1
|
Tan SSY, Shanmugham M, Chin YL, An J, Chua CK, Ong ES, Leo CH. Pressurized Hot Water Extraction of Mangosteen Pericarp and Its Associated Molecular Signatures in Endothelial Cells. Antioxidants (Basel) 2023; 12:1932. [PMID: 38001785 PMCID: PMC10669822 DOI: 10.3390/antiox12111932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
The mangosteen (Garcinia mangostana L.) pericarp is known to be rich in potent bioactive phytochemical compounds such as xanthones, which possess pharmacologically important antioxidant activity and beneficial cardiometabolic properties. Mangosteen pericarp is typically classified as unavoidable food waste and discarded, despite being rich in bioactive phytochemical compounds that therefore present an exciting opportunity for valorization. Thus, this study aims to extract phytochemical compounds from mangosteen pericarp using pressurized hot water extraction (PHWE) and determine its biological effects in endothelial cells using RNA sequencing. Liquid chromatography with MS/MS (LC/MSMS) and UV detection (LC/UV) was subsequently used to identify three key phytochemical compounds extracted from the mangosteen pericarp: α-Mangostin, γ-Mangostin, and Gartanin. Within the tested range of extraction temperatures by PHWE, our results demonstrated that an extraction temperature of 120 °C yielded the highest concentrations of α-Mangostin, γ-Mangostin, and Gartanin with a concomitant improvement in antioxidant capacity compared to other extraction temperatures. Using global transcriptomic profiling and bioinformatic analysis, the treatment of endothelial cells with mangosteen pericarp extracts (120 °C PHWE) for 48 h caused 408 genes to be differentially expressed. Furthermore, our results demonstrated that key biological processes related to "steroid biosynthesis and metabolism", likely involving the activation of the AMPK signaling pathway, were upregulated by mangosteen pericarp extract treatment. In conclusion, our study suggests a green extraction method to valorize phytochemical compounds from mangosteen pericarp as a natural product with potential beneficial effects on cardiometabolic health.
Collapse
Affiliation(s)
- Sakeena Si Yu Tan
- Pillar of Engineering Product Development, Singapore University of Technology & Design, Singapore 487372, Singapore; (S.S.Y.T.); (C.K.C.)
- Center for Healthcare Education, Entrepreneurship and Research (CHEERS), Singapore University of Technology & Design, Singapore 487372, Singapore; (J.A.); (E.S.O.)
| | - Meyammai Shanmugham
- Science, Math & Technology, Singapore University of Technology & Design, Singapore 487372, Singapore; (M.S.); (Y.L.C.)
| | - Yu Ling Chin
- Science, Math & Technology, Singapore University of Technology & Design, Singapore 487372, Singapore; (M.S.); (Y.L.C.)
| | - Jia An
- Center for Healthcare Education, Entrepreneurship and Research (CHEERS), Singapore University of Technology & Design, Singapore 487372, Singapore; (J.A.); (E.S.O.)
| | - Chee Kai Chua
- Pillar of Engineering Product Development, Singapore University of Technology & Design, Singapore 487372, Singapore; (S.S.Y.T.); (C.K.C.)
- Center for Healthcare Education, Entrepreneurship and Research (CHEERS), Singapore University of Technology & Design, Singapore 487372, Singapore; (J.A.); (E.S.O.)
| | - Eng Shi Ong
- Center for Healthcare Education, Entrepreneurship and Research (CHEERS), Singapore University of Technology & Design, Singapore 487372, Singapore; (J.A.); (E.S.O.)
- Science, Math & Technology, Singapore University of Technology & Design, Singapore 487372, Singapore; (M.S.); (Y.L.C.)
| | - Chen Huei Leo
- Center for Healthcare Education, Entrepreneurship and Research (CHEERS), Singapore University of Technology & Design, Singapore 487372, Singapore; (J.A.); (E.S.O.)
- Science, Math & Technology, Singapore University of Technology & Design, Singapore 487372, Singapore; (M.S.); (Y.L.C.)
| |
Collapse
|
2
|
Naing S, Sandech N, Maiuthed A, Chongruchiroj S, Pratuangdejkul J, Lomarat P. Garcinia mangostana L. Pericarp Extract and Its Active Compound α-Mangostin as Potential Inhibitors of Immune Checkpoint Programmed Death Ligand-1. Molecules 2023; 28:6991. [PMID: 37836835 PMCID: PMC10574194 DOI: 10.3390/molecules28196991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/22/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
α-Mangostin, a major xanthone found in mangosteen (Garcinia mangostana L., Family Clusiaceae) pericarp, has been shown to exhibit anticancer effects through multiple mechanisms of action. However, its effects on immune checkpoint programmed death ligand-1 (PD-L1) have not been studied. This study investigated the effects of mangosteen pericarp extract and its active compound α-mangostin on PD-L1 by in vitro and in silico analyses. HPLC analysis showed that α-mangostin contained about 30% w/w of crude ethanol extract of mangosteen pericarp. In vitro experiments in MDA-MB-231 triple-negative breast cancer cells showed that α-mangostin and the ethanol extract significantly inhibit PD-L1 expression when treated for 72 h with 10 µM or 10 µg/mL, respectively, and partially inhibit glycosylation of PD-L1 when compared to untreated controls. In silico analysis revealed that α-mangostin effectively binds inside PD-L1 dimer pockets and that the complex was stable throughout the 100 ns simulation, suggesting that α-mangostin stabilized the dimer form that could potentially lead to degradation of PD-L1. The ADMET prediction showed that α-mangostin is lipophilic and has high plasma protein binding, suggesting its greater distribution to tissues and its ability to penetrate adipose tissue such as breast cancer. These findings suggest that α-mangostin-rich mangosteen pericarp extract could potentially be applied as a functional ingredient for cancer chemoprevention.
Collapse
Affiliation(s)
- Sandar Naing
- Department of Food Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand;
| | - Nichawadee Sandech
- Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand; (N.S.); (A.M.)
| | - Arnatchai Maiuthed
- Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand; (N.S.); (A.M.)
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Sumet Chongruchiroj
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand; (S.C.); (J.P.)
| | - Jaturong Pratuangdejkul
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand; (S.C.); (J.P.)
| | - Pattamapan Lomarat
- Department of Food Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand;
| |
Collapse
|
3
|
Tan YF, Koay YS, Zulkifli RM, Hamid MA. In Vitro Hair Growth and Hair Tanning Activities of Mangosteen Pericarp Extract on Hair Dermal Papilla Cells. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
4
|
Muangpaisan W, Wiputhanuphongs P, Jaisupa N, Junnu S, Samer J, Moongkarndi P, Supapueng O, Chalermsri C, Neungton N. Effects of water-soluble mangosteen extract on cognitive function and neuropsychiatric symptoms in patients with mild to moderate Alzheimer's disease (WECAN-AD): A randomized controlled trial. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12292. [PMID: 35415207 PMCID: PMC8984095 DOI: 10.1002/trc2.12292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/02/2022]
Abstract
Introduction The water-soluble mangosteen pericarp extract's (WME) effect was investigated in Alzheimer's disease (AD). Methods The participants received 4 mg/kg/day of WME for 24 weeks (low dose, n = 33), 4 mg/kg/day for 12 weeks and then 8 mg/kg/day for 12 weeks (high dose, n = 33); or a placebo (n = 42). The outcomes were neuropsychiatric test scores, safety, tolerability, and the blood 4-hydroxynonenal level. Results The proportion of participants who achieved the minimum clinically important difference for the Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog; -2.6 points) at 24 weeks was significantly higher in the low-dose group (and a trend in the high-dose group) than in the placebo group. WME appeared safe and well tolerated. At 24 weeks, the 4-hydroxynonenal level declined in both intervention groups. The participants with a 5% reduction in this level showed greater ADAS-Cog improvements. Conclusion WME is a safe and well-tolerated cognitive enhancer in AD with varying benefits across individuals based on antioxidative response.
Collapse
Affiliation(s)
- Weerasak Muangpaisan
- Department of Preventive and Social MedicineFaculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | | | - Nattapon Jaisupa
- Department of PharmacologyPhramongkutklao College of MedicineBangkokThailand
| | - Sarawut Junnu
- Department of BiochemistryFaculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Jutima Samer
- Department of PhysiologyFaculty of PharmacyMahidol UniversityBangkokThailand
| | | | - Orawan Supapueng
- Division of Clinical EpidemiologyDepartment of ResearchFaculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Chalobol Chalermsri
- Department of Preventive and Social MedicineFaculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Neelobol Neungton
- Department of BiochemistryFaculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| |
Collapse
|
5
|
α-Mangostin Nanoparticles Cytotoxicity and Cell Death Modalities in Breast Cancer Cell Lines. Molecules 2021; 26:molecules26175119. [PMID: 34500560 PMCID: PMC8434247 DOI: 10.3390/molecules26175119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
α-Mangostin (AMG) is a potent anticancer xanthone that was discovered in mangosteen (Garcinia mangostana Linn.). AMG possesses the highest opportunity for chemopreventive and chemotherapeutic therapy. AMG inhibits every step in the process of carcinogenesis. AMG suppressed multiple breast cancer (BC) cell proliferation and apoptosis by decreasing the creation of cancerous compounds. Accumulating BC abnormalities and their associated molecular signaling pathways promotes novel treatment strategies. Chemotherapy is a commonly used treatment; due to the possibility of unpleasant side effects and multidrug resistance, there has been substantial progress in searching for alternative solutions, including the use of plant-derived natural chemicals. Due to the limitations of conventional cancer therapy, nanotechnology provides hope for effective and efficient cancer diagnosis and treatment. Nanotechnology enables the delivery of nanoparticles and increased solubility of drugs and drug targeting, resulting in increased cytotoxicity and cell death during BC treatment. This review summarizes the progress and development of AMG’s cytotoxicity and the mechanism of death BC cells. The combination of natural medicine and nanotechnology into a synergistic capital will provide various benefits. This information will aid in the development of AMG nanoparticle preparations and may open up new avenues for discovering an effective BC treatment.
Collapse
|
6
|
Isolation of a High Antioxidant Non-Toxic Polar Fraction from Garcinia mangostana Fruit Pericarp by Reverse Phase Column Chromatography. JURNAL KIMIA SAINS DAN APLIKASI 2021. [DOI: 10.14710/jksa.24.1.15-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The crude polar extract of mangosteen fruit pericarp not only has a moderate antioxidant activity of (55±4 μg/mL) but also has high cytotoxicity (16±0.5 μg/mL). The high cytotoxicity presumably is caused by the presence of complex cytotoxic compounds from the mangosteen pericarp. To obtain a non-toxic extract preparation with high antioxidant activity, polar crude 50% ethanol extracts of mangosteen pericarp were partially purified using reverse-phase column chromatography with Silica C18 as the stationary phase and acetonitrile-water gradient elution. Six of the ten fractions collected had high antioxidant activities, with IC50 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging antioxidant levels <50 μg/mL. Three fractions (fractions 3, 5, and 7) with the highest antioxidant activities of (16.4 ± 0.6 µg/mL), (17.8 ± 2 µg/mL) and (17.4 ± 1.8 µg/mL) respectively, were chosen for further cytotoxicity, phenolic content and High-Performance Liquid Chromatography (HPLC) analysis. The cytotoxic tests were conducted with the Brine Shrimp Lethality Assay. Fraction 3 had low cytotoxicity (LC50 485 ± 96 µg/mL) and fraction 5 was non-toxic (LC50 ≥ 1000 µg/mL), while fraction 7 still had high cytotoxicity (LC50 2.8 ± 0.8 µg/mL). The chromatogram profiles of HPLC showed that fractions 3 and 5 contained more polar compounds than the compounds present in fraction 7. It can be concluded that the reverse phase method succeeded in the isolation of a non-toxic polar fraction, that is, fraction 5, with a significantly higher (p<0.05) antioxidant activity than in the original crude polar extracts. This fraction had a high total phenolic content of 43.3 ± 0.3 g GAE per 100 g extract.
Collapse
|
7
|
A review on α-mangostin as a potential multi-target-directed ligand for Alzheimer's disease. Eur J Pharmacol 2021; 897:173950. [PMID: 33607107 DOI: 10.1016/j.ejphar.2021.173950] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/03/2021] [Accepted: 02/12/2021] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized by progressive memory loss, declining language skills and other cognitive disorders. AD has brought great mental and economic burden to patients, families and society. However due to the complexity of AD's pathology, drugs developed for the treatment of AD often fail in clinical or experimental trials. The main problems of current anti-AD drugs are low efficacy due to mono-target method or side effects, especially high hepatotoxicity. To tackle these two main problems, multi-target-directed ligand (MTDL) based on "one molecule, multiple targets" has been studied. MTDLs can regulate multiple biological targets at the same time, so it has shown higher efficacy, better safety. As a natural active small molecule, α-mangostin (α-M) has shown potential multi-factor anti-AD activities in a series of studies, furthermore it also has a certain hepatoprotective effect. The good availability of α-M also provides support for its application in clinical research. In this work, multiple activities of α-M related to AD therapy were reviewed, which included anti-cholinesterase, anti-amyloid-cascade, anti-inflammation, anti-oxidative stress, low toxicity, hepatoprotective effects and drug formulation. It shows that α-M is a promising candidate for the treatment of AD.
Collapse
|
8
|
Trang Phan TK, Tran TQ, Nguyen Pham DT, Nguyen DT. Characterization, Release Pattern, and Cytotoxicity of Liposomes Loaded With α-Mangostin Isolated From Pericarp of Mangosteen (Garcinia mangostanaL.). Nat Prod Commun 2020. [DOI: 10.1177/1934578x20974559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The pericarp of Garcinia mangostana L. is a rich source of α-mangostin, which exhibits a wide range of pharmacological and biological activities. However, clinical use of this compound is limited due to its low water solubility. Therefore, its formulation with various delivery systems has been developed. In the present study, α-mangostin was isolated from G. mangostana pericarp extract and loaded onto newly synthesized liposomes. The system was evaluated for in vitro drug release at pH 5.5 and 7.4 during 96 hours of experiment, followed by cytotoxicity measurement against Hep-G2 cells. α-Mangostin was obtained in a high yield (1.86%) and its chemical structure was confirmed using nuclear magnetic resonance and Fourier-transform infrared spectroscopy. The compound was then loaded onto liposomes with relatively high efficiency (55.3% ± 2.3%). The compound was released in a sustained manner and exhibited significant cytotoxic activity against Hep-G2 cells. The present study provides important insights into liposome applications for α-mangostin delivery, thus improving the compound’s limitations and enabling further in vivo studies on its safety and efficacy.
Collapse
Affiliation(s)
- Thi Kieu Trang Phan
- Institute of Genome Research, Vietnam Academy of Science and Technology (VAST), Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Toan Quoc Tran
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Dung Thuy Nguyen Pham
- Center of Excellence for Biochemistry and Natural Products, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Duong Thanh Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| |
Collapse
|
9
|
Chaeyklinthes T, Tiyao V, Roytrakul S, Phaonakrop N, Showpittapornchai U, Pradidarcheep W. Proteomics study of the antifibrotic effects of α-mangostin in a rat model of renal fibrosis. ASIAN BIOMED 2019. [DOI: 10.1515/abm-2019-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Background
Renal fibrosis is a consequence of a “faulty” wound-healing mechanism that results in the accumulation of extracellular matrix, which could lead to the impairment of renal functions. α-Mangostin (AM) may prevent the formation of liver fibrosis, but there has yet to be a conclusive investigation of its effect on renal fibrosis.
Objectives
To investigate the renoprotective effect of AM against thioacetamide (TAA)-induced renal fibrosis in rats at the morphological and proteomic levels.
Methods
We divided 18 male Wistar rats into 3 groups: a control group, a TAA-treated group, and a TAA + AM group. The various agents used to treat the rats were administered intraperitoneally over 8 weeks. Subsequently, the morphology of renal tissue was analyzed by histology using Sirius Red staining and the relative amount of stained collagen fibers quantified using ImageJ analysis. One-dimensional gel liquid chromatography with tandem mass spectrometry (GeLC-MS/MS) was used to track levels of protein expression. Proteomic bioinformatics tools including STITCH were used to correlate the levels of markers known to be involved in fibrosis with Sirius Red-stained collagen scoring.
Results
Histology revealed that AM could reduce the relative amount of collagen fibers significantly compared with the TAA group. Proteomic analysis revealed the levels of 4 proteins were modulated by AM, namely CASP8 and FADD-like apoptosis regulator (Cflar), Ragulator complex protein LAMTOR3 (Lamtor3), mitogen-activated protein kinase kinase kinase 14 (Map3k14), and C-Jun-amino-terminal kinase-interacting protein 3 (Mapk8ip3).
Conclusion
AM can attenuate renal fibrosis by the suppression of pathways involving Cflar, Lamtor3, Map3k14, and Mapk8ip3.
Collapse
Affiliation(s)
- Thana Chaeyklinthes
- Department of Science, Mahidol University International College, Mahidol University , Nakhon Pathom 73170 , Thailand
| | - Vilailak Tiyao
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University , Bangkok 10110 , Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency , Pathum Thani 12120 , Thailand
| | - Narumon Phaonakrop
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency , Pathum Thani 12120 , Thailand
| | | | - Wisuit Pradidarcheep
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University , Bangkok 10110 , Thailand
| |
Collapse
|
10
|
Ashton MM, Dean OM, Walker AJ, Bortolasci CC, Ng CH, Hopwood M, Harvey BH, Möller M, McGrath JJ, Marx W, Turner A, Dodd S, Scott JG, Khoo JP, Walder K, Sarris J, Berk M. The Therapeutic Potential of Mangosteen Pericarp as an Adjunctive Therapy for Bipolar Disorder and Schizophrenia. Front Psychiatry 2019; 10:115. [PMID: 30918489 PMCID: PMC6424889 DOI: 10.3389/fpsyt.2019.00115] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/15/2019] [Indexed: 12/29/2022] Open
Abstract
New treatments are urgently needed for serious mental illnesses including bipolar disorder and schizophrenia. This review proposes that Garcinia mangostana Linn. (mangosteen) pericarp is a possible adjunctive therapeutic agent for these disorders. Research to date demonstrates that neurobiological properties of the mangosteen pericarp are well aligned with the current understanding of the pathophysiology of bipolar disorder and schizophrenia. Mangosteen pericarp has antioxidant, putative neuroprotective, anti-inflammatory, and putative mitochondrial enhancing properties, with animal studies demonstrating favorable pharmacotherapeutic benefits with respect to these disorders. This review summarizes evidence of its properties and supports the case for future studies to assess the utility of mangosteen pericarp as an adjunctive treatment option for mood and psychotic disorders.
Collapse
Affiliation(s)
- Melanie M. Ashton
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, University of Melbourne, Richmond, VIC, Australia
| | - Olivia M. Dean
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- Department of Psychiatry, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Adam J. Walker
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
| | - Chiara C. Bortolasci
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Chee H. Ng
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, University of Melbourne, Richmond, VIC, Australia
| | - Malcolm Hopwood
- Professorial Psychiatry Unit, Albert Road Clinic, University of Melbourne, Melbourne, VIC, Australia
| | - Brian H. Harvey
- Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy (Pharmacology), North West University, Potchefstroom, South Africa
| | - Marisa Möller
- Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy (Pharmacology), North West University, Potchefstroom, South Africa
| | - John J. McGrath
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, Australia
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD, Australia
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Wolfgang Marx
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
| | - Alyna Turner
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
- Department of Psychiatry, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Seetal Dodd
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
- Department of Psychiatry, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
- Centre of Youth Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - James G. Scott
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
- Metro North Mental Health, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Jon-Paul Khoo
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
| | - Ken Walder
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Jerome Sarris
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, University of Melbourne, Richmond, VIC, Australia
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- Department of Psychiatry, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
- Centre of Youth Mental Health, University of Melbourne, Parkville, VIC, Australia
- Orygen Youth Health Research Centre, Parkville, VIC, Australia
| |
Collapse
|
11
|
Sriyanti I, Edikresnha D, Rahma A, Munir MM, Rachmawati H, Khairurrijal K. Mangosteen pericarp extract embedded in electrospun PVP nanofiber mats: physicochemical properties and release mechanism of α-mangostin. Int J Nanomedicine 2018; 13:4927-4941. [PMID: 30214198 PMCID: PMC6124466 DOI: 10.2147/ijn.s167670] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background α-Mangostin is a major active compound of mangosteen (Garcinia mangostana L.) pericarp extract (MPE) that has potent antioxidant activity. Unfortunately, its poor aqueous solubility limits its therapeutic application. Purpose: This paper reports a promising approach to improve the clinical use of this substance through electrospinning technique. Methods Polyvinylpyrrolidone (PVP) was explored as a hydrophilic matrix to carry α-mangostin in MPE. Physicochemical properties of MPE:PVP nanofibers with various extract-to-polymer ratios were studied, including morphology, size, crystallinity, chemical interaction, and thermal behavior. Antioxidant activity and the release of α-mangostin, as the chemical marker of MPE, from the resulting fibers were investigated. Results It was obtained that the MPE:PVP nanofiber mats were flat, bead-free, and in a size range of 387–586 nm. Peak shifts in Fourier-transform infrared spectra of PVP in the presence of MPE suggested hydrogen bond formation between MPE and PVP. The differential scanning calorimetric study revealed a noticeable endothermic event at 119°C in MPE:PVP nanofibers, indicating vaporization of moisture residue. This confirmed hygroscopic property of PVP. The absence of crystalline peaks of MPE at 2θ of 5.99°, 11.62°, and 13.01° in the X-ray diffraction patterns of electrospun MPE:PVP nanofibers showed amorphization of MPE by PVP after being electrospun. The radical scavenging activity of MPE:PVP nanofibers exhibited lower IC50 value (55–67 µg/mL) in comparison with pure MPE (69 µg/mL). The PVP:MPE nanofibers tremendously increased the antioxidant activity of α-mangostin as well as its release rate. Applying high voltage in electrospinning process did not destroy the chemical structure of α-mangostin as indicated by retained in vitro antioxidant activity. The release rate of α-mangostin significantly increased from 35% to over 90% in 60 minutes. The release of α-mangostin from MPE:PVP nanofibers was dependent on α-mangostin concentration and particle size, as confirmed by the first-order kinetic model as well as the Hixson–Crowell kinetic model. Conclusion We successfully synthesized MPE:PVP nanofiber mats with enhanced antioxidant activity and release rate, which can potentially improve the therapeutic effects offered by MPE.
Collapse
Affiliation(s)
- Ida Sriyanti
- Department of Physics, Faculty of Mathematics and Natural Sciences, .,Research Center for Bioscience and Biotechnology, Institute for Research and Community Services, Institut Teknologi Bandung, Bandung, .,Department of Physics Education, Faculty of Education, Universitas Sriwijaya, Palembang
| | - Dhewa Edikresnha
- Department of Physics, Faculty of Mathematics and Natural Sciences, .,Research Center for Bioscience and Biotechnology, Institute for Research and Community Services, Institut Teknologi Bandung, Bandung,
| | - Annisa Rahma
- Pharmaceutics Research Division, School of Pharmacy,
| | - Muhammad Miftahul Munir
- Department of Physics, Faculty of Mathematics and Natural Sciences, .,Research Center for Bioscience and Biotechnology, Institute for Research and Community Services, Institut Teknologi Bandung, Bandung,
| | - Heni Rachmawati
- Pharmaceutics Research Division, School of Pharmacy, .,Research Center for Nanoscience and Nanotechnology, Institute for Research and Community Services, Institut Teknologi Bandung, Bandung, Indonesia,
| | - Khairurrijal Khairurrijal
- Department of Physics, Faculty of Mathematics and Natural Sciences, .,Research Center for Bioscience and Biotechnology, Institute for Research and Community Services, Institut Teknologi Bandung, Bandung,
| |
Collapse
|
12
|
Iqbal J, Abbasi BA, Batool R, Mahmood T, Ali B, Khalil AT, Kanwal S, Shah SA, Ahmad R. Potential phytocompounds for developing breast cancer therapeutics: Nature’s healing touch. Eur J Pharmacol 2018. [DOI: 10.1016/j.ejphar.2018.03.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Jaisupa N, Moongkarndi P, Lomarat P, Samer J, Tunrungtavee V, Muangpaisan W, Mangmool S. Mangosteen peel extract exhibits cellular antioxidant activity by induction of catalase and heme oxygenase-1 mRNA expression. J Food Biochem 2018. [DOI: 10.1111/jfbc.12511] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Nattapon Jaisupa
- Department of Pharmacology; Phramongkutklao College of Medicine; Bangkok Thailand
- Department of Pharmacology; Faculty of Pharmacy, Mahidol University; Bangkok Thailand
| | | | - Pattamapan Lomarat
- Department of Food Chemistry; Faculty of Pharmacy, Mahidol University; Bangkok Thailand
| | - Jutima Samer
- Department of Physiology; Faculty of Pharmacy, Mahidol University; Bangkok Thailand
| | - Vatchara Tunrungtavee
- Department of Microbiology; Faculty of Pharmacy, Mahidol University; Bangkok Thailand
| | - Weerasak Muangpaisan
- Department of Preventive and Social Medicine; Faculty of Medicine Siriraj Hospital, Mahidol University; Bangkok Thailand
| | - Supachoke Mangmool
- Department of Pharmacology; Faculty of Pharmacy, Mahidol University; Bangkok Thailand
| |
Collapse
|
14
|
Dual/multitargeted xanthone derivatives for Alzheimer's disease: where do we stand? Future Med Chem 2017; 9:1611-1630. [PMID: 28832188 DOI: 10.4155/fmc-2017-0086] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To date, the current therapy for Alzheimer's disease (AD) based on acetylcholinesterase inhibitors is only symptomatic, being its efficacy limited. Hence, the recent research has been focused in the development of different pharmacological approaches. Here we discuss the potential of xanthone derivatives as new anti-Alzheimer agents. The interference of xanthone derivatives with acetylcholinesterase and other molecular targets and cellular mechanisms associated with AD have been recently systematically reported. Therefore, we report xanthones with anticholinesterase, monoamine oxidase and amyloid β aggregation inhibitory activities as well as antioxidant properties, emphasizing xanthone derivatives with dual/multitarget activity as potential agents to treat AD. We also propose the structural features for these activities that may guide the design of new, more effective xanthone derivatives. [Formula: see text].
Collapse
|
15
|
Dietary Natural Products for Prevention and Treatment of Breast Cancer. Nutrients 2017; 9:nu9070728. [PMID: 28698459 PMCID: PMC5537842 DOI: 10.3390/nu9070728] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/30/2017] [Accepted: 06/30/2017] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most common cancer among females worldwide. Several epidemiological studies suggested the inverse correlation between the intake of vegetables and fruits and the incidence of breast cancer. Substantial experimental studies indicated that many dietary natural products could affect the development and progression of breast cancer, such as soy, pomegranate, mangosteen, citrus fruits, apple, grape, mango, cruciferous vegetables, ginger, garlic, black cumin, edible macro-fungi, and cereals. Their anti-breast cancer effects involve various mechanisms of action, such as downregulating ER-α expression and activity, inhibiting proliferation, migration, metastasis and angiogenesis of breast tumor cells, inducing apoptosis and cell cycle arrest, and sensitizing breast tumor cells to radiotherapy and chemotherapy. This review summarizes the potential role of dietary natural products and their major bioactive components in prevention and treatment of breast cancer, and special attention was paid to the mechanisms of action.
Collapse
|
16
|
Antioxidant-Enhancing Property of the Polar Fraction of Mangosteen Pericarp Extract and Evaluation of Its Safety in Humans. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1293036. [PMID: 27703599 PMCID: PMC5040814 DOI: 10.1155/2016/1293036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/20/2016] [Accepted: 07/27/2016] [Indexed: 01/04/2023]
Abstract
Crude extract from the pericarp of the mangosteen (mangosteen extract [ME]) has exhibited several medicinal properties in both animal models and human cell lines. Interestingly, the cytotoxic activities were always observed in nonpolar fraction of the extract whereas the potent antioxidant was often found in polar fraction. Although it has been demonstrated that the polar fraction of ME exhibited the antioxidant activity, the safety of the polar fraction of ME has never been thoroughly investigated in humans. In this study, we investigated the safety of oral administration of the polar fraction of ME in 11 healthy Thai volunteers. During a 24-week period of the study, only minor and tolerable side effects were reported; no serious side effects were documented. Blood chemistry studies also showed no liver damage or kidney dysfunction in all subjects. We also demonstrated antioxidant property of the polar fraction of ME both in vitro and in vivo. Interestingly, oral administration of the polar fraction of ME enhanced the antioxidant capability of red blood cells and decreased oxidative damage to proteins within red blood cells and whole blood.
Collapse
|
17
|
Guo M, Wang X, Lu X, Wang H, Brodelius PE. α-Mangostin Extraction from the Native Mangosteen (Garcinia mangostana L.) and the Binding Mechanisms of α-Mangostin to HSA or TRF. PLoS One 2016; 11:e0161566. [PMID: 27584012 PMCID: PMC5008840 DOI: 10.1371/journal.pone.0161566] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/08/2016] [Indexed: 01/13/2023] Open
Abstract
In order to obtain the biological active compound, α-mangostin, from the traditional native mangosteen (Garcinia mangostana L.), an extraction method for industrial application was explored. A high yield of α-mangostin (5.2%) was obtained by extraction from dried mangosteen pericarps with subsequent purification on macroporous resin HPD-400. The chemical structure of α-mangostin was verified mass spectrometry (MS), nuclear magnetic resonance (1H NMR and 13C NMR), infrared spectroscopy (IR) and UV-Vis spectroscopy. The purity of the obtained α-mangostin was 95.6% as determined by HPLC analysis. The binding of native α-mangostin to human serum albumin (HSA) or transferrin (TRF) was explored by combining spectral experiments with molecular modeling. The results showed that α-mangostin binds to HSA or TRF as static complexes but the binding affinities were different in different systems. The binding constants and thermodynamic parameters were measured by fluorescence spectroscopy and absorbance spectra. The association constant of HSA or TRF binding to α-mangostin is 6.4832×105 L/mol and 1.4652×105 L/mol at 298 K and 7.8619×105 L/mol and 1.1582×105 L/mol at 310 K, respectively. The binding distance, the energy transfer efficiency between α-mangostin and HSA or TRF were also obtained by virtue of the Förster theory of non-radiation energy transfer. The effect of α-mangostin on the HSA or TRF conformation was analyzed by synchronous spectrometry and fluorescence polarization studies. Molecular docking results reveal that the main interaction between α-mangostin and HSA is hydrophobic interactions, while the main interaction between α-mangostin and TRF is hydrogen bonding and Van der Waals forces. These results are consistent with spectral results.
Collapse
Affiliation(s)
- Ming Guo
- School of Science, Zhejiang Agricultural & Forestry University, Lin’an 311300, China
- * E-mail: (MG); (PB)
| | - Xiaomeng Wang
- School of Science, Zhejiang Agricultural & Forestry University, Lin’an 311300, China
| | - Xiaowang Lu
- School of Science, Zhejiang Agricultural & Forestry University, Lin’an 311300, China
| | - Hongzheng Wang
- School of Forestry and Bio-technology, Zhejiang Agricultural & Forestry University, Lin’an 311300, China
| | - Peter E. Brodelius
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 391 82 Kalmar, Sweden
- * E-mail: (MG); (PB)
| |
Collapse
|
18
|
Xu T, Deng Y, Zhao S, Shao Z. A New Xanthone from the Pericarp of Garcinia Mangostana. JOURNAL OF CHEMICAL RESEARCH 2016. [DOI: 10.3184/174751916x14495703232667] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mangostanate, a new prenylated xanthone, 1,3,6-trihydroxy-2-(3-methylbut-2-enyl)-8-(3-formyloxy-3-methylbutyl)–xanthone, has been isolated from the pericarp of Garcinia mangostana, together with five known compounds. The structures were elucidated using spectroscopy. All the components were tested for antioxidant activity.
Collapse
Affiliation(s)
- Tao Xu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 Renmin North Road, Shanghai, 201620, P.R. China
| | - Yunxia Deng
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 Renmin North Road, Shanghai, 201620, P.R. China
| | - Shengyin Zhao
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 Renmin North Road, Shanghai, 201620, P.R. China
| | - Zhiyu Shao
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 Renmin North Road, Shanghai, 201620, P.R. China
| |
Collapse
|
19
|
Ohno RI, Moroishi N, Sugawa H, Maejima K, Saigusa M, Yamanaka M, Nagai M, Yoshimura M, Amakura Y, Nagai R. Mangosteen pericarp extract inhibits the formation of pentosidine and ameliorates skin elasticity. J Clin Biochem Nutr 2015; 57:27-32. [PMID: 26236097 PMCID: PMC4512896 DOI: 10.3164/jcbn.15-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 02/12/2015] [Indexed: 01/22/2023] Open
Abstract
The inhibition of advanced glycation end-products (AGEs) by daily meals is believed to become an effective prevention for lifestyle-related diseases. In the present study, the inhibitory effect of hot water extracts of mangosteen (Garcinia mangostana L.) pericarp (WEM) on the formation of pentosidine, one of AGEs, in vitro and in vivo and the remedial effect on skin conditions were measured. WEM significantly inhibited pentosidine formation during gelatin incubation with ribose. Several compounds purified from WEM, such as garcimangosone D and rhodanthenone B, were identified as inhibitors of pentosidine formation. Oral administration of WEM at 100 mg/day to volunteer subjects for 3 months reduced the serum pentosidine contents. Because obtaining skin biopsies from healthy volunteers is ethically difficult, AGE accumulation in the skin was estimated by a fluorescence detector. The oral administration of WEM significantly reduced the skin autofluorescence intensity, demonstrating that WEM also reduced AGE accumulation in the skin. Furthermore, the elasticity and moisture content of the skin was also improved by WEM. These results demonstrate that intakes of WEM reduces the glycation stress and results in the improvement of skin conditions.
Collapse
Affiliation(s)
- Rei-Ichi Ohno
- Laboratory of Food and Regulation Biology, Graduate School of Agriculture, Tokai University, Kumamoto 869-1404, Japan
| | - Narumi Moroishi
- Laboratory of Food and Regulation Biology, Graduate School of Agriculture, Tokai University, Kumamoto 869-1404, Japan
| | - Hikari Sugawa
- Laboratory of Food and Regulation Biology, Graduate School of Agriculture, Tokai University, Kumamoto 869-1404, Japan
| | - Kazuhiro Maejima
- Food Development Laboratories, Nippon Shinyaku Co., Ltd., 14 Nishinosho-monguchi-cho, Kisshoin, Minami-ku, Kyoto 601-8550, Japan
| | - Musashi Saigusa
- Food Development Laboratories, Nippon Shinyaku Co., Ltd., 14 Nishinosho-monguchi-cho, Kisshoin, Minami-ku, Kyoto 601-8550, Japan
| | - Mikihiro Yamanaka
- Laboratory of Food and Regulation Biology, Graduate School of Agriculture, Tokai University, Kumamoto 869-1404, Japan ; Engineering Department 2, Product Development Center, New Business Development Division, SHARP Corporation, 2613-1 Ichinomoto-cho, Tenri, Nara 632-8567, Japan
| | - Mime Nagai
- Laboratory of Food and Regulation Biology, Graduate School of Agriculture, Tokai University, Kumamoto 869-1404, Japan
| | - Morio Yoshimura
- College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama-shi, Ehime 790-8578, Japan
| | - Yoshiaki Amakura
- College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama-shi, Ehime 790-8578, Japan
| | - Ryoji Nagai
- Laboratory of Food and Regulation Biology, Graduate School of Agriculture, Tokai University, Kumamoto 869-1404, Japan
| |
Collapse
|