1
|
Amadio P, Sandrini L, Zarà M, Barbieri SS, Ieraci A. NADPH-oxidases as potential pharmacological targets for thrombosis and depression comorbidity. Redox Biol 2024; 70:103060. [PMID: 38310682 PMCID: PMC10848036 DOI: 10.1016/j.redox.2024.103060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/06/2024] Open
Abstract
There is a complex interrelationship between the nervous system and the cardiovascular system. Comorbidities of cardiovascular diseases (CVD) with mental disorders, and vice versa, are prevalent. Adults with mental disorders such as anxiety and depression have a higher risk of developing CVD, and people with CVD have an increased risk of being diagnosed with mental disorders. Oxidative stress is one of the many pathways associated with the pathophysiology of brain and cardiovascular disease. Nicotinamide adenine dinucleotide phosphate oxidase (NOX) is one of the major generators of reactive oxygen species (ROS) in mammalian cells, as it is the enzyme that specifically produces superoxide. This review summarizes recent findings on the consequences of NOX activation in thrombosis and depression. It also discusses the therapeutic effects and pharmacological strategies of NOX inhibitors in CVD and brain disorders. A better comprehension of these processes could facilitate the development of new therapeutic approaches for the prevention and treatment of the comorbidity of thrombosis and depression.
Collapse
Affiliation(s)
- Patrizia Amadio
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Leonardo Sandrini
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Marta Zarà
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Silvia S Barbieri
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy.
| | - Alessandro Ieraci
- Department of Theoretical and Applied Sciences, eCampus University, 22060, Novedrate (CO), Italy; Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156, Milan, Italy.
| |
Collapse
|
2
|
Induced Inflammatory and Oxidative Markers in Cerebral Microvasculature by Mentally Depressive Stress. Mediators Inflamm 2023; 2023:4206316. [PMID: 36852396 PMCID: PMC9966573 DOI: 10.1155/2023/4206316] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/25/2022] [Accepted: 11/24/2022] [Indexed: 02/20/2023] Open
Abstract
Background Cerebrovascular disease (CVD) is recognized as the leading cause of permanent disability worldwide. Depressive disorders are associated with increased incidence of CVD. The goal of this study was to establish a chronic restraint stress (CRS) model for mice and examine the effect of stress on cerebrovascular inflammation and oxidative stress responses. Methods A total of forty 6-week-old male C57BL/6J mice were randomly divided into the CRS and control groups. In the CRS group (n = 20), mice were placed in a well-ventilated Plexiglas tube for 6 hours per day for 28 consecutive days. On day 29, open field tests (OFT) and sucrose preference tests (SPT) were performed to assess depressive-like behaviors for the two groups (n = 10/group). Macrophage infiltration into the brain tissue upon stress was analyzed by measuring expression of macrophage marker (CD68) with immunofluorescence in both the CRS and control groups (n = 10/group). Cerebral microvasculature was isolated from the CRS and controls (n = 10/group). mRNA and protein expressions of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), vascular cell adhesion molecule-1 (VCAM-1), and macrophage chemoattractant protein-1 (MCP-1) in the brain vessels were measured by real-time PCR and Western blot (n = 10/group). Reactive oxygen species (ROS), hydrogen peroxide (H2O2), and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) activities were quantified by ELISA to study the oxidative profile of the brain vessels (n = 10/group). Additionally, mRNA and protein expressions of NOX subunits (gp91phox, p47phox, p67phox, and p22phox) in the cerebrovascular endothelium were analyzed by real-time PCR and Western blot (n = 10/group). Results CRS decreased the total distances (p < 0.05) and the time spent in the center zone in OFT (p < 0.001) and sucrose preference test ratio in SPT (p < 0.01). Positive ratio of CD68+ was increased with CRS in the entire region of the brain (p < 0.001), reflecting increased macrophage infiltration. CRS increased the expression of inflammatory factors and oxidative stress in the cerebral microvasculature, including TNF-α (p < 0.001), IL-1β (p < 0.05), IL-6 (p < 0.05), VCAM-1 (p < 0.01), MCP-1 (p < 0.01), ROS (p < 0.001), and H2O2 (p < 0.001). NADPH oxidase (NOX) was activated by CRS (p < 0.01), and mRNA and protein expressions of NOX subunits (gp91phox, p47phox, p67phox, and p22phox) in brain microvasculature were found to be increased. Conclusions To our knowledge, this is the first study to demonstrate that CRS induces depressive stress and causes inflammatory and oxidative stress responses in the brain microvasculature.
Collapse
|
3
|
Helman TJ, Headrick JP, Stapelberg NJC, Braidy N. The sex-dependent response to psychosocial stress and ischaemic heart disease. Front Cardiovasc Med 2023; 10:1072042. [PMID: 37153459 PMCID: PMC10160413 DOI: 10.3389/fcvm.2023.1072042] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Stress is an important risk factor for modern chronic diseases, with distinct influences in males and females. The sex specificity of the mammalian stress response contributes to the sex-dependent development and impacts of coronary artery disease (CAD). Compared to men, women appear to have greater susceptibility to chronic forms of psychosocial stress, extending beyond an increased incidence of mood disorders to include a 2- to 4-fold higher risk of stress-dependent myocardial infarction in women, and up to 10-fold higher risk of Takotsubo syndrome-a stress-dependent coronary-myocardial disorder most prevalent in post-menopausal women. Sex differences arise at all levels of the stress response: from initial perception of stress to behavioural, cognitive, and affective responses and longer-term disease outcomes. These fundamental differences involve interactions between chromosomal and gonadal determinants, (mal)adaptive epigenetic modulation across the lifespan (particularly in early life), and the extrinsic influences of socio-cultural, economic, and environmental factors. Pre-clinical investigations of biological mechanisms support distinct early life programming and a heightened corticolimbic-noradrenaline-neuroinflammatory reactivity in females vs. males, among implicated determinants of the chronic stress response. Unravelling the intrinsic molecular, cellular and systems biological basis of these differences, and their interactions with external lifestyle/socio-cultural determinants, can guide preventative and therapeutic strategies to better target coronary heart disease in a tailored sex-specific manner.
Collapse
Affiliation(s)
- Tessa J. Helman
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, NSW, Sydney, Australia
- Correspondence: Tessa J. Helman
| | - John P. Headrick
- Schoolof Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia
| | | | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, NSW, Sydney, Australia
| |
Collapse
|
4
|
Wang T, Gao L, Yang Z, Wang F, Guo Y, Wang B, Hua R, Shang H, Xu J. Restraint Stress in Hypertensive Rats Activates the Intestinal Macrophages and Reduces Intestinal Barrier Accompanied by Intestinal Flora Dysbiosis. J Inflamm Res 2021; 14:1085-1110. [PMID: 33790622 PMCID: PMC8007621 DOI: 10.2147/jir.s294630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
Purpose Hypertension (HTN) is a major risk factor for cardiovascular disease. In recent years, there were numerous studies on the function of stress in HTN. However, the gut dysbiosis linked to hypertension in animal models under stress is still incompletely understood. Purpose of this study is to use multiple determination method to determine the juvenile stage intestinal bacteria, cytokines and changes in hormone levels. Methods Four groups of juvenile male spontaneously hypertensive rats (SHRs) and age-matched male Wistar-Kyoto (WKY) rats were randomly selected as control and experimental groups. Rats in the two stress groups were exposed to restraint stress for 3 hours per day for 7 consecutive days. In one day three times in the method of non-invasive type tail-cuff monitoring blood pressure. The detailed mechanism was illuminated based on the intestinal change using immunohistochemical and immunofluorescence staining and the stress-related hormone and inflammation factors were analyzed via ELISA method. The integrity of the epithelial barrier was assessed using FITC/HRP and the expression levels of proteins associated with the tight junction was detected by Western blot. The alteration of stress-related intestinal flora from ileocecal junction and distal colon were also analyzed using its 16S rDNA sequencing. Results The results indicate that acute stress rapidly increases mean arterial pressure which is positive correlation to hormone concentration, especially in SHR-stress group. Meanwhile, stress promoted the enhancement of epithelial permeability accompanied with a reduced expression of the tight junction-related protein and the macrophages (Mφ) aggregation to the lamina propria. There were remarkable significant increase of stress-related hormones and pro-inflammatory factor interleukin (IL)-6 along with a decrease in the diversity of intestinal flora and an imbalance in the F/B ratio. Conclusion Our results reveal that stress accompanied with HTN could significantly disrupt the domino effect between intestinal flora and homeostasis.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Physiology and Pathophysiology, Basic Medical College, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Lei Gao
- Department of Biomedical Informatics, School of Biomedical Engineering, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Zejun Yang
- Department of Clinical Medicine, Basic Medical College, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Feifei Wang
- Department of Clinical Medicine, Basic Medical College, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Yuexin Guo
- Department of Oral Medicine, Basic Medical College, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Boya Wang
- Eight Program of Clinical Medicine, Peking University Health Science Center, Beijing, 100081, People's Republic of China
| | - Rongxuan Hua
- Department of Clinical Medicine, Basic Medical College, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Hongwei Shang
- Experimental Center for Morphological Research Platform, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, Basic Medical College, Capital Medical University, Beijing, 100069, People's Republic of China
| |
Collapse
|
5
|
Golbidi S, Li H, Laher I. Oxidative Stress: A Unifying Mechanism for Cell Damage Induced by Noise, (Water-Pipe) Smoking, and Emotional Stress-Therapeutic Strategies Targeting Redox Imbalance. Antioxid Redox Signal 2018; 28:741-759. [PMID: 29212347 DOI: 10.1089/ars.2017.7257] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Modern technologies have eased our lives but these conveniences can impact our lifestyles in destructive ways. Noise pollution, mental stresses, and smoking (as a stress-relieving solution) are some environmental hazards that affect our well-being and healthcare budgets. Scrutinizing their pathophysiology could lead to solutions to reduce their harmful effects. Recent Advances: Oxidative stress plays an important role in initiating local and systemic inflammation after noise pollution, mental stress, and smoking. Lipid peroxidation and release of lysolipid by-products, disturbance in activation and function of nuclear factor erythroid 2-related factor 2 (Nrf2), induction of stress hormones and their secondary effects on intracellular kinases, and dysregulation of intracellular Ca2+ can all potentially trigger other vicious cycles. Recent clinical data suggest that boosting the antioxidant system through nonpharmacological measures, for example, lifestyle changes that include exercise have benefits that cannot easily be achieved with pharmacological interventions alone. CRITICAL ISSUES Indiscriminate manipulation of the cellular redox network could lead to a new series of ailments. An ideal approach requires meticulous scrutiny of redox balance mechanisms for individual pathologies so as to create new treatment strategies that target key pathways while minimizing side effects. FUTURE DIRECTIONS Extrapolating our understanding of redox balance to other debilitating conditions such as diabetes and the metabolic syndrome could potentially lead to devising a unifying therapeutic strategy. Antioxid. Redox Signal. 28, 741-759.
Collapse
Affiliation(s)
- Saeid Golbidi
- 1 Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia , Vancouver, Canada
| | - Huige Li
- 2 Department of Pharmacology, Johannes Gutenberg University Medical Center , Mainz, Germany
| | - Ismail Laher
- 1 Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia , Vancouver, Canada
| |
Collapse
|
6
|
Pernomian L, Moreira JD, Gomes MS. In the View of Endothelial Microparticles: Novel Perspectives for Diagnostic and Pharmacological Management of Cardiovascular Risk during Diabetes Distress. J Diabetes Res 2018; 2018:9685205. [PMID: 29862304 PMCID: PMC5971276 DOI: 10.1155/2018/9685205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/27/2018] [Accepted: 04/26/2018] [Indexed: 12/16/2022] Open
Abstract
Acute or chronic exposure to diabetes-related stressors triggers a specific psychological and behavior stress syndrome called diabetes distress, which underlies depressive symptoms in most diabetic patients. Distressed and/or depressive diabetic adults exhibit higher rates of cardiovascular mortality and morbidity, which have been correlated to macrovascular complications evoked by diabetic behavior stress. Recent experimental findings clearly point out that oxidative stress accounts for the vascular dysfunction initiated by the exposure to life stressors in diabetic conditions. Moreover, oxidative stress has been described as the main autocrine and paracrine mechanism of cardiovascular damage induced by endothelial microparticles (anuclear ectosomal microvesicles released from injured endothelial cells) in diabetic subjects. Such robust relationship between oxidative stress and cardiovascular diseases strongly suggests a critical role for endothelial microparticles as the primer messengers of the redox-dependent vascular dysfunction underlying diabetes distress. Here, we provide novel perspectives opened in the view of endothelial microparticles as promising diagnostic and pharmacotherapeutic biomarkers of cardiovascular risk in distressed diabetic patients.
Collapse
Affiliation(s)
- Larissa Pernomian
- Department of Biosciences Applied to Pharmacy, Faculty of Pharmaceutical Sciences from Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Jôsimar Dornelas Moreira
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mayara Santos Gomes
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences from Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
7
|
Li Y, Pagano PJ. Microvascular NADPH oxidase in health and disease. Free Radic Biol Med 2017; 109:33-47. [PMID: 28274817 PMCID: PMC5482368 DOI: 10.1016/j.freeradbiomed.2017.02.049] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/24/2017] [Accepted: 02/28/2017] [Indexed: 02/07/2023]
Abstract
The systemic and cerebral microcirculation contribute critically to regulation of local and global blood flow and perfusion pressure. Microvascular dysfunction, commonly seen in numerous cardiovascular pathologies, is associated with alterations in the oxidative environment including potentiated production of reactive oxygen species (ROS) and subsequent activation of redox signaling pathways. NADPH oxidases (Noxs) are a primary source of ROS in the vascular system and play a central role in cardiovascular health and disease. In this review, we focus on the roles of Noxs in ROS generation in resistance arterioles and capillaries, and summarize their contributions to microvascular physiology and pathophysiology in both systemic and cerebral microcirculation. In light of the accumulating evidence that Noxs are pivotal players in vascular dysfunction of resistance arterioles, selectively targeting Nox isozymes could emerge as a novel and effective therapeutic strategy for preventing and treating microvascular diseases.
Collapse
Affiliation(s)
- Yao Li
- Department of Pharmacology & Chemical Biology, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Patrick J Pagano
- Department of Pharmacology & Chemical Biology, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|