1
|
Cho SJ, Song J, Kang DW, Kim JH, Kim H, Chung H, Cho HY. Impact of Banhabaekchulcheonmatang (Banxia Baizhu Tianma Tang) and Hwangryeonhaedoktang (Huang Lian Jie Du Tang) on edoxaban: Herb-drug interaction study in healthy subjects. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118997. [PMID: 39461388 DOI: 10.1016/j.jep.2024.118997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/19/2024] [Accepted: 10/24/2024] [Indexed: 10/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Concurrent use of traditional herbal medicines and conventional drugs, particularly for stroke treatment, is widespread, raising concerns about potential drug interactions. AIM OF THE STUDY This clinical study aimed to investigate interactions between edoxaban, a direct oral anticoagulant, and two traditional herbal medicines commonly used for stroke: Banhabaekchulcheonmatang (BBCT) and Hwangryeonhaedoktang (HRHDT). MATERIALS AND METHODS Korean healthy volunteers participated in a randomized, open-label, three-period, three-treatment, two-sequence clinical study. Treatments consisted of a single oral dose of edoxaban tablet (60 mg) in the presence or absence of multiple doses of BBCT or HRHDT three times daily for six days. Pharmacokinetic and pharmacodynamic parameters of edoxaban and its active metabolite M4 were assessed following administration of edoxaban alone or in co-administration with BBCT or HRHDT. RESULTS When edoxaban was co-administered with BBCT or HRHDT, the area under the curve (AUC) of edoxaban remained unaffected. However, its peak concentrations (Cmax) were decreased by 18.5%-28.1%. Similarly, co-administration of edoxaban with BBCT or HRHDT slightly decreased the AUC of M4 and reduced its Cmax by 16.8%-27.1%. Results revealed that BBCT and HRHDT had a minor impact on pharmacokinetics of edoxaban and M4. Despite alterations in systemic exposures, all pharmacodynamic parameters of edoxaban derived from activated partial thromboplastin time and prothrombin time were equivalent irrespective of herbal medicine co-administration. CONCLUSIONS These findings contribute to our understanding of potential interactions between conventional anticoagulants and traditional herbal medicines, highlighting the need for comprehensive evaluation in clinical practice.
Collapse
Affiliation(s)
- Seok-Jin Cho
- College of Pharmacy, CHA University, Seongnam, Gyeonggi, 13488, Republic of Korea.
| | - Jungbin Song
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Dong Wook Kang
- College of Pharmacy, CHA University, Seongnam, Gyeonggi, 13488, Republic of Korea.
| | - Ju Hee Kim
- College of Pharmacy, CHA University, Seongnam, Gyeonggi, 13488, Republic of Korea.
| | - Hocheol Kim
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Hyewon Chung
- Department of Clinical Pharmacology and Toxicology, Guro Hospital, Korea University College of Medicine, Seoul, 08308, Republic of Korea.
| | - Hea-Young Cho
- College of Pharmacy, CHA University, Seongnam, Gyeonggi, 13488, Republic of Korea.
| |
Collapse
|
2
|
Yan X, Zhang Y, Peng Y, Li X. The water extract of Radix scutellariae, its total flavonoids and baicalin inhibited CYP7A1 expression, improved bile acid, and glycolipid metabolism in T2DM mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115238. [PMID: 35351576 DOI: 10.1016/j.jep.2022.115238] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Radix scutellariae (the root of Scutellaria baicalensis Georgi), is a traditional Chinese medicine (TCM) used to treat type 2 diabetes mellitus (T2DM). Abundant flavonoids are the antidiabetic components of Radix scutellariae, of which baicalin (Baicalein 7-O-glucuronide, BG) is the major bioactive component. Our previous studies found that the water extract of Radix scutellariae (WESB) could exert hypoglycemic and hypolipidemic efficacies by adjusting the ileum FXR-medicated interaction between gut microbiota and bile acid (BA) metabolism. However, it remains unclear whether WESB and its biologically active ingredients exert an antidiabetic effect through bile acid signaling mediated by FXR-CYP7A1. AIMS OF THE STUDY To explore the mechanism of WESB and its total flavonoids (TF) further and BG on BA signals and glycolipid metabolism in T2DM mice. MATERIALS AND METHODS The antidiabetic effects of WESB, TF and BG were evaluated by indexing the body weight, fasting blood glucose (FBG) and oral glucose tolerance test (OGTT) in HFD/STZ-induced (high-fat diet and streptozocin) diabetic mice, and comparing them with the positive control (metformin). The lipids in the mouse liver and the total bile acids (TBA) in the mouse liver and bile were detected by commercial kits. The concentration of BAs in the mouse feces was determined by liquid chromatography-tandem mass spectrometry. The protein expression levels of cholesterol 7α-hydroxylase (CYP7A1), farnesol X receptor (FXR), etc., in the liver and/or ileum, play a key role in the BAs metabolism of T2DM mice were evaluated by immunoblot analysis. RESULTS The hyperglycemia and impaired glucose tolerance of T2DM mice were improved after WESB, TF and BG treatment. Especially after BG administration, the levels of low-density lipoprotein-cholesterol (LDL-c) and total glyceride (TG) in the T2DM mouse liver were significantly decreased (p < 0.05). While the level of high-density lipoprotein cholesterol (HDL-c) was significant increased (p < 0.001). Meanwhile, the levels of TBA in both the liver and bile of T2DM mice were significantly decreased by BG (p < 0.05). Moreover, the high expression of CYP7A1 in the liver of T2DM mice was significantly inhibited by WESB, TF and BG (p < 0.05), and the high expression of FXR in the ileum of T2DM mice was significantly inhibited by TF (p < 0.05). CONCLUSION These results indicated that the hypoglycemic effects of WESB, TF and BG might be exerted by inhibiting the expression of CYP7A1 in T2DM mice, and TF inhibited expression of intestinal FXR by inducing changes in fecal BA profile. BG significantly improved hepatic lipid metabolism. Moreover, BG reduced lipid accumulation in the liver and bile by inhibiting the expression of CYP7A1 in T2DM mice. These findings provide useful explanations for the antidiabetic mechanism of Radix scutellariae.
Collapse
Affiliation(s)
- Xiumei Yan
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Yulong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Ying Peng
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Xiaobo Li
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.
| |
Collapse
|
3
|
Terada T, Kanou M, Hashimoto Y, Tanimoto M, Sugimoto M. Microfluidic Preparation of Nanoparticles Using Poly(ethylene Glycol)-distearoylphosphatidylethanolamine for Solubilizing Poorly Soluble Drugs. J Pharm Sci 2021; 111:1709-1718. [PMID: 34863973 DOI: 10.1016/j.xphs.2021.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2022]
Abstract
Microfluidic systems have shown promise for the production of nanoparticles from mixtures of aqueous and organic solutions, including liposomes, oil-in-water nanoemulsions, and lipid nanoparticles. They offer important practical advantages, including low reagent consumption, parallelization, and automation, and are ideally suited to high-throughput optimization and scale-up. In this study, we developed a new method for the formulation of nanoparticles of poorly soluble drug compounds. The nanoparticles, prepared by microfluidic mixing using only poly(ethylene glycol)-distearoylphosphatidylethanolamine (PEG-DSPE), were highly stable and uniform in size. By mixing an organic solution of poorly soluble cyclosporine A and PEG-DSPE with water in the microfluidic device, amorphous cyclosporine A nanoparticles (CsA-NPs), with an encapsulation efficiency of approximately 90% and a particle size of 100-200 nm, were obtained. Analysis of the microfluidic process parameters revealed that particle size distribution was significantly controlled by the flow rate ratio. The obtained CsA-NPs were stable for up to 150 days at room temperature, and the pharmacokinetic profile was similar to that of the commercial formulation containing Cremophor EL, which has been reported to induce serious adverse effects after intravenous administration. These findings provide a useful technical platform for the safe solubilization of poorly soluble compounds and their subsequent pharmaceutical development.
Collapse
Affiliation(s)
- Takeshi Terada
- Pharmaceutical Research Department, Mitsubishi Tanabe Pharma Corporation, 3-16-89, Kashima, Yodogawa-ku, Osaka-shi, Osaka, 532-8505, Japan..
| | - Masahito Kanou
- Pharmaceutical Research Department, Mitsubishi Tanabe Pharma Corporation, 3-16-89, Kashima, Yodogawa-ku, Osaka-shi, Osaka, 532-8505, Japan
| | - Yousuke Hashimoto
- Pharmaceutical Research Department, Mitsubishi Tanabe Pharma Corporation, 3-16-89, Kashima, Yodogawa-ku, Osaka-shi, Osaka, 532-8505, Japan
| | - Masahiko Tanimoto
- Pharmaceutical Research Department, Mitsubishi Tanabe Pharma Corporation, 3-16-89, Kashima, Yodogawa-ku, Osaka-shi, Osaka, 532-8505, Japan
| | - Masaaki Sugimoto
- Pharmaceutical Research Department, Mitsubishi Tanabe Pharma Corporation, 3-16-89, Kashima, Yodogawa-ku, Osaka-shi, Osaka, 532-8505, Japan
| |
Collapse
|
4
|
Wei J, Liu R, Zhang J, Liu S, Yan D, Wen X, Tian X. Baicalin Enhanced Oral Bioavailability of Sorafenib in Rats by Inducing Intestine Absorption. Front Pharmacol 2021; 12:761763. [PMID: 34819863 PMCID: PMC8606670 DOI: 10.3389/fphar.2021.761763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/04/2021] [Indexed: 12/25/2022] Open
Abstract
Background: Sorafenib (SOR) is an oral, potent, selective, irreversible epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) used as the first-line therapy for advanced hepatocellular carcinoma (HCC). Baicalin (BG) is used as adjuvant therapy for hepatitis, which accounts for the leading cause of the development of HCC, and is commonly coadministered with SOR in clinic. The purpose of the current study was to characterize the pharmacokinetic changes of SOR and the potential mechanism when SOR is administered concomitantly with BG in rats for single and multiple doses. Methods: Parallel randomized pharmacokinetic studies were performed in rats which received SOR (50 mg/kg, i.g.) alone or coadministered with BG (160 mg/kg, i.g.) for single and multiple doses (7 days). Plasma SOR levels were quantified by ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS). Rat liver microsomes (RLMs) which isolated from their livers were analyzed for CYP3A and SOR metabolism activities. The inhibitory effect of BG on the metabolism of SOR was also assessed in pooled human liver microsomes (HLMs). The effects of BG on the intestine absorption behaviors of SOR were assessed in the in situ single-pass rat intestinal perfusion model. Results: Coadministration with BG (160 mg/kg, i.g.) for single or multiple doses significantly increased the Cmax, AUC0–t, and AUC0–∞ of orally administered SOR by 1.68-, 1.73-, 1.70-fold and 2.02-, 1.65-, 1.66- fold in male rats and by 1.85-, 1.68-, 1.68-fold and 1.57-, 1.25-, 1.24- fold in female rats, respectively (p < 0.01 or p < 0.05). In vitro incubation assays demonstrated that there were no significant differences of Km, Vmax, and CLint of 1-OH MDZ and SOR N-oxide in RLMs between control and multiple doses of BG-treated groups. BG has no obvious inhibitory effects on the metabolism of SOR in HLMs. In comparison with SOR alone, combining with BG significantly increased the permeability coefficient (Peff) and absorption rate constant (Ka) of the SOR in situ single-pass rat intestinal perfusion model. Conclusion: Notably enhanced oral bioavailability of SOR by combination with BG in rats may mainly account for BG-induced SOR absorption. A greater understanding of potential DDIs between BG and SOR in rats makes major contributions to clinical rational multidrug therapy in HCC patients. Clinical trials in humans and HCC patients need to be further confirmed in the subsequent study.
Collapse
Affiliation(s)
- Jingyao Wei
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Ruijuan Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Jiali Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Shuaibing Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Dan Yan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Xueqian Wen
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Zhou X, Fu L, Wang P, Yang L, Zhu X, Li CG. Drug-herb interactions between Scutellaria baicalensis and pharmaceutical drugs: Insights from experimental studies, mechanistic actions to clinical applications. Biomed Pharmacother 2021; 138:111445. [PMID: 33711551 DOI: 10.1016/j.biopha.2021.111445] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Whilst the popular use of herbal medicine globally, it poses challenges in managing potential drug-herb interaction. There are two folds of the drug-herb interaction, a beneficial interaction that may improve therapeutic outcome and minimise the toxicity of drug desirably; by contrast, negative interaction may evoke unwanted clinical consequences, especially with drugs of narrow therapeutic index. Scutellaria baicalensis Georgi is one of the most popular medicinal plants used in Asian countries. It has been widely used for treating various diseases and conditions such as cancer, diabetes, inflammation, and oxidative stress. Studies on its extract and bioactive compounds have shown pharmacodynamic and pharmacokinetic interactions with a wide range of pharmaceutical drugs as evidenced by plenty of in vitro, in vivo and clinical studies. Notably, S. baicalensis and its bioactives including baicalein, baicalin and wogonin exhibited synergistic interactions with many pharmaceutical drugs to enhance their efficacy, reduce toxicity or overcome drug resistance to combat complex diseases such as cancer, diabetes and infectious diseases. On the other hand, S. baicalensis and its bioactives also affected the pharmacokinetic profile of many drugs in absorption, distribution, metabolism and elimination via the regulatory actions of the efflux pumps and cytochrome P450 enzymes. This review provides comprehensive references of the observed pharmacodynamic and pharmacokinetic drug interactions of Scutellaria baicalensis and its bioactives. We have elucidated the interaction with detailed mechanistic actions, identified the knowledge gaps for future research and potential clinical implications. Such knowledge is important for the practice of both conventional and complementary medicines, and it is essential to ensure the safe use of related herbal medicines. The review may be of great interest to practitioners, consumers, clinicians who require comprehensive information on the possible drug interactions with S. baicalensis and its bioactives.
Collapse
Affiliation(s)
- Xian Zhou
- NICM Health Research Institute, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Ling Fu
- Chinese Medicine Centre, School of Health Sciences, Western Sydney University, Penrith, NSW 2751, Australia; The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, People's Republic of China; The Second Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Second Chinese Medicine Hospital), Nanjing, Jiangsu 210017, People's Republic of China
| | - Pengli Wang
- Chinese Medicine Centre, School of Health Sciences, Western Sydney University, Penrith, NSW 2751, Australia; School of Chinese Medicine, School of Integrated Chinese & Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, People's Republic of China
| | - Lan Yang
- Chinese Medicine Centre, School of Health Sciences, Western Sydney University, Penrith, NSW 2751, Australia; School of Chinese Medicine, School of Integrated Chinese & Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, People's Republic of China
| | - Xiaoshu Zhu
- Chinese Medicine Centre, School of Health Sciences, Western Sydney University, Penrith, NSW 2751, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| |
Collapse
|
6
|
Efficacy and mechanism of actions of natural antimicrobial drugs. Pharmacol Ther 2020; 216:107671. [PMID: 32916205 DOI: 10.1016/j.pharmthera.2020.107671] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Microbial infections have significantly increased over the last decades, and the mortality rates remain unacceptably high. The emergence of new resistance patterns and the spread of new viruses challenge the eradication of infectious diseases. The declining efficacy of antimicrobial drugs has become a global public health problem. Natural products derived from natural sources, such as plants, animals, and microorganisms, have significant efficacy for the treatment of infectious diseases accompanied by less adverse effects, synergy, and ability to overcome drug resistance. As the Chinese female scientist Youyou Tu received the Nobel Prize for the antimalarial drug artemisinin, antimicrobial drugs developed from Traditional Chinese Medicine are expected to receive increasing attention again. This review summarizes the antimicrobial agents derived from natural products approved for nearly 20 years and describes their efficacy and mode of action. The aim of this unit is to review the current status of antimicrobial drugs from natural products in order to increase the value of natural products as a source of novel drug candidates for infectious diseases.
Collapse
|
7
|
Rocha-Pereira C, Ghanem CI, Silva R, Casanova AG, Duarte-Araújo M, Gonçalves-Monteiro S, Sousa E, Bastos MDL, Remião F. P-glycoprotein activation by 1-(propan-2-ylamino)-4-propoxy-9H-thioxanthen-9-one (TX5) in rat distal ileum: ex vivo and in vivo studies. Toxicol Appl Pharmacol 2020; 386:114832. [PMID: 31756430 DOI: 10.1016/j.taap.2019.114832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/14/2019] [Accepted: 11/16/2019] [Indexed: 12/30/2022]
Abstract
In vitro studies showed that 1-(propan-2-ylamino)-4-propoxy-9H-thioxanthen-9-one (TX5) increases P-glycoprotein (P-gp) expression and activity in Caco-2 cells, preventing xenobiotic toxicity. The present study aimed at investigating TX5 effects on P-gp expression/activity using Wistar Han rats: a) in vivo, evaluating intestinal P-gp activity; b) ex vivo, evaluating P-gp expression in ileum brush border membranes (BBM) and P-gp activity in everted intestinal sacs; c) ex vivo, evaluating P-gp activity in everted intestinal sacs of the distal and proximal ileum. TX5 (30 mg/kg, b.w.), gavage, activated P-gp in vivo, given the significant decrease in the AUC of digoxin (0.25 mg/kg, b.w.). The efflux of rhodamine 123 (300 μM), a P-gp fluorescent substrate, significantly increased in TX5-treated everted sacs from the distal portion of the rat ileum, when P-gp activity was evaluated in the presence of TX5 (20 μM), an effect abolished by the P-gp inhibitor verapamil (100 μM). No increases on P-gp expression or activity were found in TX5-treated BBM of the distal ileum and everted distal sacs, respectively, 24 h after TX5 (10 mg/kg, b.w.) administration. In vivo, no differences were found on digoxin portal concentration between control (digoxin 0.025 mg/kg, b.w., intraduodenal) and TX5-treated (digoxin+TX5 20 μM, intraduodenal) rats. The observed discrepancies in digoxin results can be related to differences in TX5 dose administered and used methodologies. Thus, the results show that TX5 activates P-gp at the distal portion of the rat ileum, and, at the higher dose tested (30 mg/kg, b.w.), seems to modulate in vivo the AUC of P-gp substrates.
Collapse
Affiliation(s)
- Carolina Rocha-Pereira
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Carolina I Ghanem
- Instituto de Investigaciones Farmacológicas (ININFA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.
| | - Renata Silva
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Alfredo G Casanova
- Unidad de Toxicología, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain.
| | - Margarida Duarte-Araújo
- LAQV/REQUIMTE, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Salomé Gonçalves-Monteiro
- LAQV/REQUIMTE, Laboratório de Farmacologia, Departamento de Ciências do Medicamento, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Emília Sousa
- CIIMAR, Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Maria de Lourdes Bastos
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Fernando Remião
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
8
|
Liu R, Li X, Wei J, Liu S, Chang Y, Zhang J, Zhang J, Zhang X, Fuhr U, Taubert M, Tian X. A Single Dose of Baicalin Has No Clinically Significant Effect on the Pharmacokinetics of Cyclosporine A in Healthy Chinese Volunteers. Front Pharmacol 2019; 10:518. [PMID: 31156436 PMCID: PMC6528491 DOI: 10.3389/fphar.2019.00518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/24/2019] [Indexed: 12/02/2022] Open
Abstract
Despite its narrow therapeutic window and large interindividual variability, cyclosporine A (CsA) is the first-line therapy following organ transplantation. Metabolized mainly by CYP3A and being a substrate of P-glycoprotein (P-gp), CsA is susceptible to drug–drug interactions. Baicalin (BG) is a drug used for adjuvant therapy of hepatitis in traditional Chinese medicine. Since its aglycone baicalein (B) inhibits CYP3A and P-gP, co-administration might affect CsA pharmacokinetics. This study investigated the effect of BG on CsA pharmacokinetics. In a two-period study, 16 healthy volunteers received a single 200 mg oral CsA dose alone (reference period) or in combination with 500 mg BG (test period). Pharmacokinetic evaluation of CsA was carried out using non-compartmental analysis (NCA) and population pharmacokinetics (popPK). Treatments were compared using the standard bioequivalence method. Based on NCA, 90% CIs of AUC and Cmax test-to-reference ratios were within bioequivalence boundaries. In the popPK analysis, a two-compartment model (clearance/F 62.8 L/h, central and peripheral volume of distribution/F 254 L and 388 L) with transit compartments for absorption appropriately described CsA concentrations. No clinically relevant effect of 500 mg BG co-administration on CsA pharmacokinetics was identified and both treatments were well tolerated.
Collapse
Affiliation(s)
- Ruijuan Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, China
| | - Xia Li
- Department I of Pharmacology, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, University of Cologne, Cologne, Germany
| | - Jingyao Wei
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, China
| | - Shuaibing Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, China
| | - Yuanyuan Chang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, China
| | - Jiali Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, China
| | - Ji Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, China
| | - Uwe Fuhr
- Department I of Pharmacology, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, University of Cologne, Cologne, Germany
| | - Max Taubert
- Department I of Pharmacology, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, University of Cologne, Cologne, Germany
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, China
| |
Collapse
|