1
|
Duarte JL, Di Filippo LD, Ribeiro TDC, Silva ACDJ, Hage-Melim LIDS, Duchon S, Carrasco D, Pinto MC, Corbel V, Chorilli M. Effective Mosquito Repellents: Myrcene- and Cymene-Loaded Nanohydrogels against Aedes aegypti. Pharmaceutics 2024; 16:1096. [PMID: 39204441 PMCID: PMC11360331 DOI: 10.3390/pharmaceutics16081096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Aedes mosquito-borne diseases remain a significant global health threat, necessitating effective control strategies. This study introduces monoterpenes-based nanohydrogels for potential use as repellents against Aedes aegypti, the primary dengue vector worldwide. We formulated hydrogels using cymene- and myrcene-based nanoemulsions with different polymers: chitosan, carboxymethylcellulose (CMC), and carbopol®. Our evaluations of rheological, texture, and bioadhesive properties identified CMC hydrogel as the most promising gelling agent for topical application, exhibiting sustained monoterpene release over 12 h with low skin permeation and high retention in the stratum corneum. Myrcene-loaded CMC hydrogel achieved a 57% feeding deterrence compared to 47% with cymene hydrogel in the mosquito membrane-feeding model. Molecular docking studies revealed interactions between myrcene and an essential amino acid (Ile116) in the Ae. aegypti odorant-binding protein 22 (AeOBP22), corroborating its higher repellent efficacy. These findings suggest that myrcene-loaded CMC hydrogels offer a promising, minimally invasive strategy for personal protection against Ae. aegypti and warrant further investigation to optimize monoterpene concentrations for vector control.
Collapse
Affiliation(s)
- Jonatas Lobato Duarte
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil; (J.L.D.); (L.D.D.F.); (T.d.C.R.)
| | - Leonardo Delello Di Filippo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil; (J.L.D.); (L.D.D.F.); (T.d.C.R.)
| | - Tais de Cássia Ribeiro
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil; (J.L.D.); (L.D.D.F.); (T.d.C.R.)
| | - Ana Carolina de Jesus Silva
- Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá 68903-419, Amapá, Brazil; (A.C.d.J.S.); (L.I.d.S.H.-M.)
| | - Lorane Izabel da Silva Hage-Melim
- Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá 68903-419, Amapá, Brazil; (A.C.d.J.S.); (L.I.d.S.H.-M.)
| | - Stéphane Duchon
- IRD, CNRS, University of Montpellier, MIVEGEC, 34000 Montpellier, France; (S.D.); (D.C.); (V.C.)
| | - David Carrasco
- IRD, CNRS, University of Montpellier, MIVEGEC, 34000 Montpellier, France; (S.D.); (D.C.); (V.C.)
| | - Mara Cristina Pinto
- Departamento de Ciências Biológicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Araraquara 14800-060, São Paulo, Brazil;
| | - Vincent Corbel
- IRD, CNRS, University of Montpellier, MIVEGEC, 34000 Montpellier, France; (S.D.); (D.C.); (V.C.)
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil; (J.L.D.); (L.D.D.F.); (T.d.C.R.)
| |
Collapse
|
2
|
Dinu S, Dumitrel SI, Buzatu R, Dinu DC, Popovici R, Szuhanek C, Matichescu A. New Perspectives about Relevant Natural Compounds for Current Dentistry Research. Life (Basel) 2024; 14:951. [PMID: 39202693 PMCID: PMC11355384 DOI: 10.3390/life14080951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
Natural compounds have been used since the earliest civilizations and remain, to this day, a safer alternative for treating various dental problems. These present antimicrobial, anti-inflammatory, antioxidant, analgesic, and antimutagenic effects, making them useful in the prophylactic and curative treatment of various oral diseases such as infections, gingivitis, periodontitis, and even cancer. Due to the high incidence of unpleasant adverse reactions to synthetic compounds, natural products tend to gradually replace conventional treatment, as they can be just as potent and cause fewer, milder adverse effects. Researchers use several methods to measure the effectiveness and safety profile of these compounds, and employing standard techniques also contributes to progress across all medical disciplines.
Collapse
Affiliation(s)
- Stefania Dinu
- Department of Pedodontics, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 9 No., Revolutiei 1989 Bv., 300041 Timisoara, Romania;
- Pediatric Dentistry Research Center, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 9 No., Revolutiei 1989 Bv., 300041 Timisoara, Romania
| | - Stefania-Irina Dumitrel
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 30004 Timisoara, Romania;
| | - Roxana Buzatu
- Department of Dental Aesthetics, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 9 No., Revolutiei 1989 Bv., 300041 Timisoara, Romania
| | - Dorin Cristian Dinu
- Family Dental Clinic, Private Practice, 24 Budapesta Street, 307160 Dumbravita, Romania;
| | - Ramona Popovici
- Department of Management, Legislation and Communication in Dentistry, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 9 No., Revolutiei 1989 Bv., 300041 Timisoara, Romania;
| | - Camelia Szuhanek
- Department of Orthodontics, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 9 No., Revolutiei 1989 Bv., 300041 Timisoara, Romania;
| | - Anamaria Matichescu
- Department of Preventive, Community Dentistry and Oral Health, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 14A Tudor Vladimirescu Ave., 300173 Timisoara, Romania;
- Translational and Experimental Clinical Research Centre in Oral Health, Victor Babes University of Medicine and Pharmacy, 14A Tudor Vladimirescu Ave., 300173 Timisoara, Romania
| |
Collapse
|
3
|
Slavkova M, Lazov C, Spassova I, Kovacheva D, Tibi IPE, Stefanova D, Tzankova V, Petrov PD, Yoncheva K. Formulation of Budesonide-Loaded Polymeric Nanoparticles into Hydrogels for Local Therapy of Atopic Dermatitis. Gels 2024; 10:79. [PMID: 38275852 PMCID: PMC10815368 DOI: 10.3390/gels10010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Budesonide is a mineral corticoid applied in the local therapy of pediatric atopic dermatitis. Unfortunately, its dermal administration is hindered by the concomitant adverse effects and its physicochemical properties. The characteristic pH change in the atopic lesions can be utilized for the preparation of a pH-sensitive nanocarrier. In this view, the formulation of Eudragit L 100 nanoparticles as a budesonide delivery platform could provide more efficient release to the desired site, improve its penetration, and subsequently lower the undesired effects. In this study, budesonide-loaded Eudragit L100 nanoparticles were prepared via the nanoprecipitation method (mean diameter 57 nm, -31.2 mV, and approx. 90% encapsulation efficiency). Their safety was proven by cytotoxicity assays on the HaCaT keratinocyte cell line. Further, the drug-loaded nanoparticles were incorporated into two types of hydrogels based on methylcellulose or Pluronic F127. The formulated hydrogels were characterized with respect to their pH, occlusion, rheology, penetration, spreadability, and drug release. In conclusion, the developed hydrogels containing budesonide-loaded nanoparticles showed promising potential for the pediatric treatment of atopic dermatitis.
Collapse
Affiliation(s)
- Marta Slavkova
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria (I.P.-E.T.); (D.S.); (V.T.)
| | - Christophor Lazov
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria (I.P.-E.T.); (D.S.); (V.T.)
| | - Ivanka Spassova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.S.); (D.K.)
| | - Daniela Kovacheva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.S.); (D.K.)
| | - Ivanka Pencheva-El Tibi
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria (I.P.-E.T.); (D.S.); (V.T.)
| | - Denitsa Stefanova
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria (I.P.-E.T.); (D.S.); (V.T.)
| | - Virginia Tzankova
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria (I.P.-E.T.); (D.S.); (V.T.)
| | - Petar D. Petrov
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev Str. 103A, 1113 Sofia, Bulgaria;
| | - Krassimira Yoncheva
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria (I.P.-E.T.); (D.S.); (V.T.)
| |
Collapse
|
4
|
Mansi K, Kumar R, Jindal N, Singh K. Biocompatible nanocarriers an emerging platform for augmenting the antiviral attributes of bioactive polyphenols: A review. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
5
|
Effect of Hydrogel Containing Achyrocline satureioides (Asteraceae) Extract-Loaded Nanoemulsions on Wound Healing Activity. Pharmaceutics 2022; 14:pharmaceutics14122726. [PMID: 36559219 PMCID: PMC9788587 DOI: 10.3390/pharmaceutics14122726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Achyrocline satureioides (Lam.) DC extract-loaded nanoemulsions have demonstrated potential for wound healing, with promising effects on keratinocyte proliferation. We carried out the first in vivo investigation of the wound healing activity of a hydrogel containing A. satureioides extract-loaded nanoemulsions. We prepared hydrogels by adding the gelling agent (Carbopol® Ultrez) to extract-loaded nanoemulsions (~250 nm in diameter) obtained by spontaneous emulsification. The final flavonoid content in formulation was close to 1 mg/mL, as estimated by ultra-fast liquid chromatography. Permeation/retention studies using porcine ear skin showed that flavonoids reached deeper layers of pig ear skin when it was damaged (up to 3.2 µg/cm² in the dermis), but did not reach the Franz-type diffusion cell receptor fluid. For healing activity, we performed a dorsal wound model using Wistar rats, evaluating the lesion size, anti-inflammatory markers, oxidative damage, and histology. We found that extract-loaded formulations promoted wound healing by increasing angiogenesis by ~20%, reducing inflammation (tumor necrosis factor α) by ~35%, decreasing lipid damage, and improving the re-epithelialization process in lesions. In addition, there was an increase in the number of blood vessels and hair follicles for wounds treated with the formulation compared with the controls. Our findings indicate that the proposed formulation could be promising in the search for better quality healing and tissue reconstruction.
Collapse
|
6
|
Novel Hydrogels for Topical Applications: An Updated Comprehensive Review Based on Source. Gels 2022; 8:gels8030174. [PMID: 35323287 PMCID: PMC8948742 DOI: 10.3390/gels8030174] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/19/2022] Open
Abstract
Active pharmaceutical ingredients (API) or drugs are normally not delivered as pure chemical substances (for the prevention or the treatment of any diseases). APIs are still generally administered in prepared formulations, also known as dosage forms. Topical administration is widely used to deliver therapeutic agents locally because it is convenient and cost-effective. Since earlier civilizations, several types of topical semi-solid dosage forms have been commonly used in healthcare society to treat various skin diseases. A topical drug delivery system is designed primarily to treat local diseases by applying therapeutic agents to surface level parts of the body such as the skin, eyes, nose, and vaginal cavity. Nowadays, novel semi-solids can be used safely in pediatrics, geriatrics, and pregnant women without the possibility of causing any allergy reactions. The novel hydrogels are being used in a wide range of applications. At first, numerous hydrogel research studies were carried out by simply adding various APIs in pure form or dissolved in various solvents to the prepared hydrogel base. However, numerous research articles on novel hydrogels have been published in the last five to ten years. It is expected that novel hydrogels will be capable of controlling the APIs release pattern. Novel hydrogels are made up of novel formulations such as nanoparticles, nanoemulsions, microemulsions, liposomes, self-nano emulsifying drug delivery systems, cubosomes, and so on. This review focus on some novel formulations incorporated in the hydrogel prepared with natural and synthetic polymers.
Collapse
|
7
|
Technological strategies applied for rosmarinic acid delivery through different routes – A review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Chinnaiyan SK, Pandiyan R, Natesan S, Chindam S, Gouti AK, Sugumaran A. Fabrication of basil oil Nanoemulsion loaded gellan gum hydrogel—evaluation of its antibacterial and anti-biofilm potential. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Rosmarinic Acid and Ulvan from Terrestrial and Marine Sources in Anti-Microbial Bionanosystems and Biomaterials. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11199249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In order to increase their sustainability, antimicrobial renewable molecules are fundamental additions to consumer goods. Rosmarinic acid is extracted from several terrestrial plants and represents an effective anti-microbial agent. Ulvan, extracted from algae, is an anti-microbial polysaccharide. The present review is dedicated to discussing the sources and the extraction methodologies for obtaining rosmarinic acid and ulvan. Moreover, the preparation of bioanosystems, integrating the two molecules with organic or inorganic substrates, are reviewed as methodologies to increase their effectiveness and stability. Finally, the possibility of preparing functional biomaterials and anti-microbial final products is discussed, considering scientific literature. The performed analysis indicated that the production of both molecules is not yet performed with mature industrial technologies. Nevertheless, both molecules could potentially be used in the packaging, biomedical, pharmaceutical, cosmetic, sanitary and personal care sectors, despite some research being required for developing functional materials with specific properties to pave the way for many more applications.
Collapse
|
10
|
Development and Study of Nanoemulsions and Nanoemulsion-Based Hydrogels for the Encapsulation of Lipophilic Compounds. NANOMATERIALS 2020; 10:nano10122464. [PMID: 33317080 PMCID: PMC7763598 DOI: 10.3390/nano10122464] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 12/15/2022]
Abstract
Biocompatible nanoemulsions and nanoemulsion-based hydrogels were formulated for the encapsulation and delivery of vitamin D3 and curcumin. The aforementioned systems were structurally studied applying dynamic light scattering (DLS), electron paramagnetic resonance (EPR) spectroscopy and viscometry. In vitro studies were conducted using Franz diffusion cells to investigate the release of the bioactive compounds from the nanocarriers. The cytotoxicity of the nanoemulsions was investigated using the thiazolyl blue tetrazolium bromide (MTT) cell proliferation assay and RPMI 2650 nasal epithelial cells as in vitro model. DLS measurements showed that vitamin D3 and curcumin addition in the dispersed phase of the nanoemulsions caused an increase in the size of the oil droplets from 78.6 ± 0.2 nm to 83.6 ± 0.3 nm and from 78.6 ± 0.2 nm to 165.6 ± 1.0 nm, respectively. Loaded nanoemulsions, in both cases, were stable for 60 days of storage at 25 °C. EPR spectroscopy revealed participation of vitamin D3 and curcumin in the surfactants monolayer. In vitro release rates of both lipophilic compounds from the nanoemulsions were comparable to the corresponding ones from the nanoemulsion-based hydrogels. The developed o/w nanoemulsions did not exhibit cytotoxic effect up to the concentration threshold of 1 mg/mL in the cell culture medium.
Collapse
|
11
|
Dalcin AJF, Roggia I, Felin S, Vizzotto BS, Mitjans M, Vinardell MP, Schuch AP, Ourique AF, Gomes P. UVB photoprotective capacity of hydrogels containing dihydromyricetin nanocapsules to UV-induced DNA damage. Colloids Surf B Biointerfaces 2020; 197:111431. [PMID: 33142255 DOI: 10.1016/j.colsurfb.2020.111431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/03/2020] [Accepted: 10/17/2020] [Indexed: 11/16/2022]
Abstract
We evaluate the effect of cationic nanocapsules containing dihydromyricetin (DMY) flavonoid for safe topical use in photoprotection against UV-induced DNA damage. The stability was investigated for feasibility to produce hydrogels containing cationic nanocapsules of the flavonoid DMY (NC-DMY) for 90 days under three different storage conditions (4 ± 2 °C, 25 ± 2 °C, and 40 ± 2 °C), as well as evaluation of skin permeation and its cytotoxicity in skin cell lines. The physicochemical and rheological characteristics were maintained during the analysis period under the different aforementioned conditions. However, at 25 °C and 40 °C, the formulations indicated yellowish coloration and DMY content reduction. Therefore, the ideal storage condition of 4 °C was adopted. DMY remained in the stratum corneum and the uppermost layers of the skin. Regarding safety, all formulations demonstrated to be safe for topical application. NC-DMY exhibited a 50% Solar Protection Factor (SPF-DNA) against DNA damage caused by UVB radiation and demonstrated 99.9% protection against DNA lesion induction. These findings establish a promising formulation containing nanoencapsulated DMY flavonoids with a photoprotective and antioxidant potential of eliminating reactive oxygen species formed by solar radiation.
Collapse
Affiliation(s)
- Ana Júlia F Dalcin
- Laboratory of Nanotechnology, Franciscan University, Santa Maria, Brazil; Nanosciences Post-Graduate Program in Nanosciences, Franciscan University, Santa Maria, Brazil.
| | - Isabel Roggia
- Laboratory of Nanotechnology, Franciscan University, Santa Maria, Brazil; Nanosciences Post-Graduate Program in Nanosciences, Franciscan University, Santa Maria, Brazil.
| | - Sabrina Felin
- Laboratory of Nanotechnology, Franciscan University, Santa Maria, Brazil.
| | - Bruno S Vizzotto
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil.
| | | | | | - André P Schuch
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil.
| | - Aline F Ourique
- Nanosciences Post-Graduate Program in Nanosciences, Franciscan University, Santa Maria, Brazil.
| | - Patrícia Gomes
- Nanosciences Post-Graduate Program in Nanosciences, Franciscan University, Santa Maria, Brazil.
| |
Collapse
|
12
|
Chyzy A, Tomczykowa M, Plonska-Brzezinska ME. Hydrogels as Potential Nano-, Micro- and Macro-Scale Systems for Controlled Drug Delivery. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E188. [PMID: 31906527 PMCID: PMC6981598 DOI: 10.3390/ma13010188] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022]
Abstract
This review is an extensive evaluation and essential analysis of the design and formation of hydrogels (HGs) for drug delivery. We review the fundamental principles of HGs (their chemical structures, physicochemical properties, synthesis routes, different types, etc.) that influence their biological properties and medical and pharmaceutical applications. Strategies for fabricating HGs with different diameters (macro, micro, and nano) are also presented. The size of biocompatible HG materials determines their potential uses in medicine as drug carriers. Additionally, novel drug delivery methods for enhancing treatment are discussed. A critical review is performed based on the latest literature reports.
Collapse
Affiliation(s)
| | | | - Marta E. Plonska-Brzezinska
- Department of Organic Chemistry, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland; (A.C.); (M.T.)
| |
Collapse
|
13
|
Medeiros-Neves B, Nemitz MC, Fachel FNS, Teixeira H
F. Recent Patents Concerning the use of Nanotechnology-based Delivery Systems as Skin Penetration Enhancers. RECENT PATENTS ON DRUG DELIVERY & FORMULATION 2019; 13:192-202. [PMID: 31696814 PMCID: PMC7011681 DOI: 10.2174/1872211313666191024112137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/01/2019] [Accepted: 10/21/2019] [Indexed: 11/22/2022]
Abstract
Nanotechnology-based delivery systems have been considered a promising approach for topical application, considering their characteristics of penetration into/across the skin. The present review aimed to evaluate the recent international scenario of patents concerning the use of nanotechnology- based delivery systems as skin penetration enhancers. A survey of recent patent documents was conducted by using the Espacenet patent database including the terms "skin" in the title and "promot* or enhanc* and penetrat* or absorp* or permeat*" and "nano*" with the truncation symbol (*) in the abstract of documents. A total of 110 patents were published from 2008 to 2018, with 94 technologies being considered. The results demonstrated an increase in innovations concerning nanotechnologybased delivery systems as skin penetration enhancers in recent years. Most patent applicants are from China (60.6%) and Korea (21.3%), and companies (68%) were the most prominent owners. The majority of patent applications (76%) were intended for cosmetic purposes; the types of products and nanostructures were also investigated. Overall results demonstrated the increased interest around the world in patenting products involving skin permeation promotion and nanotechnology for pharmaceutical and, mainly, for cosmetics purposes.
Collapse
Affiliation(s)
| | | | | | - Helder
Ferreira Teixeira
- Address correspondence to this author at the Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, 90610-000, Porto Alegre, RS, Brazil; Tel/Fax: +55-51-3308-5231; +55-51-3308-2165; E-mail:
| |
Collapse
|