12:E2542. [PMID: 32906676 PMCID: PMC7564905 DOI: 10.3390/cancers12092542] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 12/11/2022] Open
Abstract
Neurotrophins are a family of secreted proteins that act by binding to tropomyosin receptor kinase (Trk) or p75NTR receptors to regulate nervous system development and plasticity. Increasing evidence indicates that neurotrophins and their receptors in cancer cells play a role in tumor growth and resistance to treatment. In this review, we summarize evidence indicating that neurotrophin signaling influences medulloblastoma (MB), the most common type of malignant brain cancer afflicting children. We discuss the potential of neurotrophin receptors as new therapeutic targets for the treatment of MB. Overall, activation of TrkA and TrkC types of receptors seem to promote cell death, whereas TrkB might stimulate MB growth, and TrkB inhibition displays antitumor effects. Importantly, we show analyses of the gene expression profile of neurotrophins and their receptors in MB primary tumors, which indicate, among other findings, that higher levels of NTRK1 or NTRK2 are associated with reduced overall survival (OS) of patients with SHH MB tumors.
Collapse
Affiliation(s)
- Amanda Thomaz
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, RS, Brazil
| | - Mariane Jaeger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Children’s Cancer Institute, Porto Alegre 90620-110, RS, Brazil
| | - Algemir L. Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Children’s Cancer Institute, Porto Alegre 90620-110, RS, Brazil
| | - André T. Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Children’s Cancer Institute, Porto Alegre 90620-110, RS, Brazil
| | - Lauro Gregianin
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Department of Pediatrics, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- Pediatric Oncology Service, Clinical Hospital, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Children’s Cancer Institute, Porto Alegre 90620-110, RS, Brazil
| | - Vijay Ramaswamy
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON 17-9702, Canada; (V.R.); (C.N.); (M.D.T.)
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Carolina Nör
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON 17-9702, Canada; (V.R.); (C.N.); (M.D.T.)
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Michael D. Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON 17-9702, Canada; (V.R.); (C.N.); (M.D.T.)
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, RS, Brazil
| |
Collapse
|
14
|
Moraes JKD, Wagner VP, Fonseca FP, Amaral‐Silva GKD, de Farias CB, Pilar EFS, Gregianin L, Roesler R, Vargas PA, Martins MD. Activation of BDNF/TrkB/Akt pathway is associated with aggressiveness and unfavorable survival in oral squamous cell carcinoma. Oral Dis 2019; 25:1925-1936. [DOI: 10.1111/odi.13190] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/14/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Juliana Kern de Moraes
- Department of Oral Diagnosis Piracicaba Dental School University of Campinas Piracicaba Brazil
| | - Vivian Petersen Wagner
- Department of Oral Diagnosis Piracicaba Dental School University of Campinas Piracicaba Brazil
| | - Felipe Paiva Fonseca
- Department of Oral Surgery and Pathology School of Dentistry Federal University of Minas Gerais Belo Horizonte Brazil
| | | | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory Experimental Research Center Porto Alegre Clinical Hospital Federal University of Rio Grande do Sul Porto Alegre Brazil
- Children’s Cancer Institute Porto Alegre Brazil
| | - Emily Ferreira Salles Pilar
- Experimental Pathology Unit Clinics Hospital of Porto Alegre Federal University of Rio Grande do Sul Porto Alegre Brazil
| | - Lauro Gregianin
- Children’s Cancer Institute Porto Alegre Brazil
- Pediatric Oncology Service Clinical Hospital Federal University of Rio Grande do Sul Porto Alegre Brazil
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory Experimental Research Center Porto Alegre Clinical Hospital Federal University of Rio Grande do Sul Porto Alegre Brazil
- Children’s Cancer Institute Porto Alegre Brazil
- Department of Pharmacology Institute for Basic Health Sciences Federal University of Rio Grande do Sul Porto Alegre Brazil
| | - Pablo Agustin Vargas
- Department of Oral Diagnosis Piracicaba Dental School University of Campinas Piracicaba Brazil
| | - Manoela Domingues Martins
- Department of Oral Diagnosis Piracicaba Dental School University of Campinas Piracicaba Brazil
- Experimental Pathology Unit Clinics Hospital of Porto Alegre Federal University of Rio Grande do Sul Porto Alegre Brazil
- Department of Oral Pathology School of Dentistry Federal University of Rio Grande do Sul Porto Alegre Brazil
| |
Collapse
|
15
|
Zhou Y, Sinha S, Schwartz JL, Adami GR. A subtype of oral, laryngeal, esophageal, and lung, squamous cell carcinoma with high levels of TrkB-T1 neurotrophin receptor mRNA. BMC Cancer 2019; 19:607. [PMID: 31221127 PMCID: PMC6587277 DOI: 10.1186/s12885-019-5789-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 05/31/2019] [Indexed: 01/17/2023] Open
Abstract
Background The NTRK2 genetic locus encodes neurotrophin membrane receptors that play an important role in normal neural tissue plasticity, growth, and survival. One NTRK2-encoded protein is TrkB-FL, which can regulate multiple pathways relevant to cancer. A second NTRK2 gene mRNA isoform encodes TrkB-T1, a receptor that has a different cytoplasmic domain encoded in a mRNA with a unique 3′ terminal exon. Method Tumors from The Cancer Genome Atlas (TCGA) and other studies were classified according to the expression of a single form of NTRK2 mRNA, TrkB-T1, identified by its unique 3′ terminal exon. Analysis of differentially expressed genes in TrkB-T1 high expressers was done to determine if tumors enriched for TrkB-T1 mRNA were a uniform group independent of anatomic site. Results The mRNA for TrkB-T1 is the most abundant NTRK2 gene mRNA in all squamous cell carcinomas (SCCs) in the TCGA database. Comparison of larynx SCC high TrkB-T1 RNA expressers to low expressers (n = 96) revealed gene expression differences consistent with the high TrkB-T1 tumors being more neural-like. The upregulated genes in the TrkB-T1 RNA high expressers also showed enrichment of pathways involved in retinol metabolism, hedgehog signaling, and the Nfe2l2 response, among other pathways. An examination of oral, esophagus, and lung SCCs (n = 284, 97, 501) showed induction of the same pathways among tumors that expressed high levels of TrkB-T1 mRNA. Proteins associated with regulation of the sonic hedgehog pathway, and the Nfe2l2 response, Tp63, and Keap1 and p62/SQSTM1 proteins, showed differential expression in larynx, oral and lung high TrkB1-T1 expresser SCCs. Unexpectantly, the relationship of high level TrkB-T1 expression to patient outcomes was SCC anatomic site specific. High TrkB-T1 mRNA levels in laryngeal SCC correlated with poor survival, but the opposite was true for lung SCC. This may be because pathways enriched in the TrkB high expressers, like those involving oncogenes NFE2L2, PIK3CA, and SOX2, are known to have SCC anatomic site-specific effects on progression. Conclusions High level TrkB-T1 mRNA is a marker of a distinct SCC subtype enriched for at least 3 pathways relevant to tumor progression: Nfe2l2 response, retinol metabolism, and hedgehog signaling. Electronic supplementary material The online version of this article (10.1186/s12885-019-5789-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yalu Zhou
- Department of Oral Medicine & Diagnostic Sciences, Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Chicago, IL, 60612, USA
| | - Saurabh Sinha
- Department of Computer Science and Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 2122 Siebel Center, 201N. Goodwin Ave, Urbana, IL, USA
| | - Joel L Schwartz
- Department of Oral Medicine & Diagnostic Sciences, Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Chicago, IL, 60612, USA
| | - Guy R Adami
- Department of Oral Medicine & Diagnostic Sciences, Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Chicago, IL, 60612, USA.
| |
Collapse
|
16
|
Geng F, Wang Q, Li C, Liu J, Zhang D, Zhang S, Pan Y. Identification of Potential Candidate Genes of Oral Cancer in Response to Chronic Infection With Porphyromonas gingivalis Using Bioinformatical Analyses. Front Oncol 2019; 9:91. [PMID: 30847302 PMCID: PMC6394248 DOI: 10.3389/fonc.2019.00091] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/31/2019] [Indexed: 12/27/2022] Open
Abstract
Recent investigations revealed the relationship between chronic periodontitis, Porphyromonas gingivalis and cancer. However, host genes that change in response to chronic infection with P. gingivalis and may contribute to oral cancer have remained largely unknown. In the present study, we aimed to comprehensively analyze microarray data obtained from the chronic infection model of immortalized oral epithelial cells that were persistently exposed to P. gingivalis for 15 weeks. Using protein-protein interaction (PPI) networks and Ingenuity Pathway Analysis (IPA), we identified hub genes, major biological processes, upstream regulators and genes potentially involved in tumor initiation and progression. We also validated gene expression and demonstrated genetic alteration of hub genes from clinical samples of head and neck cancer. Overall, we utilized bioinformatical methods to identify IL6, STAT1, LYN, BDNF, C3, CD274, PDCD1LG2, and CXCL10 as potential candidate genes that might facilitate the prevention and treatment of oral squamous cell carcinoma (OSCC), the most common type of head and neck squamous cell carcinoma (HNSCC).
Collapse
Affiliation(s)
- Fengxue Geng
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Qingxuan Wang
- State Key Laboratory of Oral Disease, School of Stomatology, Sichuan University, Chengdu, China
| | - Chen Li
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Junchao Liu
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Dongmei Zhang
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Shuwei Zhang
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Yaping Pan
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
17
|
Brain-Derived Neurotrophin and TrkB in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2019; 20:ijms20020272. [PMID: 30641914 PMCID: PMC6359060 DOI: 10.3390/ijms20020272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/03/2019] [Accepted: 01/05/2019] [Indexed: 12/17/2022] Open
Abstract
We hypothesized that in head and neck squamous cell carcinoma (HNSCC), the neurotrophin brain-derived neurotrophic factor (BDNF) and its high affinity receptor TrkB regulate tumor cell survival, invasion, and therapy resistance. We used in situ hybridization for BDNF and immunohistochemistry (IHC) for TrkB in 131 HNSCC samples. Brain-derived neurotrophic factor was highly expressed in normal mucosa in HNSCC tissue and in cell lines, whereas only 42.74% of HNSCC tissue was TrkB+. One fourth of HNSCC cases was human papilloma virus (HPV)− positive, but the TrkB IHC frequency was not different in HPV-positive (HPV+) and negative cases. The UPCI-SCC090 cells expressed constitutive levels of TrkB. Transforming-growth-factor-β1 (1 ng/mL TGF-β1) induced TrkB in a subpopulation of SCC-25 cells. A single 10-µg/mL mitomycin C treatment in UPCI-SCC090 cells induced apoptosis and BDNF did not rescue them. The SCC-25 cells were resistant to the MMC treatment, and their growth decreased after TGF-β1 treatment, but was restored by BDNF if it followed TGF-β1. Taken together, BDNF might be ineffective in HPV+ HNSCC patients. In HPV− HNSCC patients, tumor cells did not die after chemotherapeutic challenge and BDNF with TGF-β1 could improve tumor cell survival and contribute to worse patient prognosis.
Collapse
|
18
|
A gene expression profile associated with perineural invasion identifies a subset of HNSCC at risk of post-surgical recurrence. Oral Oncol 2018; 86:53-60. [PMID: 30409320 DOI: 10.1016/j.oraloncology.2018.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/03/2018] [Accepted: 09/08/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Perineural invasion (PNI) is a common histopathological finding in head and neck squamous cell carcinoma (HNSCC). We aimed to explore the molecular mechanisms involved in PNI and the role of PNI as an aggressive pathological feature. MATERIALS AND METHODS We used data from The Cancer Genome Atlas (TCGA) to relate the histological presentation of 528 HNSCC tumours to clinical, whole genome expression and proteomic data. RESULTS We identified a specific gene expression profile highly enriched in genes related to muscle differentiation/function and associated with PNI in HNSCC. We explored the clinical significance of this profile in three groups of HNSCC tumours stratified according to their low, intermediate or high risk of post-surgical recurrence. In the "low-risk" group, defined as tumours indicated for surgery without adjuvant radiotherapy (n = 51), the PNI gene expression profile identified a subset of HNSCC with a higher rate of tumour recurrence, decreased Disease Free Survival (DFS) and Overall Survival (OS) (p < 0.0001 and p = 0.0064, respectively). Comparable results were observed in "intermediate risk" tumours (n = 112), but not in "high risk" tumours (n = 147), whose prognosis was driven by the presence of lymph node extracapsular spread. Finally, we found that tumours with histological PNI had increased activation levels of the Akt/PKB and mTOR (mammalian Target Of Rapamycin) kinases. CONCLUSION PNI is characterised by a specific gene expression profile and distinct biological characteristics. Analysing the PNI gene expression profile holds potential for therapeutic stratification of HNSCC and identification of a subset of tumours with a higher risk of recurrence.
Collapse
|
19
|
Baumeister P, Welz C, Jacobi C, Reiter M. Is Perineural Invasion of Head and Neck Squamous Cell Carcinomas Linked to Tobacco Consumption? Otolaryngol Head Neck Surg 2018; 158:878-881. [PMID: 29293403 DOI: 10.1177/0194599817750354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Perineural invasion (PNI) is an underrecognized path of cancer spread, and its causes and mechanisms are poorly understood. Recent research indicates a mutual attraction of neuronal and cancer cells, largely dependent on neurotrophic factors and their receptors. Interestingly, the release of neurotrophic factors occurs upon cigarette smoke/nicotine exposure in a dose-dependent manner, and serum levels correlate with current smoking, number of smoking years, and smoking severity. Among cell types capable of neurotrophic factors secretion are lung and oral fibroblasts. In our study of 178 patients with head and neck squamous cell carcinoma, tumors of current and former smokers showed PNI significantly more often than tumors of never smokers. Moreover, PNI was a marker for aggressive tumor growth. Surprisingly, PNI was more significant for survival than p16 status. Our study warrants further research on PNI in head and neck squamous cell carcinoma with special emphasis on the impact of tobacco consumption to identify suitable candidates for therapeutic interventions.
Collapse
Affiliation(s)
- Philipp Baumeister
- 1 Department of Otorhinolaryngology-Head and Neck Surgery, Ludwig-Maximilians-University, Munich, Germany.,2 Clinical Cooperation Group-Personalized Radiotherapy in Head and Neck Cancer, Helmholtz Center, Munich, Germany
| | - Christian Welz
- 3 Department of Otorhinolaryngology-Head and Neck Surgery, Georg-August-University, Göttingen, Germany
| | - Christian Jacobi
- 1 Department of Otorhinolaryngology-Head and Neck Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - Maximilian Reiter
- 1 Department of Otorhinolaryngology-Head and Neck Surgery, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|