1
|
Ding H, Lu X, Ji X, Wang S, Jin J, Zhao M, Hang X, Zhao L. Synthesis of glucosamine-selenium compound and evaluation of its oral toxicity and in vitro anti-hepatitis B virus activity. Chem Biol Interact 2024; 402:111184. [PMID: 39103028 DOI: 10.1016/j.cbi.2024.111184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/23/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Selenium supplements are beneficial to human health, however, concerns regarding the toxicity of inorganic selenium have stimulated research on safer organic compounds. The main objective of this study was to develop a novel glucosamine-selenium compound (Se-GlcN), clarify its structure, and subsequently investigate its oral toxicity and in vitro anti-hepatitis B virus (HBV) activity. Electron microscopy, infrared, ultraviolet spectroscopy, nuclear magnetic resonance and thermogravimetric analyses revealed a unique binding mode of Se-GlcN, with the introduction of the Se-O bond at the C6 position, resulting in the formation of two carboxyl groups. In acute toxicity studies, the median lethal dose (LD50) of Se-GlcN in ICR mice was 92.31 mg/kg body weight (BW), with a 95 % confidence interval of 81.88-104.07 mg/kg BW. A 30-day subchronic toxicity study showed that 46.16 mg/kg BW Se-GlcN caused livers and kidneys damage in mice, whereas doses of 9.23 mg/kg BW and lower were safe for the livers and kidneys. In vitro studies, Se-GlcN at 1.25 μg/mL exhibited good anti-HBV activity, significantly reducing HBsAg, HBeAg, 3.5 kb HBV RNA and total HBV RNA by 45 %, 54 %, 84 %, 87 %, respectively. In conclusion, the Se-GlcN synthesized in this study provides potential possibilities and theoretical references for its use as an organic selenium supplement.
Collapse
Affiliation(s)
- Hong Ding
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai, 200237, China
| | - XiaoXuan Lu
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaoguo Ji
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai, 200237, China
| | - Shijie Wang
- Shanghai Changzheng Hospital, Shanghai, 200003, China
| | - Jiayang Jin
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai, 200237, China
| | - Mengyao Zhao
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaofeng Hang
- Shanghai Changzheng Hospital, Shanghai, 200003, China.
| | - Liming Zhao
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Changzheng Hospital, Shanghai, 200003, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, 200237, China.
| |
Collapse
|
2
|
Ledebuhr KNB, Nunes GD, Presa MH, Hartmann CM, Godoi B, Bortolatto CF, Brüning CA. Role of noradrenergic and dopaminergic systems in the antinociceptive effect of N-(3-(phenylselanyl)prop-2-yn-1-yl)benzamide in mice. Toxicol Appl Pharmacol 2024; 484:116881. [PMID: 38437958 DOI: 10.1016/j.taap.2024.116881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/01/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
Pain has a negative impact on public health, reducing quality of life. Unfortunately, current treatments are not fully effective and have adverse effects. Therefore, there is a need to develop new analgesic compounds. Due to promising results regarding the antinociceptive effect of N-(3-(phenylselanyl)prop-2-in-1-yl)benzamide (SePB), this study aimed to evaluate the participation of the dopaminergic and noradrenergic systems in this effect in mice, as well as its toxicity. To this, the antagonists sulpiride (D2/D3 receptor antagonist, 5 mg/kg), SCH-23390 (D1 receptor antagonist, 0.05 mg/kg), prazosin (α1 adrenergic receptor antagonist, 0.15 mg/kg), yohimbine (α2-adrenergic receptors, 0.15 mg/kg) and propranolol (non-selective β-adrenergic antagonist, 10 mg/kg) were administered intraperitoneally to mice 15 min before SePB (10 mg/kg, intragastrically), except for propranolol (20 min). After 26 min of SePB administration, the open field test was performed for 4 min to assess locomotor activity, followed by the tail immersion test to measure the nociceptive response. For the toxicity test, animals received a high dose of 300 mg/kg of SePB. SePB showed an increase in the latency for nociceptive response in the tail immersion test, and this effect was prevented by SCH-23390, yohimbine and propranolol, indicating the involvement of D1, α2 and β-adrenergic receptors in the antinociceptive mechanism of the SePB effect. No changes were observed in the open field test, and the toxicity assessment suggested that SePB has low potential to induce toxicity. These findings contribute to understanding SePB's mechanism of action, with a focus on the development of new alternatives for pain treatment.
Collapse
Affiliation(s)
- Kauane Nayara Bahr Ledebuhr
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical, and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010-900, Brazil
| | - Gustavo D'Avila Nunes
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical, and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010-900, Brazil
| | - Marcelo Heinemann Presa
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical, and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010-900, Brazil
| | - Cleidi Maria Hartmann
- Núcleo de Síntese, Aplicação e Análise de Compostos Orgânicos e Inorgânicos (NUSAACOI), Federal University of Fronteira Sul (UFFS), Cerro Largo, RS, Brazil
| | - Benhur Godoi
- Núcleo de Síntese, Aplicação e Análise de Compostos Orgânicos e Inorgânicos (NUSAACOI), Federal University of Fronteira Sul (UFFS), Cerro Largo, RS, Brazil
| | - Cristiani Folharini Bortolatto
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical, and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010-900, Brazil.
| | - César Augusto Brüning
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical, and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010-900, Brazil.
| |
Collapse
|
3
|
Antinociceptive effect of N-(3-(phenylselanyl)prop-2-yn-1-yl)benzamide in mice: Involvement of 5-HT1A and 5-HT2A/2C receptors. Chem Biol Interact 2022; 359:109918. [DOI: 10.1016/j.cbi.2022.109918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 11/23/2022]
|
4
|
Godoi B, Gritzenco F, Kazmierczak JC, Anjos T, Sperança A, Peixoto MLB, Godoi M, Ledebuhr KNB, Brüning CA, Zamin LL. Base-Free Synthesis and Synthetic Applications of Novel 3-(Organochalcogenyl)prop-2-yn-1-yl Esters: Promising Anticancer Agents. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1477-6470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AbstractThis manuscript portrays the CuI-catalyzed Csp-chalcogen bond formation through cross-coupling reactions of propynyl esters and diorganyl dichalcogenides by using DMSO as solvent, at room temperature, under base-free and open-to-air atmosphere conditions. Generally, the reactions have proceeded very smoothly, being tolerant to a range of substituents present in both substrates, affording the novel 3-(organochalcogenyl)prop-2-yn-1-yl esters in moderate to good yields. Noteworthy, the 3-(butylselanyl)prop-2-yn-1-yl benzoate proved to be useful as synthetic precursor in palladium-catalyzed Suzuki and Sonogashira type cross-coupling reactions by replacing the carbon–chalcogen bond by new carbon–carbon bond. Moreover, the 3-(phenylselanyl)prop-2-yn-1-yl benzoate has shown promising in vitro activity against glioblastoma cancer cells.
Collapse
Affiliation(s)
- Benhur Godoi
- Programa de Pós-Graduação em Ambiente e Tecnologias Sustentáveis, Núcleo de Síntese, Aplicação e Análise de Compostos Orgânicos e Inorgânicos, Federal University of Fronteira Sul
| | - Fabiane Gritzenco
- Programa de Pós-Graduação em Ambiente e Tecnologias Sustentáveis, Núcleo de Síntese, Aplicação e Análise de Compostos Orgânicos e Inorgânicos, Federal University of Fronteira Sul
| | | | - Thiago Anjos
- Departamento de Química, Universidade Federal de Santa Maria-UFSM
| | | | | | - Marcelo Godoi
- Escola de Química e Alimentos, Universidade Federal do Rio Grande
| | - Kauane N. B. Ledebuhr
- Laboratório de Bioquímica e Neurofarmacologia Molecular, Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas
| | - César Augusto Brüning
- Laboratório de Bioquímica e Neurofarmacologia Molecular, Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas
| | - Lauren L. Zamin
- Programa de Pós-Graduação em Ambiente e Tecnologias Sustentáveis, Núcleo de Síntese, Aplicação e Análise de Compostos Orgânicos e Inorgânicos, Federal University of Fronteira Sul
| |
Collapse
|
5
|
Nazıroğlu M, Öz A, Yıldızhan K. Selenium and Neurological Diseases: Focus on Peripheral Pain and TRP Channels. Curr Neuropharmacol 2021; 18:501-517. [PMID: 31903884 PMCID: PMC7457405 DOI: 10.2174/1570159x18666200106152631] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/26/2019] [Accepted: 01/04/2020] [Indexed: 12/18/2022] Open
Abstract
Pain is a complex physiological process that includes many components. Growing evidence supports the idea that oxidative stress and Ca2+ signaling pathways participate in pain detection by neurons. The main source of endogenous reactive oxygen species (ROS) is mitochondrial dysfunction induced by membrane depolarization, which is in turn caused by Ca2+ influx into the cytosol of neurons. ROS are controlled by antioxidants, including selenium. Selenium plays an important role in the nervous system, including the brain, where it acts as a cofactor for glutathione peroxidase and is incorporated into selenoproteins involved in antioxidant defenses. It has neuroprotective effects through modulation of excessive ROS production, inflammation, and Ca2+ overload in several diseases, including inflammatory pain, hypersensitivity, allodynia, diabetic neuropathic pain, and nociceptive pain. Ca2+ entry across membranes is mediated by different channels, including transient receptor potential (TRP) channels, some of which (e.g., TRPA1, TRPM2, TRPV1, and TRPV4) can be activated by oxidative stress and have a role in the induction of peripheral pain. The results of recent studies indicate the modulator roles of selenium in peripheral pain through inhibition of TRP channels in the dorsal root ganglia of experimental animals. This review summarizes the protective role of selenium in TRP channel regulation, Ca2+ signaling, apoptosis, and mitochondrial oxidative stress in peripheral pain induction.
Collapse
Affiliation(s)
- Mustafa Nazıroğlu
- Neuroscience Research Center, Suleyman Demirel University, Isparta, Turkey.,Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.,Drug Discovery Unit, BSN Health, Analysis and Innovation Ltd. Inc. Teknokent, Isparta, Turkey
| | - Ahmi Öz
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Kenan Yıldızhan
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
6
|
Modulation of COX-2, INF-ɣ, glutamatergic and opioid systems contributes to antinociceptive, anti-inflammatory and anti-hyperalgesic effects of bis(3-amino-2-pyridine) diselenide. Chem Biol Interact 2019; 311:108790. [DOI: 10.1016/j.cbi.2019.108790] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/23/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023]
|