1
|
Bouron A. Cellular neurobiology of hyperforin. Phytother Res 2024; 38:636-645. [PMID: 37963759 DOI: 10.1002/ptr.8063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/16/2023] [Accepted: 10/22/2023] [Indexed: 11/16/2023]
Abstract
Hyperforin is a phloroglucinol derivative isolated from the medicinal plant Hypericum perforatum (St John's wort, SJW). This lipophilic biomolecule displays antibacterial, pro-apoptotic, antiproliferative, and anti-inflammatory activities. In addition, in vitro and in vivo data showed that hyperforin is a promising molecule with potential applications in neurology and psychiatry. For instance, hyperforin possesses antidepressant properties, impairs the uptake of neurotransmitters, and stimulates the brain derived neurotrophic factor (BDNF)/TrkB neurotrophic signaling pathway, the adult hippocampal neurogenesis, and the brain homeostasis of zinc. In fact, hyperforin is a multi-target biomolecule with a complex neuropharmacological profile. However, one prominent pharmacological feature of hyperforin is its ability to influence the homeostasis of cations such as Ca2+ , Na+ , Zn2+ , and H+ . So far, the pathophysiological relevance of these actions is currently unknown. The main objective of the present work is to provide an overview of the cellular neurobiology of hyperforin, with a special focus on its effects on neuronal membranes and the movement of cations.
Collapse
Affiliation(s)
- Alexandre Bouron
- Université Grenoble Alpes, CNRS, CEA, Inserm UA13 BGE, Grenoble, France
| |
Collapse
|
2
|
Khute S, Jangde RK. In silico exploration of venlafaxine, a potential non-tricyclic antidepressant in a liposomal formulation for nose-to-brain drug delivery. Drug Dev Ind Pharm 2024; 50:55-67. [PMID: 38112520 DOI: 10.1080/03639045.2023.2297238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023]
Abstract
OBJECTIVE Non-tricyclic antidepressants (non-TCAs) work by preventing the intake of norepinephrine and serotonin. Therefore, the aim of this study was to identify a potent non-TCAs and to develop liposomal formulation, characterize and to determine the drug release study across model of dialysis membrane via in vitro and in silico techniques. METHODS The in silico docking analysis identified venlafaxine (VLF) as the best non-TCAs with the depressant targets (PDB ID: 3PBL and 4BVN). VLF-loaded liposomal formulation was prepared by the thin-film hydration technique and characterized by physicochemical properties, including entrapment efficacy, in vitro drug release, particle size analysis, and FTIR. Moreover, this article also compares VLF and VLF-loaded with liposome carriers (LPs) based on nose-to-brain drug delivery approaches to treating depression. RESULTS Drug release profiles of the optimal liposomal formulation of VLF-LPs were examined in the high entrapment efficiency 94.13 ± 1.20% was attained at 224 nm, composed of spherical particles having a mean particle size of 191 ± 2.0 nm, a polydispersity index of 0.281 ± 0.06 and zeta potential of -20.3 mV. The best formulation of VLF-LPs was more effective than oral VLF treatment, as shown by the in vitro drug release data. CONCLUSION The results show that the VLF-LPs formulation is a promising potential platform for application in nose-to-brain drug delivery. Thus, highlighting the robustness of the intranasal drug delivery system with enhanced pharmaceutical properties, efficacy, and bioavailability for the anti-depression effect.
Collapse
Affiliation(s)
- Sulekha Khute
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Rajendra K Jangde
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| |
Collapse
|
3
|
Wang K, Zhang H, Yuan L, Li X, Cai Y. Potential Implications of Hyperoside on Oxidative Stress-Induced Human Diseases: A Comprehensive Review. J Inflamm Res 2023; 16:4503-4526. [PMID: 37854313 PMCID: PMC10581022 DOI: 10.2147/jir.s418222] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023] Open
Abstract
Hyperoside is a flavonol glycoside mainly found in plants of the genera Hypericum and Crataegus, and also detected in many plant species such as Abelmoschus manihot, Ribes nigrum, Rosa rugosa, Agrostis stolonifera, Apocynum venetum and Nelumbo nucifera. This compound exhibits a multitude of biological functions including anti-inflammatory, antidepressant, antioxidative, vascular protective effects and neuroprotective effects, etc. This review summarizes the quantification, original plant, chemical structure and property, structure-activity relationship, pharmacologic effect, pharmacokinetics, toxicity and clinical application of hyperoside, which will be significant for the exploitation for new drug and full utilization of this compound.
Collapse
Affiliation(s)
- Kaiyang Wang
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Huhai Zhang
- Department of Nephrology, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Lie Yuan
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yongqing Cai
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
4
|
Li XX, Yan Y, Zhang J, Ding K, Xia CY, Pan XG, Shi YJ, Xu JK, He J, Zhang WK. Hyperforin: A natural lead compound with multiple pharmacological activities. PHYTOCHEMISTRY 2023; 206:113526. [PMID: 36442576 DOI: 10.1016/j.phytochem.2022.113526] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/16/2023]
Abstract
Hypericum perforatum L. (Clusiaceae), commonly known as St. John's wort, has a rich historical background as one of the oldest and most widely studied herbal medicines. Hyperforin is the main antidepressant active ingredient of St. John's wort. In recent years, hyperforin has attached increasing attention due to its multiple pharmacological activities. In this review, the information on hyperforin was systematically summarized. Hyperforin is considered to be a lead compound with diverse pharmacological activities including anti-depression, anti-tumor, anti-dementia, anti-diabetes and others. It can be obtained by extraction and synthesis. Further pharmacological studies and more precise detection methods will help develop a value for hyperforin. In addition, structural modification and pharmaceutical preparation technology will be beneficial to promoting the research progress of hyperforin based innovative drugs. Although these works are full of known and unknown challenges, researchers are still expected to make hyperforin play a greater value.
Collapse
Affiliation(s)
- Xin-Xin Li
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China; School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Yu Yan
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China
| | - Jia Zhang
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Kang Ding
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Cong-Yuan Xia
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China
| | - Xue-Ge Pan
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Yan-Jing Shi
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Jie-Kun Xu
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, PR China.
| | - Jun He
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China.
| | - Wei-Ku Zhang
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China.
| |
Collapse
|
5
|
Effect of St. John's wort extract Ze 117 on the lateral mobility of β 1-adrenergic receptors in C6 cells. Biomed Pharmacother 2023; 157:114006. [PMID: 36395608 DOI: 10.1016/j.biopha.2022.114006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Depression has been associated with altered signal transduction of serotonergic, dopaminergic and adrenergic neurotransmitter systems in the brain. Signaling relies on receptor-ligand interactions and subsequent regulatory processes, but also on lateral receptor mobility. The aim of this study was to investigate the effect of the St. John's wort extract Ze 117 on the lateral mobility of SNAP-tagged β1-adrenergic receptors (β1AR) in the plasma membrane of C6 cells under both, non-stimulating and isoprenaline-stimulating conditions. Single particle tracking (SPT) was used, whereby the registered trajectories were evaluated by variational Bayesian treatment of a hidden Markov model (vbSPT) and packing coefficient (Pc) analysis with respect to diffusion coefficients, receptor state occupancies and confinement. Three different diffusion states were identified, differing in their diffusion coefficients. Treatment with Ze 117 [25 µg/ml] decreased the mobility of the β1AR, which was manifested by a relative increase in the slow-diffusing state S1 (0.21-0.30) compared to control and by an increase in receptor confinement (79.4-68.1 nm). After isoprenaline stimulation of control cells, the slow-diffusing state was more pronounced, whereas confinement was not affected. In summary, SPT has been shown to be a powerful method to analyze lateral receptor mobility. Furthermore, the present study identified a correlation between Ze 117 treatment and β1AR mobility.
Collapse
|
6
|
Xia J, Wan Y, Wu JJ, Yang Y, Xu JF, Zhang L, Liu D, Chen L, Tang F, Ao H, Peng C. Therapeutic potential of dietary flavonoid hyperoside against non-communicable diseases: targeting underlying properties of diseases. Crit Rev Food Sci Nutr 2022; 64:1340-1370. [PMID: 36073729 DOI: 10.1080/10408398.2022.2115457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Non-communicable diseases (NCDs) are a global epidemic with diverse pathogenesis. Among them, oxidative stress and inflammation are the most fundamental co-morbid features. Therefore, multi-targets and multi-pathways therapies with significant anti-oxidant and anti-inflammatory activities are potential effective measures for preventing and treating NCDs. The flavonol glycoside compound hyperoside (Hyp) is widely found in a variety of fruits, vegetables, beverages, and medicinal plants and has various health benefits, especially excellent anti-oxidant and anti-inflammatory properties targeting nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB) signaling pathways. In this review, we summarize the pathogenesis associated with oxidative stress and inflammation in NCDs and the biological activity and therapeutic potential of Hyp. Our findings reveal that the anti-oxidant and anti-inflammatory activities regulated by Hyp are associated with numerous biological mechanisms, including positive regulation of mitochondrial function, apoptosis, autophagy, and higher-level biological damage activities. Hyp is thought to be beneficial against organ injuries, cancer, depression, diabetes, and osteoporosis, and is a potent anti-NCDs agent. Additionally, the sources, bioavailability, pharmacy, and safety of Hyp have been established, highlighting the potential to develop Hyp into dietary supplements and nutraceuticals.
Collapse
Affiliation(s)
- Jia Xia
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiao-Jiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin-Feng Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Budantsev AL, Prikhodko VA, Varganova IV, Okovityi SV. BIOLOGICAL ACTIVITY OF HYPERICUM PERFORATUM L. (HYPERICACEAE): A REVIEW. PHARMACY & PHARMACOLOGY 2021. [DOI: 10.19163/2307-9266-2021-9-1-17-31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- A. L. Budantsev
- Komarov Botanical Institute of Russian Academy of Science
2, Prof. Popov St., St. Petersburg, Russia, 197376
| | - V. A. Prikhodko
- Saint Petersburg State Chemical and Pharmaceutical University
14, Prof. Popov St., St. Petersburg, Russia, 197376
| | - I. V. Varganova
- Komarov Botanical Institute of Russian Academy of Science
2, Prof. Popov St., St. Petersburg, Russia, 197376
| | - S. V. Okovityi
- Saint Petersburg State Chemical and Pharmaceutical University
14, Prof. Popov St., St. Petersburg, Russia, 197376
| |
Collapse
|
8
|
Bonaterra GA, Mierau O, Hofmann J, Schwarzbach H, Aziz-Kalbhenn H, Kolb C, Kinscherf R. In Vitro Effects of St. John's Wort Extract Against Inflammatory and Oxidative Stress and in the Phagocytic and Migratory Activity of Mouse SIM-A9 Microglia. Front Pharmacol 2021; 11:603575. [PMID: 33628177 PMCID: PMC7898673 DOI: 10.3389/fphar.2020.603575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/10/2020] [Indexed: 12/28/2022] Open
Abstract
Introduction: Herbal medicinal plants as Hypericum perforatum L., known as St. John’s wort (SJW) have been in use for a long time. SJW that is specifically used for the treatment of depressive disorders. Inflammatory cytokines derived from microglia play an important role in the regulation of the synthesis and reuptake of glutamate and influence synaptic function, morphology and neuronal plasticity. The present study was performed to investigate, whether STW3-VI, a special SJW extract has protective effects on mouse SIM-A9 microglia against cytotoxic and proinflammatory effects of ROS, glutamate, NMDA or cortisol. Additionally, we investigated the effects of SJW on migratory and phagocytic properties of microglia. Results: Pre-treatment (48 h) of microglia with STW3-VI (5 or 10 μg/ml)—in contrast to desipramine—inhibited the H2O2-induced TNF-α release by 20–40%. Pre-treatment (48 h) of microglia with STW3-VI (5 or 10 μg/ml) delayed the 3 or 4 mM H2O2-induced intracellular ROS level by 26.9 and 44.4%, respectively. Furthermore, pre-treatment (48 h) of microglia with STW3-VI (5 μg/ml) - in contrast to desipramine - lowered the glutamate-induced cytotoxicity by 13.2%. Besides, pre-treatment (48 h) of microglia with STW3-VI (5 or 10 μg/ml) or desipramine (5 µM) inhibited the NMDA-induced decrease of the viability by 16.5–28.8% or 12%, respectively. Finally, pre-treatment (48 h) of microglia with STW3-VI (5 or 10 μg/ml)—in contrast to desipramine - reduced the cortisol-induced cytotoxicity by 15.5 and 12.9%. Treatment of microglia with STW3-VI (10 or 100 μg/ml) increased the migratory and the phagocytic capacities by 100 and 40%. Conclusion: Our data provide evidence that STW3-VI—in contrast to desipramine - protects microglia from oxidative stress, NMDA- or glutamate-induced cytotoxicity, and has anti-inflammatory properties that are accompanied by improvement of their migratory and phagocytic capacity. These protective (particularly the anti-inflammatory) properties may be beneficial in the treatment of depressive disorders.
Collapse
Affiliation(s)
- Gabriel A Bonaterra
- Department of Medical Cell Biology, Anatomy and Cell Biology, University of Marburg, Marburg, Germany
| | - Olga Mierau
- Department of Medical Cell Biology, Anatomy and Cell Biology, University of Marburg, Marburg, Germany
| | - Johanna Hofmann
- Department of Medical Cell Biology, Anatomy and Cell Biology, University of Marburg, Marburg, Germany
| | - Hans Schwarzbach
- Department of Medical Cell Biology, Anatomy and Cell Biology, University of Marburg, Marburg, Germany
| | - Heba Aziz-Kalbhenn
- Bayer Consumer Health Division, Phytomedicines Supply and Development Center, Steigerwald Arzneimittelwerk GmbH, Darmstadt, Germany
| | - Christiane Kolb
- Bayer Consumer Health Division, Phytomedicines Supply and Development Center, Steigerwald Arzneimittelwerk GmbH, Darmstadt, Germany
| | - Ralf Kinscherf
- Department of Medical Cell Biology, Anatomy and Cell Biology, University of Marburg, Marburg, Germany
| |
Collapse
|
9
|
Hsu FT, Chen WT, Wu CT, Chung JG. Hyperforin induces apoptosis through extrinsic/intrinsic pathways and inhibits EGFR/ERK/NF-κB-mediated anti-apoptotic potential in glioblastoma. ENVIRONMENTAL TOXICOLOGY 2020; 35:1058-1069. [PMID: 32485087 DOI: 10.1002/tox.22942] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Glioblastoma is the most common primary brain tumor with poor survival rate and without effective treatment strategy. Notably, amplification and active mutation of epidermal growth factor receptor (EGFR) occur frequently in glioblastoma patient that may be a potential treatment target. Several studies indicated that various type of herbal compounds not only regulate anti-depressant effect but also shown capacity to suppress glioblastoma growth via inducing apoptosis and inhibiting oncogene signaling transduction. Hyperforin, an herb compound derived from St. John's wort was used to treat depressive disorder by inhibiting neuronal reuptake of several neurotransmitters. Although hyperforin can reduce matrix metallopeptidases-2 (MMPs) and -9-mediated metastasis of glioblastoma, the detail mechanism of hyperforin on glioblastoma is remaining unclear. Here, we suggested that hyperforin may induce extrinsic/intrinsic apoptosis and suppress anti-apoptotic related proteins expression of glioblastoma. We also indicated that hyperforin-mediated anti-apoptotic potential of glioblastoma was correlated to inactivation of EGFR/extracellular signal-regulated kinases (ERK)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling.
Collapse
Affiliation(s)
- Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Wei-Ting Chen
- Department of Psychiatry, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Ching-Te Wu
- Department of Radiation Oncology, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
10
|
Nicolussi S, Drewe J, Butterweck V, Meyer Zu Schwabedissen HE. Clinical relevance of St. John's wort drug interactions revisited. Br J Pharmacol 2020; 177:1212-1226. [PMID: 31742659 PMCID: PMC7056460 DOI: 10.1111/bph.14936] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/01/2019] [Accepted: 11/10/2019] [Indexed: 12/22/2022] Open
Abstract
The first clinically relevant reports of preparations of St. John's wort (SJW), a herbal medicine with anti‐depressant effects, interacting with other drugs, altering their bioavailability and efficacy, were published about 20 years ago. In 2000, a pharmacokinetic interaction between SJW and cyclosporine caused acute rejection in two heart transplant patients. Since then, subsequent research has shown that SJW altered the pharmacokinetics of drugs such as digoxin, tacrolimus, indinavir, warfarin, alprazolam, simvastatin, or oral contraceptives. These interactions were caused by pregnane‐X‐receptor (PXR) activation. Preparations of SJW are potent activators of PXR and hence inducers of cytochrome P450 enzymes (most importantly CYP3A4) and P‐glycoprotein. The degree of CYP3A4 induction correlates significantly with the hyperforin content in the preparation. Twenty years after the first occurrence of clinically relevant pharmacokinetic drug interactions with SJW, this review revisits the current knowledge of the mechanisms of action and on how pharmacokinetic drug interactions with SJW could be avoided. Linked Articles This article is part of a themed section on The Pharmacology of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.6/issuetoc
Collapse
Affiliation(s)
- Simon Nicolussi
- Medical Research, Max Zeller Söhne AG, Romanshorn, Switzerland
| | - Jürgen Drewe
- Medical Research, Max Zeller Söhne AG, Romanshorn, Switzerland
| | | | | |
Collapse
|
11
|
Keksel N, Bussmann H, Unger M, Drewe J, Boonen G, Häberlein H, Franken S. St John's wort extract influences membrane fluidity and composition of phosphatidylcholine and phosphatidylethanolamine in rat C6 glioblastoma cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 54:66-76. [PMID: 30668384 DOI: 10.1016/j.phymed.2018.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/27/2018] [Accepted: 06/18/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Chronic stress, an important factor in the development of depressive disorders, leads to an increased formation of cortisol, which causes a hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis. In addition, cortisol mediates an adaptive effect on plasma membrane fluidity which may affect signal transduction of membrane-bound receptors and contribute to pathophysiological changes. METHODS Membrane fluidity was measured by fluorescence anisotropy using DPH (1,6-diphenyl-1,3,5-hexatriene) and TMA-DPH (1-(4-(trimethylamino)phenyl)-6-phenylhexa-1,3,5-triene). Changes in cellular content of phosphatidylcholine species was determined by pulse-chase experiments using deuterated choline and mass spectrometry. Single molecule tracking was used to examine the lateral mobility of β1-adrenoceptors and changes in cAMP formation were measured by ELISA. RESULTS Chronic exposure (6 - 8 days) of C6 cells to cortisol dose-dependently decreased DPH and TMA-DPH fluorescence anisotropy, reflecting increased membrane fluidity. In contrast, cells pretreated with St. John's wort extract Ze117 showed increased DPH and TMA-DPH fluorescence anisotropy values, indicating a membrane rigidification effect which was mediated at least by the constituents hypericin, hyperforin, quercetin, amentoflavone and biapigenin. The observed membrane fluidizing effect of cortisol could be reversed by cotreatment with Ze117. The membrane rigidification of Ze117 was in line with the in parallel observed decrease in the phosphatidylcholine/phosphatidylethanolamine ratio determined in whole cell lipid extracts. Interestingly, pulse-chase experiments demonstrated, that Ze117 inhibited the incorporation of choline-D9 in phosphatidylcholine species with saturated or monounsaturated fatty acids compared to control cells, while the synthesis of phosphatidylcholine species with polyunsaturated fatty acids was not affected. C6 cells whose membranes have become more rigid by Ze117 showed altered lateral mobility of β1-adrenoceptors as well as reduced cAMP formation after stimulation with the β1-adrenoceptor agonist dobutamine. CONCLUSION Obviously, the signaling of β1-adrenoceptors depends on the nature of the membrane environment. It can therefore be assumed that Ze117 has a normalizing effect not only on the membrane fluidity of "stressed" cells, but also on lateral mobility and subsequently on the signal transduction of membrane-associated receptors.
Collapse
Affiliation(s)
- Nelli Keksel
- Institute of Biochemistry and Molecular Biology, Rheinische Friedrich-Wilhelms-Universität, Nussallee 11, D-53115 Bonn, Germany
| | - Hendrik Bussmann
- Institute of Biochemistry and Molecular Biology, Rheinische Friedrich-Wilhelms-Universität, Nussallee 11, D-53115 Bonn, Germany
| | | | | | | | - Hanns Häberlein
- Institute of Biochemistry and Molecular Biology, Rheinische Friedrich-Wilhelms-Universität, Nussallee 11, D-53115 Bonn, Germany
| | - Sebastian Franken
- Institute of Biochemistry and Molecular Biology, Rheinische Friedrich-Wilhelms-Universität, Nussallee 11, D-53115 Bonn, Germany.
| |
Collapse
|
12
|
Depression and glioblastoma, complicated concomitant diseases: a systemic review of published literature. Neurosurg Rev 2018; 43:497-511. [PMID: 30094499 DOI: 10.1007/s10143-018-1017-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 07/09/2018] [Accepted: 07/26/2018] [Indexed: 01/27/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain cancer. Depression is a common co-morbidity of this condition. Despite this common interaction, relatively little research has been performed on the development of GBM-associated depression. We performed a literary search of the PubMed database for articles published relating to GBM and depression. A total of 85 articles were identified with 46 meeting inclusion criteria. Depression significantly impacts care, decreasing medication compliance, and patient survival. Diagnostically, because depression and GBM share intricate neuro-connectivity in a way that effect functionality, these diseases can be mistaken for alternative psychological or pathological disorders, complicating care. Therapeutically, anti-depressants have anti-tumor properties; yet, some have been shown to interfere with GBM treatment. One reason for this is that the pathophysiological development of depression and GBM share several pathways including altered regulation of the 5-HT receptor, norepinephrine, and 3':5'-cyclic monophosphate. Over time, depression can persist after GBM treatment, affecting patient quality of life. Together, depression and GBM are complicated concomitant diseases. Clinicians must be aware of their co-existence. Because of overlapping molecular pathways involved in both diseases, careful medication selection is imperative to avoid potential adverse interactions. Since GBMs are the most common primary brain cancer, physicians dealing with this disease should be prepared for the development of depression as a potential sequela of this condition, given the related pathophysiology and the known poor outcomes.
Collapse
|
13
|
|
14
|
Schmidt M, Butterweck V. The mechanisms of action of St. John’s wort: an update. Wien Med Wochenschr 2015; 165:229-35. [DOI: 10.1007/s10354-015-0372-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/25/2015] [Indexed: 01/06/2023]
|
15
|
Greunke C, Hage-Hülsmann A, Sorkalla T, Keksel N, Häberlein F, Häberlein H. A systematic study on the influence of the main ingredients of an ivy leaves dry extract on the β2-adrenergic responsiveness of human airway smooth muscle cells. Pulm Pharmacol Ther 2014; 31:92-8. [PMID: 25234924 DOI: 10.1016/j.pupt.2014.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 09/02/2014] [Accepted: 09/05/2014] [Indexed: 01/22/2023]
Abstract
The bronchospasmolytic and secretolytic effects of ivy leaves dry extracts can be explained by an increased β2-adrenergic responsiveness of the bronchi. Recently, it was shown that α-hederin inhibits the internalization of β2-adrenergic receptors (ß2AR) under stimulating conditions. α-Hederin pretreated alveolar type II cells and human airway smooth muscle cells revealed an increased ß2AR binding and an elevated intracellular cAMP level, respectively. In order to identify whether additional compounds also mediate an increased β2-adrenergic responsiveness, we examined the ingredients of an ivy leaves dry extract (EA 575) protocatechuic acid, neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, rutin, kaempferol-3-O-rutinoside, 3,4-, 3,5- and 4,5-dicaffeoylquinic acid, hederacoside B, and β-hederin. Within all the tested substances, only β-hederin inhibited the internalization of GFP-tagged ß2AR in stably transfected HEK293 cells. Using fluorescence correlation spectroscopy β-hederin (1 μM, 24 h) pretreated HASM cells showed a statistically significant increase in the ß2AR binding from 33.0 ± 8.9% to 44.1 ± 11.5% which was distributed with 36.0 ± 9.5% for τbound1 and 8.1 ± 2.6% for τbound2, respectively (n = 8, p < 0.05). The increased binding was selectively found for the receptor-ligand complex with unrestricted lateral mobility (τbound1 of 0.9 ± 0.1 ms, D1 = 9.1 ± 0.2 μm(2)/s, n = 8), whereas the binding of ß2AR with hindered lateral mobility (τbound2 of 64.2 ± 47.6 ms, D2 = 0.15 ± 0.02 μm(2)/s, n = 8) was not affected. Compared to control cells, a statistically significant increase of 17.5 ± 6.4% (n = 4, p < 0.05) and 24.2 ± 5.8% (n = 4, p < 0.001) in the cAMP formation was found for β-hederin pretreated HASM cells after stimulation with 10 μM of terbutaline and simultaneous stimulation with 10 μM terbutaline and 10 μM forskolin, respectively. Within this systematic study focusing on the influence of the ingredients of an ivy leaves dry extract on HASM cells it was possible to identify β-hederin as further component presumably responsible for the β2-mimetic effects.
Collapse
Affiliation(s)
- Christian Greunke
- Institute of Biochemistry and Molecular Biology, Rheinische Friedrich-Wilhelms-University of Bonn, Nussallee 11, D-53115 Bonn, Germany
| | - Anne Hage-Hülsmann
- Institute of Biochemistry and Molecular Biology, Rheinische Friedrich-Wilhelms-University of Bonn, Nussallee 11, D-53115 Bonn, Germany
| | - Thomas Sorkalla
- Institute of Biochemistry and Molecular Biology, Rheinische Friedrich-Wilhelms-University of Bonn, Nussallee 11, D-53115 Bonn, Germany
| | - Nelli Keksel
- Institute of Biochemistry and Molecular Biology, Rheinische Friedrich-Wilhelms-University of Bonn, Nussallee 11, D-53115 Bonn, Germany
| | - Felix Häberlein
- Institute of Biochemistry and Molecular Biology, Rheinische Friedrich-Wilhelms-University of Bonn, Nussallee 11, D-53115 Bonn, Germany
| | - Hanns Häberlein
- Institute of Biochemistry and Molecular Biology, Rheinische Friedrich-Wilhelms-University of Bonn, Nussallee 11, D-53115 Bonn, Germany.
| |
Collapse
|
16
|
Synthesis of flavonoid O-pentosides by Escherichia coli through engineering of nucleotide sugar pathways and glycosyltransferase. Appl Environ Microbiol 2014; 80:2754-62. [PMID: 24561591 DOI: 10.1128/aem.03797-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plants produce two flavonoid O-pentoses, flavonoid O-xyloside and flavonoid O-arabinoside. However, analyzing their biological properties is difficult because flavonoids are not naturally produced in sufficient quantities. In this study, Escherichia coli was used to synthesize the plant-specific flavonoid O-pentosides quercetin 3-O-xyloside and quercetin 3-O-arabinoside. Two strategies were used. First, E. coli was engineered to express components of the biosynthetic pathways for UDP-xylose and UDP-arabinose. For UDP-xylose biosynthesis, two genes, UXS (UDP-xylose synthase) from Arabidopsis thaliana and ugd (UDP-glucose dehydrogenase) from E. coli, were overexpressed. In addition, the gene encoding ArnA (UDP-l-Ara4N formyltransferase/UDP-GlcA C-4″-decarboxylase), which competes with UXS for UDP-glucuronic acid, was deleted. For UDP-arabinose biosynthesis, UXE (UDP-xylose epimerase) was overexpressed. Next, we engineered UDP-dependent glycosyltransferases (UGTs) to ensure specificity for UDP-xylose and UDP-arabinose. The E. coli strains thus obtained synthesized approximately 160 mg/liter of quercetin 3-O-xyloside and quercetin 3-O-arabinoside.
Collapse
|