1
|
Inoue D, Yamashita A, To H. Development of In Vitro Evaluation System for Assessing Drug Dissolution Considering Physiological Environment in Nasal Cavity. Pharmaceutics 2022; 14:pharmaceutics14112350. [PMID: 36365167 PMCID: PMC9697526 DOI: 10.3390/pharmaceutics14112350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Estimating the dissolution behavior of a solid in the nasal mucus is challenging for solid dosage forms designed for the nasal application as the solid dissolves into nasal mucus and permeates through the mucosa. In the current study, the dissolution behavior of powders in the artificial nasal fluid was investigated using a 3D-printed chamber system to establish in vitro evaluation system for the dissolution of solid formulations that can simulate the intranasal environment in vivo. The dissolution rates of the five model drugs correlated with their solubility (r2 = 0.956, p < 0.01). The permeation rate of drugs across the Calu-3 cell layers after powder application depends on the membrane permeability of the drug. An analysis of membrane permeability considering the dissolution of powders showed the possibility of characterizing whether the drug in the powder was dissolution-limited or permeation-limited. This suggests that critical information can be obtained to understand which mechanism is more effective for the improvement of drug absorption from powders. This study indicates that the elucidation of drug dissolution behavior into nasal mucus is an important factor for the formulation of nasal powders and that the in vitro system developed could be a useful tool.
Collapse
Affiliation(s)
- Daisuke Inoue
- Department of Medical Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Molecular Pharmaceutics Laboratory, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
- Correspondence:
| | - Ayari Yamashita
- Molecular Pharmaceutics Laboratory, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Hideto To
- Department of Medical Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
2
|
Advancements in Particle Engineering for Inhalation Delivery of Small Molecules and Biotherapeutics. Pharm Res 2022; 39:3047-3061. [PMID: 36071354 PMCID: PMC9451127 DOI: 10.1007/s11095-022-03363-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/06/2022] [Indexed: 12/27/2022]
Abstract
Dry powder inhalation formulations have become increasingly popular for local and systemic delivery of small molecules and biotherapeutics. Powder formulations provide distinct advantages over liquid formulations such as elimination of cold chain due to room temperature stability, improved portability, and the potential for increasing patient adherence. To become a viable product, it is essential to develop formulations that are stable (physically, chemically and/or biologically) and inhalable over the shelf-life. Physical particulate properties such as particle size, morphology and density, as well as chemical properties can significantly impact aerosol performance of the powder. This review will cover these critical attributes that can be engineered to enhance the dispersibility of inhalation powder formulations. Challenges in particle engineering for biotherapeutics will be assessed, followed by formulation strategies for overcoming the hurdles. Finally, the review will discuss recent examples of successful dry powder biotherapeutic formulations for inhalation delivery that have been clinically assessed.
Collapse
|
3
|
Chang RYK, Chow MY, Khanal D, Chen D, Chan HK. Dry powder pharmaceutical biologics for inhalation therapy. Adv Drug Deliv Rev 2021; 172:64-79. [PMID: 33705876 DOI: 10.1016/j.addr.2021.02.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/17/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
Therapeutic biologics such as genes, peptides, proteins, virus and cells provide clinical benefits and are becoming increasingly important tools in respiratory medicine. Pulmonary delivery of therapeutic biologics enables the potential for safe and effective treatment option for respiratory diseases due to high bioavailability while minimizing absorption into the systemic circulation, reducing off-target toxicity to other organs. Development of inhalable powder formulation requires stabilization of complex biological materials, and each type of biologics may present unique challenges and require different formulation strategy combined with manufacture process to ensure biological and physical stabilities during production and over shelf-life. This review examines key formulation strategies for stabilizing proteins, nucleic acids, virus (bacteriophages) and bacterial cells in inhalable powders. It also covers characterization methods used to assess physicochemical properties and aerosol performance of the powders, biological activity and structural integrity of the biologics, and chemical analysis at the nanoscale. Furthermore, the review includes manufacture technologies which are based on lyophilization and spray-drying as they have been applied to manufacture Food and Drug Administration (FDA)-approved protein powders. In perspective, formulation and manufacture of inhalable powders for biologic are highly challenging but attainable. The key requirements are the stability of both the biologics and the powder, along with the powder dispersibility. The formulation to be developed depends on the manufacture process as it will subject the biologics to different stresses (temperature, mechanical and chemical) which could lead to degradation by different pathways. Stabilizing excipients coupled with the suitable choice of process can alleviate the stability issues of inhaled powders of biologics.
Collapse
|
4
|
Yaqoubi S, Chan HK, Nokhodchi A, Dastmalchi S, Alizadeh AA, Barzegar-Jalali M, Adibkia K, Hamishehkar H. A quantitative approach to predicting lung deposition profiles of pharmaceutical powder aerosols. Int J Pharm 2021; 602:120568. [PMID: 33812969 DOI: 10.1016/j.ijpharm.2021.120568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022]
Abstract
Dry powder inhalers (DPI) are widely used systems for pulmonary delivery of therapeutics. The inhalation performance of DPIs is influenced by formulation features, inhaler device and inhalation pattern. The current review presents the affecting factors with great focus on powder characteristics which include particle size, shape, surface, density, hygroscopicity and crystallinity. The properties of a formulation are greatly influenced by a number of physicochemical factors of drug and added excipients. Since available particle engineering techniques result in particles with a set of modifications, it is difficult to distinguish the effect of an individual feature on powder deposition behavior. This necessitates developing a predictive model capable of describing all influential factors on dry powder inhaler delivery. Therefore, in the current study, a model was constructed to correlate the inhaler device properties, inhalation flow rate, particle characteristics and drug/excipient physicochemical properties with the resultant fine particle fraction. The r2 value of established correlation was 0.74 indicating 86% variability in FPF values is explained by the model with the mean absolute errors of 0.22 for the predicted values. The authors believe that this model is capable of predicting the lung deposition pattern of a formulation with an acceptable precision when the type of inhaler device, inhalation flow rate, physicochemical behavior of active and inactive ingredients and the particle characteristics of DPI formulations are considered.
Collapse
Affiliation(s)
- Shadi Yaqoubi
- Faculty of Pharmacy and Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, UK
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Alizadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Barzegar-Jalali
- Pharmaceutical Analysis Research Center, and Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Chow MYT, Chang RYK, Chan HK. Inhalation delivery technology for genome-editing of respiratory diseases. Adv Drug Deliv Rev 2021; 168:217-228. [PMID: 32512029 PMCID: PMC7274121 DOI: 10.1016/j.addr.2020.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/21/2020] [Accepted: 06/01/2020] [Indexed: 12/25/2022]
Abstract
The clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9) system has significant therapeutic potentials for lung congenital diseases such as cystic fibrosis, as well as other pulmonary disorders like lung cancer and obstructive diseases. Local administration of CRISPR/Cas9 therapeutics through inhalation can achieve high drug concentration and minimise systemic exposure. While the field is advancing with better understanding on the biological functions achieved by CRISPR/Cas9 systems, the lack of progress in inhalation formulation and delivery of the molecule may impede their clinical translation efficiently. This forward-looking review discussed the current status of formulations and delivery for inhalation of relevant biologics such as genes (plasmids and mRNAs) and proteins, emphasising on their design strategies and preparation methods. By adapting and optimising formulation strategies used for genes and proteins, we envisage that development of inhalable CRISPR/Cas9 liquid or powder formulations for inhalation administration can potentially be fast-tracked in near future.
Collapse
Affiliation(s)
- Michael Y T Chow
- Advanced Drug Delivery Group, School of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, School of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
6
|
Jiang L, Li Y, Yu J, Wang J, Ju J, Dai J. A dry powder inhalable formulation of salvianolic acids for the treatment of pulmonary fibrosis: safety, lung deposition, and pharmacokinetic study. Drug Deliv Transl Res 2020; 11:1958-1968. [PMID: 33009655 DOI: 10.1007/s13346-020-00857-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2020] [Indexed: 10/23/2022]
Abstract
Salvianolic acids (SAL), the main bioactive component extracted from Salvia miltiorrhiza, is a natural product with a reported anti-pulmonary fibrosis (PF) effect. SAL is commonly administrated orally; however, it has a low oral bioavailability (less than 5%). The objective of this work was to develop a new dry powder inhalable formulation intended to facilitate the access of SAL to the target place. We prepared the new SAL powder formulation containing L-arginine and 2% of lecithin using the ball milling technique. L-arginine was used to regulate the strong acidity of the SAL solution, and lecithin was added to disperse the powder and improve the flowability. The resulting powder had a content in salvianolic acid B (SALB, the main active principle of SAL) of 66.67%, a particle size of less than 5 μm and a good flowability. In vivo fluorescence imaging showed that the powder could be successfully aerosolized and delivered to the lung. The acute lung irritation study proved that the presence of L-arginine improved the biocompatibility of the powder. Finally, according to the pharmacokinetic study, the new SAL powder formulation was found to significantly increase drug concentration in the lung and the bioavailability. In conclusion, the new dry powder inhalable formulation of SAL developed in this study could be a strategy to enhance the performance of SAL at the lung level. Graphical abstract.
Collapse
Affiliation(s)
- Linxia Jiang
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing, 102488, China
| | - Yijun Li
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing, 102488, China
| | - Jiaqi Yu
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing, 102488, China
| | - Jianhong Wang
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing, 102488, China
| | - Jiarui Ju
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing, 102488, China
| | - Jundong Dai
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing, 102488, China.
| |
Collapse
|
7
|
Excipient-free pulmonary insulin dry powder: Pharmacokinetic and pharmacodynamics profiles in rats. J Control Release 2020; 323:412-420. [PMID: 32325175 DOI: 10.1016/j.jconrel.2020.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/04/2020] [Accepted: 04/09/2020] [Indexed: 12/27/2022]
Abstract
A novel pure insulin spray-dried powder for DPI product (Ins_SD) was studied with respect to physico-chemical stability, in vitro respirability, bioavailability, activity and tolerability. Ins_SD powder exhibited a very high in vitro respirability, independently of the DPI product preparation (manual or semi-automatic). Physico-chemical characteristics of Ins_SD powder remained within the pharmacopoeia limits during 6 months of storage at room temperature. PK/PD profiles were measured in rats that received the pulmonary powders by intratracheal insufflation and compared with Afrezza inhalation insulin. Due to the low drug powder mass to deliver, both insulin powders were diluted with mannitol. Insulin from Ins_SD was promptly absorbed (tmax 15 min and Cmaxx4.9 ± 1.5 mU/ml). Afrezza had a slower absorption (tmax 30 min and Cmax of 1.8 ± 0.37 mU/ml). After glucose injection, Ins_SD determined a rapid reduction of glucose level, similar to Afrezza. As reference, insulin subcutaneous injection showed a long-lasting hypoglycemic effect due to the slow absorption that prolonged insulin plasma level. In summary, Ins_SD product is suitable for post-prandial glucose control, providing a convenient and compliant product, in particular in the event of using a disposable device. Albeit the product has to be stored in fridge, its stability at room temperature allows the diabetic individual to carry the daily dose in normal conditions.
Collapse
|
8
|
Kong Y, Cai H, Xing H, Ren C, Kong D, Ning C, Li N, Zhao D, Chen X, Lu Y. Pulmonary delivery alters the disposition of raloxifene in rats. ACTA ACUST UNITED AC 2019; 72:185-196. [PMID: 31730290 DOI: 10.1111/jphp.13201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/26/2019] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Pulmonary delivery is an effective way to improve the bioavailability of drugs with extensive metabolism. This research was designed to study the different pharmacokinetic behaviours of small molecule drug after pulmonary delivery and intragastric (i.g) administration. METHODS Raloxifene, a selective estrogen receptor modulator with low oral bioavailability (~2%), was chosen as the model drug. Studies were conducted systematically in rats, including plasma pharmacokinetics, excretion, tissue distribution and metabolism. KEY FINDINGS Results showed that raloxifene solution dosed by intratracheal (i.t) administration exhibited relatively quick plasma elimination (t1/2 = 1.78 ± 0.14 h) and undetected absorption process, which was similar with intravenous injection. Compared with i.g administration, the bioavailability increased by 58 times, but the major route of excretion remained faecal excretion. Drug concentration on the bone and the target efficiency were improved by 49.6 times and five times, respectively. Benefited from quick elimination in the lung, chronic toxicity might be ignored. CONCLUSIONS Pulmonary administration improved the bioavailability of raloxifene and further increased the distribution on the target organ (bone), with no obvious impact on its excretory pattern.
Collapse
Affiliation(s)
- Ying Kong
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, China.,Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong, China
| | - Hui Cai
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, China
| | - Han Xing
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, China
| | - Chang Ren
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, China
| | - Dexuan Kong
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, China
| | - Chen Ning
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, China
| | - Ning Li
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, China
| | - Di Zhao
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, China
| | - Xijing Chen
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, China
| | - Yang Lu
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, China
| |
Collapse
|