1
|
Kudva A, Srikanth G, Singh A, Chitra A, Suryanarayan RK, Francis M. Reconstruction of Maxillary Defects Using Virtual Surgical Planning and Additive Manufacturing Technology: A Tertiary Care Centre Experience. J Maxillofac Oral Surg 2024; 23:644-652. [PMID: 38911428 PMCID: PMC11190103 DOI: 10.1007/s12663-023-02005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 08/16/2023] [Indexed: 06/25/2024] Open
Abstract
Introduction Maxillary reconstruction is often a challenging task for the surgeons because of the complex anatomy. However, with the advances in virtual surgical planning (VSP) and 3D printing technology there is a new avenue for the surgeons which offers a suitable alternative to conventional flap-based reconstructions. Patients and Methods In this article, we have described 4 case scenarios which were managed with the help of VSP and additive manufacturing technology for complex maxillary reconstruction procedures. Use of the technologies aided the clinician in achieving optimal outcomes with regards to form, function and esthetics. Discussion Virtual surgical planning (VSP) has gained a lot of impetus in past 1 decade. These aides the surgeon in determining the extent of disease and also carry out the treatment planning. In addition to VSP, the concept of additive manufacturing provides a viable alternative to the conventional reconstruction modalities for maxillary defect rehabilitation. Increased accuracy, rehabilitation of normal anatomical configuration, appropriate dental rehabilitation, decreased intra-operative time and post-operative complications are some of the advantages. In addition, patient-specific implants eliminate the need for a separate donor site. Apart from the treatment of pathologies, they also can be used for reconstruction of post-traumatic defect, where endosteal implant placement is not possible. Conclusion These modalities show promising results for reconstruction of complex maxillary defects.
Collapse
Affiliation(s)
- Adarsh Kudva
- Department of Oral and Maxillofacial Surgery, Manipal College of Dental Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - G. Srikanth
- Department of Oral and Maxillofacial Surgery, Manipal College of Dental Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Anupam Singh
- Department of Oral and Maxillofacial Surgery, Manipal College of Dental Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - A. Chitra
- Department of Oral and Maxillofacial Surgery, Manipal College of Dental Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Ramya K. Suryanarayan
- Department of Oral and Maxillofacial Surgery, Manipal College of Dental Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Mugdha Francis
- Department of Oral and Maxillofacial Surgery, Manipal College of Dental Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| |
Collapse
|
2
|
Ali A, Morris JM, Decker SJ, Huang YH, Wake N, Rybicki FJ, Ballard DH. Clinical situations for which 3D printing is considered an appropriate representation or extension of data contained in a medical imaging examination: neurosurgical and otolaryngologic conditions. 3D Print Med 2023; 9:33. [PMID: 38008795 PMCID: PMC10680204 DOI: 10.1186/s41205-023-00192-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/03/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND Medical three dimensional (3D) printing is performed for neurosurgical and otolaryngologic conditions, but without evidence-based guidance on clinical appropriateness. A writing group composed of the Radiological Society of North America (RSNA) Special Interest Group on 3D Printing (SIG) provides appropriateness recommendations for neurologic 3D printing conditions. METHODS A structured literature search was conducted to identify all relevant articles using 3D printing technology associated with neurologic and otolaryngologic conditions. Each study was vetted by the authors and strength of evidence was assessed according to published guidelines. RESULTS Evidence-based recommendations for when 3D printing is appropriate are provided for diseases of the calvaria and skull base, brain tumors and cerebrovascular disease. Recommendations are provided in accordance with strength of evidence of publications corresponding to each neurologic condition combined with expert opinion from members of the 3D printing SIG. CONCLUSIONS This consensus guidance document, created by the members of the 3D printing SIG, provides a reference for clinical standards of 3D printing for neurologic conditions.
Collapse
Affiliation(s)
- Arafat Ali
- Department of Radiology, Henry Ford Health, Detroit, MI, USA
| | | | - Summer J Decker
- Division of Imaging Research and Applied Anatomy, Department of Radiology, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Yu-Hui Huang
- Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Nicole Wake
- Department of Research and Scientific Affairs, GE HealthCare, New York, NY, USA
- Center for Advanced Imaging Innovation and Research, Department of Radiology, NYU Langone Health, New York, NY, USA
| | - Frank J Rybicki
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David H Ballard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
3
|
Wu Y, Liu J, Kang L, Tian J, Zhang X, Hu J, Huang Y, Liu F, Wang H, Wu Z. An overview of 3D printed metal implants in orthopedic applications: Present and future perspectives. Heliyon 2023; 9:e17718. [PMID: 37456029 PMCID: PMC10344715 DOI: 10.1016/j.heliyon.2023.e17718] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
With the ability to produce components with complex and precise structures, additive manufacturing or 3D printing techniques are now widely applied in both industry and consumer markets. The emergence of tissue engineering has facilitated the application of 3D printing in the field of biomedical implants. 3D printed implants with proper structural design can not only eliminate the stress shielding effect but also improve in vivo biocompatibility and functionality. By combining medical images derived from technologies such as X-ray scanning, CT, MRI, or ultrasonic scanning, 3D printing can be used to create patient-specific implants with almost the same anatomical structures as the injured tissues. Numerous clinical trials have already been conducted with customized implants. However, the limited availability of raw materials for printing and a lack of guidance from related regulations or laws may impede the development of 3D printing in medical implants. This review provides information on the current state of 3D printing techniques in orthopedic implant applications. The current challenges and future perspectives are also included.
Collapse
Affiliation(s)
- Yuanhao Wu
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jieying Liu
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Lin Kang
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jingjing Tian
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xueyi Zhang
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jin Hu
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yue Huang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Fuze Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hai Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhihong Wu
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Bone and Joint Disease, Beijing, China
| |
Collapse
|
4
|
Reconstruction of maxillofacial bone defects using patient-specific long-lasting titanium implants. Sci Rep 2022; 12:7538. [PMID: 35534499 PMCID: PMC9085892 DOI: 10.1038/s41598-022-11200-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/13/2022] [Indexed: 11/08/2022] Open
Abstract
The objective of this retrospective study is to verify the effectiveness and safety of patient-specific titanium implants on maxillofacial bones, with a long-term follow-up. Total 16 patients with various maxillofacial defects underwent reconstruction using patient-specific titanium implants. Titanium implants, manufactured by electron beam melting, selective laser sintering, or milling, were inserted into the maxilla, mandible, or zygoma. Long-term follow‐up (36.7 ± 20.1 months) was conducted after the surgery. Bone fusion of the titanium implant body, postoperative infection, implant malunion, functional results, patient satisfaction, subsidence, osteolysis around the implants, and complications were recorded and analyzed at the last follow-up. Of the 28 implants, only one failed to unite with the bone; therefore, revision surgery was performed. No osteolysis or subsidence around the titanium implants nor adverse events were observed; the mean VAS score for satisfaction was 9. All patients enrolled in this trial were esthetically and functionally satisfied with their surgical results, and fixation failure and esthetic dissatisfaction complications were well resolved. Patient-specific titanium showed satisfactory outcomes when used to treat various oral and maxillofacial defects. A 3D printed titanium implant can be effectively used in the reconstruction of the zygoma and mandible instead of autogenous bone without donor site morbidity.
Collapse
|
5
|
Dholam KP, Gurav S, Singh G, Chatterjee A. Prosthetic management of a midfacial defect. J Cancer Res Ther 2022; 18:853-856. [PMID: 35900575 DOI: 10.4103/jcrt.jcrt_1141_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Surgical ablation of a large tumor creates a defect which is technically difficult to reconstruct. Radiated tissue bed poses a challenge to reconstruction and is complicated in presence of osteoradionecrosis. This report describes a case of a 62 year old gentleman with oral cancer who underwent surgery and radiotherapy twice. He developed an orocutaneous defect (OCD) following surgery and radiotherapy. Prosthetic rehabilitation of OCD was done. Full facial impression with irreversible hydrocolloid was made and wax sculpture made on the model obtained. Standard laboratory steps were followed for mould fabrication and maxillofacial silicone was used to fabricate the prosthesis. It was retained to the spectacle with silicone adhesives. The silicone facial prosthesis provided to the patient was easy to use, covered the defect and improved the quality of life of the patient.
Collapse
Affiliation(s)
- K P Dholam
- Department of Dental and Prosthetic Surgery, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Sandeep Gurav
- Department of Dental and Prosthetic Surgery, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Gurkaranpreet Singh
- Department of Dental and Prosthetic Surgery, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Aishwarya Chatterjee
- Department of Dental and Prosthetic Surgery, Tata Memorial Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
6
|
Garot C, Bettega G, Picart C. Additive Manufacturing of Material Scaffolds for Bone Regeneration: Toward Application in the Clinics. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2006967. [PMID: 33531885 PMCID: PMC7116655 DOI: 10.1002/adfm.202006967] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Indexed: 05/07/2023]
Abstract
Additive manufacturing (AM) allows the fabrication of customized bone scaffolds in terms of shape, pore size, material type and mechanical properties. Combined with the possibility to obtain a precise 3D image of the bone defects using computed tomography or magnetic resonance imaging, it is now possible to manufacture implants for patient-specific bone regeneration. This paper reviews the state-of-the-art of the different materials and AM techniques used for the fabrication of 3D-printed scaffolds in the field of bone tissue engineering. Their advantages and drawbacks are highlighted. For materials, specific criteria, were extracted from a literature study: biomimetism to native bone, mechanical properties, biodegradability, ability to be imaged (implantation and follow-up period), histological performances and sterilization process. AM techniques can be classified in three major categories: extrusion-based, powder-based and liquid-base. Their price, ease of use and space requirement are analyzed. Different combinations of materials/AM techniques appear to be the most relevant depending on the targeted clinical applications (implantation site, presence of mechanical constraints, temporary or permanent implant). Finally, some barriers impeding the translation to human clinics are identified, notably the sterilization process.
Collapse
Affiliation(s)
- Charlotte Garot
- CEA, Université de Grenoble Alpes, CNRS, ERL 5000, IRIG Institute, 17 rue des Martyrs, F-38054, Grenoble, France
- CNRS and Grenoble Institute of Engineering, UMR 5628, LMGP, 3 parvis Louis Néel F-38016 Grenoble, France
| | - Georges Bettega
- Service de chirurgie maxillo-faciale, Centre Hospitalier Annecy-Genevois, 1 avenue de l’hôpital, F-74370 Epagny Metz-Tessy, France
- INSERM U1209, Institut Albert Bonniot, F-38000 Grenoble, France
| | - Catherine Picart
- CEA, Université de Grenoble Alpes, CNRS, ERL 5000, IRIG Institute, 17 rue des Martyrs, F-38054, Grenoble, France
- CNRS and Grenoble Institute of Engineering, UMR 5628, LMGP, 3 parvis Louis Néel F-38016 Grenoble, France
| |
Collapse
|
7
|
Tian Y, Chen C, Xu X, Wang J, Hou X, Li K, Lu X, Shi H, Lee ES, Jiang HB. A Review of 3D Printing in Dentistry: Technologies, Affecting Factors, and Applications. SCANNING 2021; 2021:9950131. [PMID: 34367410 PMCID: PMC8313360 DOI: 10.1155/2021/9950131] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/20/2021] [Accepted: 06/24/2021] [Indexed: 05/14/2023]
Abstract
Three-dimensional (3D) printing technologies are advanced manufacturing technologies based on computer-aided design digital models to create personalized 3D objects automatically. They have been widely used in the industry, design, engineering, and manufacturing fields for nearly 30 years. Three-dimensional printing has many advantages in process engineering, with applications in dentistry ranging from the field of prosthodontics, oral and maxillofacial surgery, and oral implantology to orthodontics, endodontics, and periodontology. This review provides a practical and scientific overview of 3D printing technologies. First, it introduces current 3D printing technologies, including powder bed fusion, photopolymerization molding, and fused deposition modeling. Additionally, it introduces various factors affecting 3D printing metrics, such as mechanical properties and accuracy. The final section presents a summary of the clinical applications of 3D printing in dentistry, including manufacturing working models and main applications in the fields of prosthodontics, oral and maxillofacial surgery, and oral implantology. The 3D printing technologies have the advantages of high material utilization and the ability to manufacture a single complex geometry; nevertheless, they have the disadvantages of high cost and time-consuming postprocessing. The development of new materials and technologies will be the future trend of 3D printing in dentistry, and there is no denying that 3D printing will have a bright future.
Collapse
Affiliation(s)
- Yueyi Tian
- The Conversationalist Club, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China
| | - ChunXu Chen
- The Conversationalist Club, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China
| | - Xiaotong Xu
- The Conversationalist Club, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China
| | - Jiayin Wang
- The Conversationalist Club, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China
| | - Xingyu Hou
- The Conversationalist Club, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China
| | - Kelun Li
- The Conversationalist Club, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China
| | - Xinyue Lu
- The Conversationalist Club, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China
| | - HaoYu Shi
- The Conversationalist Club, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China
| | - Eui-Seok Lee
- Department of Oral and Maxillofacial Surgery, Graduate School of Clinical Dentistry, Korea University, Seoul 08308, Republic of Korea
| | - Heng Bo Jiang
- The Conversationalist Club, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China
| |
Collapse
|
8
|
Powell SK, Cruz RLJ, Ross MT, Woodruff MA. Past, Present, and Future of Soft-Tissue Prosthetics: Advanced Polymers and Advanced Manufacturing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001122. [PMID: 32909302 DOI: 10.1002/adma.202001122] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Millions of people worldwide experience disfigurement due to cancers, congenital defects, or trauma, leading to significant psychological, social, and economic disadvantage. Prosthetics aim to reduce their suffering by restoring aesthetics and function using synthetic materials that mimic the characteristics of native tissue. In the 1900s, natural materials used for thousands of years in prosthetics were replaced by synthetic polymers bringing about significant improvements in fabrication and greater realism and utility. These traditional methods have now been disrupted by the advanced manufacturing revolution, radically changing the materials, methods, and nature of prosthetics. In this report, traditional synthetic polymers and advanced prosthetic materials and manufacturing techniques are discussed, including a focus on prosthetic material degradation. New manufacturing approaches and future technological developments are also discussed in the context of specific tissues requiring aesthetic restoration, such as ear, nose, face, eye, breast, and hand. As advanced manufacturing moves from research into clinical practice, prosthetics can begin new age to significantly improve the quality of life for those suffering tissue loss or disfigurement.
Collapse
Affiliation(s)
- Sean K Powell
- School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Rena L J Cruz
- School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Maureen T Ross
- School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Maria A Woodruff
- School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| |
Collapse
|
9
|
Park SM, Park JM, Kim SK, Heo SJ, Koak JY. Flexural Strength of 3D-Printing Resin Materials for Provisional Fixed Dental Prostheses. MATERIALS 2020; 13:ma13183970. [PMID: 32911702 PMCID: PMC7559938 DOI: 10.3390/ma13183970] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 11/16/2022]
Abstract
The clinical application of 3D-printed provisional restorations is increasing due to expansion of intraoral scanners, easy dental computer-aided design (CAD) software, and improved 3D printing speed. This study compared flexural strength of 3D-printed three-unit fixed dental prostheses with that of conventionally fabricated and milled restorations. A metal jig of two abutments and pontic space and an indenter for flexural strength measurement were fabricated. A three-unit fixed dental prosthesis was designed and manufactured using three additive manufacturing technologies, with subtractive manufacturing and a conventional method as controls. Digital light processing (DLP) group specimens were prepared from a polymethyl methacrylate (PMMA)-based resin and printed with a DLP printer. Stereolithography (SLA) group specimens were prepared from PMMA-based resin and printed with an SLA printer, and fused deposition modeling (FDM) group specimens were from a polylactic acid-based resin and printed with an FDM printer. Flexural strength was investigated using a universal testing machine, and the results were statistically analyzed. DLP and SLA groups had significantly higher flexural strength than the conventional group (p < 0.001). No significant difference was observed in flexural strength between DLP and SLA groups. The FDM group showed only dents but no fracture. The results of this study suggest that provisional restorations fabricated by DLP and SLA technologies provide adequate flexural strength for dental use.
Collapse
Affiliation(s)
- Sang-Mo Park
- Department of Prosthodontics and Dental Research Institute, Seoul National University Dental Hospital, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea; (S.-M.P.); (S.-J.H.); (J.-Y.K.)
| | - Ji-Man Park
- Department of Prosthodontics, Yonsei University College of Dentistry, 250 Seongsanno, Seodaemun-gu, Seoul 03722, Korea;
| | - Seong-Kyun Kim
- Department of Prosthodontics and Dental Research Institute, Seoul National University Dental Hospital, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea; (S.-M.P.); (S.-J.H.); (J.-Y.K.)
- Correspondence: ; Tel.: +82-2-2072-2661
| | - Seong-Joo Heo
- Department of Prosthodontics and Dental Research Institute, Seoul National University Dental Hospital, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea; (S.-M.P.); (S.-J.H.); (J.-Y.K.)
| | - Jai-Young Koak
- Department of Prosthodontics and Dental Research Institute, Seoul National University Dental Hospital, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea; (S.-M.P.); (S.-J.H.); (J.-Y.K.)
| |
Collapse
|
10
|
Mangal U, Min YJ, Seo JY, Kim DE, Cha JY, Lee KJ, Kwon JS, Choi SH. Changes in tribological and antibacterial properties of poly(methyl methacrylate)-based 3D-printed intra-oral appliances by incorporating nanodiamonds. J Mech Behav Biomed Mater 2020; 110:103992. [PMID: 32750663 DOI: 10.1016/j.jmbbm.2020.103992] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 01/14/2023]
Abstract
It is essential for 3D-printed intra-oral appliances to be able to withstand the mechanical and microbial insult existent in the harsh environment of the oral cavity. Poly(methyl methacrylate) (PMMA)-based appliances are widely used in dentistry. Hence, the present study aimed to evaluate the role of nanodiamonds (NDs) as fillers to enhance the resistance to friction and wear. Using a solution-based mixing technique, 0.1 wt% ND was incorporated into the PMMA, and specimens were 3D-printed for tribological and bacterial analysis. The control specimens without ND fillers were tested against specimens with both amine-functionalized NDs (A-ND) and pure non-functionalized NDs (ND). The surface hardness test revealed a statistically significant increase in the Vickers micro-hardness (p < 0.001) in the nanocomposite groups. There was a significant reduction in the coefficient of friction (COF) (p < 0.01) in both the ND and A-ND nanocomposites compared to the stainless steel (SS) counter surfaces. However, for titanium (Ti)-based specimens, the COF of the control group was similar to that of A-ND but lower than that of ND. The wear resistance evaluation revealed that both the ND and A-ND groups displayed enhanced resistance to surface loss in comparison to the controls for both SS and Ti counter-surfaces (p < 0.001). Furthermore, both A-ND and ND exhibited significantly enhanced resistance to the formation of Streptococcus mutans biofilms after 48 h (p < 0.01) compared to the control group. Hence, we concluded that the addition of 0.1 wt% ND in the PMMA-based resin for 3D printing resulted in significant improvement in properties such as COF, wear resistance, and resistance to S. mutans, without any notable impact associated with the functionalization of the NDs.
Collapse
Affiliation(s)
- Utkarsh Mangal
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - You Jin Min
- Department of Mechanical Engineering, Yonsei University College of Engineering, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ji-Young Seo
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Dae-Eun Kim
- Department of Mechanical Engineering, Yonsei University College of Engineering, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jung-Yul Cha
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kee-Joon Lee
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; BK21 PLUS Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Sung-Hwan Choi
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; BK21 PLUS Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
11
|
Mommaerts MY. Reconstruction of a Subtotal Maxillectomy Defect Using a Customized Titanium Implant in a 4-Year-Old Child: An 8-Year Follow-Up Report. Front Surg 2020; 7:28. [PMID: 32582759 PMCID: PMC7280476 DOI: 10.3389/fsurg.2020.00028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/23/2020] [Indexed: 11/13/2022] Open
Abstract
Condition: This case report demonstrates the use of alloplastic reconstruction in young children. Method: A three-dimensionally printed titanium implant was used to reconstruct a subtotal maxillectomy defect in a 4-year-old child. Results: We report an 8-year follow-up. The endoprosthesis was split at the midline to address transverse growth. The main finding is that the stigma surrounding resection and surgical reconstruction in pre-adolescents can be prevented by the use of alloplastic reconstruction based on titanium osseointegration. An additional finding is that shear forces should be prevented at the insertion points of the fixation screws in the facial walls by providing a vertical support for the maxillary/palatal shelves. Lastly, transverse maxillary growth in the circumferential sutures and functional matrix was not hampered by splitting the endo- and exoprostheses in the middle (where the mid-palatal suture would normally be located). Conclusion: Alloplastic reconstruction of maxillectomy defects in childhood can offer a viable temporary solution.
Collapse
|
12
|
Hackett S, El-Wazani B, Butterworth C. Zygomatic implant-based rehabilitation for patients with maxillary and mid-facial oncology defects: A review. Oral Dis 2020; 27:27-41. [PMID: 32048429 DOI: 10.1111/odi.13305] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVES This literature review reports the current evidence for the use of zygomatic implants in head and neck oncology patients for the prosthetic rehabilitation of defects of the mid-face and maxilla. METHODS MEDLINE, Embase and Cochrane databases were searched using strict search terms. Two independent reviewers reviewed the articles and applied inclusion and exclusion criteria. RESULTS Literature search revealed 437 articles, and following application of the inclusion criteria, 32 articles were included for analysis. Overall survival rates of 77%-100% were reported with few complications, although only four centres presented data on 20 or more patients. Primary implant placement at time of resective surgery has been shown to be an effective means of accelerating rehabilitation along with early loading protocols. The role of radiotherapy in implant failure has not been fully elucidated, and it is clear that zygomatic implants can be successfully used in the irradiated patient. Providing support for maxillary obturators was the most common use reported with both splinted and unsplinted implants. CONCLUSIONS Zygomatic implants provide remote anchorage for a variety of oral and facial prostheses that contribute to the improved function and quality of life for patients being treated for maxillary and mid-facial tumours.
Collapse
Affiliation(s)
- Stephanie Hackett
- Department of Maxillofacial Prosthodontics, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Basma El-Wazani
- Department of Maxillofacial Prosthodontics, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Chris Butterworth
- Department of Maxillofacial Prosthodontics, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
13
|
Borghi A, Ruggiero F, Tenhagen M, Schievano S, Ponniah A, Dunaway D, O'Hara J, Ong J, Britto JA. Design and manufacturing of a patient-specific nasal implant for congenital arhinia: Case report. JPRAS Open 2019; 21:28-34. [PMID: 32158883 PMCID: PMC7061611 DOI: 10.1016/j.jpra.2019.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/23/2019] [Indexed: 11/25/2022] Open
Abstract
Arhinia (congenital absence of the nose) is a congenital rare disease, which has been reported in less than 60 cases in the literature. It consists of the absence of external nose, nasal cavities and olfactory apparatus and is generally associated with midline defects, microphthalmia, blepharophimosis and hypotelorism. Aesthetic problems as well as associated functional anomalies can potentially impact on the development and interpersonal relationships of the child at a later stage in life. Arhinia requires extensive management in early life in order to ensure airway patency and protection by means of tracheostomy, and to allow adequate pharyngeal and feeding function to the child. Aesthetic issues are managed with reconstructive surgery or an external prosthesis. There is no previous description in Literature of internal prosthetic devices used to sequentially shape soft tissues in complex reconstruction. We present an example of design and manufacturing of a bespoke nose implant produced by means of 3D printing and directly assessed on-table by means of 3D surface scanning.
Collapse
Affiliation(s)
- Alessandro Borghi
- Developmental Biology and Cancer Programme, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK.,Craniofacial Unit, Great Ormond Street Hospital, Great Ormond Street, London WC1N 1JH, UK
| | - Federica Ruggiero
- Craniofacial Unit, Great Ormond Street Hospital, Great Ormond Street, London WC1N 1JH, UK
| | - Maik Tenhagen
- Developmental Biology and Cancer Programme, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK.,Craniofacial Unit, Great Ormond Street Hospital, Great Ormond Street, London WC1N 1JH, UK
| | - Silvia Schievano
- Developmental Biology and Cancer Programme, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK.,Craniofacial Unit, Great Ormond Street Hospital, Great Ormond Street, London WC1N 1JH, UK
| | - Allan Ponniah
- Department of Plastic Surgery, Royal Free Hospital, Pond Street, London NW3 2QG. UK
| | - David Dunaway
- Developmental Biology and Cancer Programme, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK.,Craniofacial Unit, Great Ormond Street Hospital, Great Ormond Street, London WC1N 1JH, UK
| | - Justine O'Hara
- Craniofacial Unit, Great Ormond Street Hospital, Great Ormond Street, London WC1N 1JH, UK
| | - Juling Ong
- Craniofacial Unit, Great Ormond Street Hospital, Great Ormond Street, London WC1N 1JH, UK
| | | |
Collapse
|
14
|
Vanison C, Beckmann N, Smith A. Recent advances in lip reconstruction. Curr Opin Otolaryngol Head Neck Surg 2019; 27:219-226. [DOI: 10.1097/moo.0000000000000531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Park JM, Ahn JS, Cha HS, Lee JH. Wear Resistance of 3D Printing Resin Material Opposing Zirconia and Metal Antagonists. MATERIALS 2018; 11:ma11061043. [PMID: 29925763 PMCID: PMC6025067 DOI: 10.3390/ma11061043] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 11/27/2022]
Abstract
3D printing offers many advantages in dental prosthesis manufacturing. This study evaluated the wear resistance of 3D printing resin material compared with milling and conventional resin materials. Sixty substrate specimens were prepared with three types of resin materials: 3D printed resin, milled resin, and self-cured resin. The 3D printed specimens were printed at a build angle of 0° and 100 μm layer thickness by digital light processing 3D printing. Two kinds of abraders were made of zirconia and CoCr alloy. The specimens were loaded at 5 kg for 30,000 chewing cycles with vertical and horizontal movements under thermocycling condition. The 3D printed resin did not show significant difference in the maximal depth loss or the volume loss of wear compared to the milled and the self-cured resins. No significant difference was revealed depending on the abraders in the maximal depth loss or the volume loss of wear. In SEM views, the 3D printed resin showed cracks and separation of inter-layer bonds when opposing the metal abrader. The results suggest that the 3D printing using resin materials provides adequate wear resistance for dental use.
Collapse
Affiliation(s)
- Ji-Man Park
- Department of Prosthodontics, College of Dentistry, Yonsei University, 250 Seongsanno, Seodaemun-gu, Seoul 03722, Korea.
| | - Jin-Soo Ahn
- Department of Dental Biomaterials Science and Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea.
| | - Hyun-Suk Cha
- Division of Prosthodontics, Department of Dentistry, Asan Medical Center, College of Medicine, University of Ulsan, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea.
| | - Joo-Hee Lee
- Division of Prosthodontics, Department of Dentistry, Asan Medical Center, College of Medicine, University of Ulsan, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea.
| |
Collapse
|
16
|
Unkovskiy A, Spintzyk S, Axmann D, Engel EM, Weber H, Huettig F. Additive Manufacturing: A Comparative Analysis of Dimensional Accuracy and Skin Texture Reproduction of Auricular Prostheses Replicas. J Prosthodont 2017; 28:e460-e468. [PMID: 29125215 DOI: 10.1111/jopr.12681] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2017] [Indexed: 11/29/2022] Open
Abstract
PURPOSE The use of computer-aided design/computer-aided manufacturing (CAD/CAM) and additive manufacturing in maxillofacial prosthetics has been widely acknowledged. Rapid prototyping can be considered for manufacturing of auricular prostheses. Therefore, so-called prostheses replicas can be fabricated by digital means. The objective of this study was to identify a superior additive manufacturing method to fabricate auricular prosthesis replicas (APRs) within a digital workflow. MATERIALS AND METHODS Auricles of 23 healthy subjects (mean age of 37.8 years) were measured in vivo with respect to an anthropometrical protocol. Landmarks were volumized with fiducial balls for 3D scanning using a handheld structured light scanner. The 3D CAD dataset was postprocessed, and the same anthropometrical measurements were made in the CAD software with the digital lineal. Each CAD dataset was materialized using fused deposition modeling (FDM), selective laser sintering (SLS), and stereolithography (SL), constituting 53 APR samples. All distances between the landmarks were measured on the APRs. After the determination of the measurement error within the five data groups (in vivo, CAD, FDM, SLS, and SL), the mean values were compared using matched pairs method. To this, the in vivo and CAD dataset were set as references. Finally, the surface structure of the APRs was qualitatively evaluated with stereomicroscopy and profilometry to ascertain the level of skin detail reproduction. RESULTS The anthropometrical approach showed drawbacks in measuring the protrusion of the ear's helix. The measurement error within all groups of measurements was calculated between 0.20 and 0.28 mm, implying a high reproducibility. The lowest mean differences of 53 produced APRs were found in FDM (0.43%) followed by SLS (0.54%) and SL (0.59%)--compared to in vivo, and again in FDM (0.20%) followed by SL (0.36%) and SLS (0.39%)--compared to CAD. None of these values exceed the threshold of clinical relevance (1.5%); however, the qualitative evaluation revealed slight shortcomings in skin reproduction for all methods: reproduction of skin details exceeding 0.192 mm in depth was feasible. CONCLUSION FDM showed the superior dimensional accuracy and best skin surface reproduction. Moreover, digital acquisition and CAD postprocessing seem to play a more important role in the outcome than the additive manufacturing method used.
Collapse
Affiliation(s)
- Alexey Unkovskiy
- Department of Prosthodontics, Tüebingen University Hospital, Tübingen, Baden-Württemberg, Germany
| | - Sebastian Spintzyk
- Medical Material Science and Technology, Tüebingen University Hospital, Tübingen, Baden-Württemberg, Germany
| | - Detlef Axmann
- Department of Prosthodontics, Tüebingen University Hospital, Tübingen, Baden-Württemberg, Germany
| | - Eva-Maria Engel
- Department of Prosthodontics, Tüebingen University Hospital, Tübingen, Baden-Württemberg, Germany
| | - Heiner Weber
- Department of Prosthodontics, Tüebingen University Hospital, Tübingen, Baden-Württemberg, Germany
| | - Fabian Huettig
- Department of Prosthodontics, Tüebingen University Hospital, Tübingen, Baden-Württemberg, Germany
| |
Collapse
|
17
|
Fernandes N, van den Heever J, Sykes L. Immediate Implant Placement and Provisionalization Following Tumor-Resective Surgery in the Midfacial Region: A Case Series. J Prosthodont 2017; 27:476-481. [PMID: 29044894 DOI: 10.1111/jopr.12686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2017] [Indexed: 11/30/2022] Open
Abstract
Surgical and prosthodontic restoration of the midfacial region following tumor resection has always posed a considerable challenge, as this area serves crucial functional and esthetic roles. Being diagnosed and subsequently treated for facial tumors can have an immense psychosocial impact on a patient, as the resulting defects are often disfiguring, and lead to an inability to masticate, swallow, and speak clearly. Provision of an immediate facial and dental prosthesis at the time of surgery can limit these side effects and help reduce mental duress on these patients and their families, as well as aid in the process of rehabilitation. Rapid prototyping (RP) and 3D printing, as this paper shows, assists presurgical planning of the tumor resection, as well as the manufacture of maxillofacial and dental prostheses. Often these defects are extensive, so prosthesis retention is aided by zygomatic implants placed at the time of surgical resection. When placed at this time, and prior to radiation therapy, these craniofacial implants have improved survival rates. Thus, this treatment modality can improve postoperative recovery considerably, while at the same time allowing for cleaning and monitoring of the resected site for tumor recurrence.
Collapse
Affiliation(s)
- Nelson Fernandes
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, University of Pretoria, South Africa
| | - Jacobus van den Heever
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, University of Pretoria, South Africa
| | - Leanne Sykes
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, University of Pretoria, South Africa
| |
Collapse
|
18
|
Youssef A, Hollister SJ, Dalton PD. Additive manufacturing of polymer melts for implantable medical devices and scaffolds. Biofabrication 2017; 9:012002. [DOI: 10.1088/1758-5090/aa5766] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Hoang D, Perrault D, Stevanovic M, Ghiassi A. Surgical applications of three-dimensional printing: a review of the current literature & how to get started. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:456. [PMID: 28090512 DOI: 10.21037/atm.2016.12.18] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Three dimensional (3D) printing involves a number of additive manufacturing techniques that are used to build structures from the ground up. This technology has been adapted to a wide range of surgical applications at an impressive rate. It has been used to print patient-specific anatomic models, implants, prosthetics, external fixators, splints, surgical instrumentation, and surgical cutting guides. The profound utility of this technology in surgery explains the exponential growth. It is important to learn how 3D printing has been used in surgery and how to potentially apply this technology. PubMed was searched for studies that addressed the clinical application of 3D printing in all surgical fields, yielding 442 results. Data was manually extracted from the 168 included studies. We found an exponential increase in studies addressing surgical applications for 3D printing since 2011, with the largest growth in craniofacial, oromaxillofacial, and cardiothoracic specialties. The pertinent considerations for getting started with 3D printing were identified and are discussed, including, software, printing techniques, printing materials, sterilization of printing materials, and cost and time requirements. Also, the diverse and increasing applications of 3D printing were recorded and are discussed. There is large array of potential applications for 3D printing. Decreasing cost and increasing ease of use are making this technology more available. Incorporating 3D printing into a surgical practice can be a rewarding process that yields impressive results.
Collapse
Affiliation(s)
- Don Hoang
- USC Plastic and Reconstructive Surgery, Los Angeles, CA, USA
| | - David Perrault
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Milan Stevanovic
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Alidad Ghiassi
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| |
Collapse
|