1
|
Identification of Human UDP-Glucuronosyltransferase Involved in Gypensapogenin C Glucuronidation and Species Differences. Int J Mol Sci 2023; 24:ijms24021454. [PMID: 36674970 PMCID: PMC9865363 DOI: 10.3390/ijms24021454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Gypensapogenin C (GPC) is one of the important aglycones of Gynostemma pentaphyllum (GP), which is structurally glucuronidated and is highly likely to bind to UGT enzymes in vivo. Due to the important role of glucuronidation in the metabolism of GPC, the UDP-glucuronosyltransferase metabolic pathway of GPC in human and other species' liver microsomes is investigated in this study. In the present study, metabolites were detected using high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results show that GPC could generate a metabolite through glucuronidation in the human liver microsomes (HLMs). Additionally, chemical inhibitors combined with recombinant human UGT enzymes clarified that UGT1A4 is the primary metabolic enzyme for GPC glucuronidation in HLMs according to the kinetic analysis of the enzyme. Metabolic differential analysis in seven other species indicated that rats exhibited the most similar metabolic rate to that of humans. In conclusion, UGT1A4 is a major enzyme responsible for the glucuronidation of GPC in HLMs, and rats may be an appropriate animal model to evaluate the GPC metabolism.
Collapse
|
2
|
Šamec D, Karalija E, Dahija S, Hassan STS. Biflavonoids: Important Contributions to the Health Benefits of Ginkgo ( Ginkgo biloba L.). PLANTS (BASEL, SWITZERLAND) 2022; 11:1381. [PMID: 35631806 PMCID: PMC9143338 DOI: 10.3390/plants11101381] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 05/03/2023]
Abstract
Ginkgo (Ginkgo biloba L.) is one of the most distinctive plants, characterized by excellent resistance to various environmental conditions. It is used as an ornamental plant and is recognized as a medicinal plant in both traditional and Western medicine. Its bioactive potential is associated with the presence of flavonoids and terpene trilactones, but many other compounds may also have synergistic effects. Flavonoid dimers-biflavonoids-are important constituents of ginkgophytopharmaceuticals. Currently, the presence of 13 biflavonoids has been reported in ginkgo, of which amentoflavone, bilobetin, sciadopitysin, ginkgetin and isoginkgetin are the most common. Their role in plants remains unknown, but their bioactivity and potential role in the management of human health are better investigated. In this review, we have provided an overview of the chemistry, diversity and biological factors that influence the presence of biflavonoids in ginkgo, as well as their bioactive and health-related properties. We have focused on their antioxidant, anticancer, antiviral, antibacterial, antifungal and anti-inflammatory activities as well as their potential role in the treatment of cardiovascular, metabolic and neurodegenerative diseases. We also highlighted their potential toxicity and pointed out further research directions.
Collapse
Affiliation(s)
- Dunja Šamec
- Department of Food Technology, University North, Trga Dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia
| | - Erna Karalija
- Department for Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina; (E.K.); (S.D.)
| | - Sabina Dahija
- Department for Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina; (E.K.); (S.D.)
| | - Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic;
| |
Collapse
|
3
|
Tao Y, Zhu F, Pan M, Liu Q, Wang P. Pharmacokinetic, Metabolism, and Metabolomic Strategies Provide Deep Insight Into the Underlying Mechanism of Ginkgo biloba Flavonoids in the Treatment of Cardiovascular Disease. Front Nutr 2022; 9:857370. [PMID: 35399672 PMCID: PMC8984020 DOI: 10.3389/fnut.2022.857370] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/21/2022] [Indexed: 12/18/2022] Open
Abstract
Ginkgo biloba, known as the "living fossil," has a long history of being used as botanical drug for treating cardiovascular diseases and the content of flavonoids as high as 24%. More than 110 different kinds of flavonoids and their derivatives have been separated from G. biloba, including flavones, flavonols, biflavonoids, catechins, and their glycosides, etc., all of which display the ability to dilate blood vessels, regulate blood lipids, and antagonize platelet activating factor, and protect against ischemic damage. At present, many types of preparations based on G. biloba extract or the bioactive flavonoids of it have been developed, which are mostly used for the treatment of cardiovascular diseases. We herein review recent progress in understanding the metabolic regulatory processes and gene regulation of cellular metabolism in cardiovascular diseases of G. biloba flavonoids. First, we present the cardioprotective flavonoids of G. biloba and their possible pharmacological mechanism. Then, it is the pharmacokinetic and liver and gut microbial metabolism pathways that enable the flavonoids to reach the target organ to exert effect that is analyzed. In the end, we review the possible endogenous pathways toward restoring lipid metabolism and energy metabolism as well as detail novel metabolomic methods for probing the cardioprotective effect of flavonoids of G. biloba.
Collapse
Affiliation(s)
- Yi Tao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | | | | | | | - Ping Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
4
|
Nozhat Z, Heydarzadeh S, Memariani Z, Ahmadi A. Chemoprotective and chemosensitizing effects of apigenin on cancer therapy. Cancer Cell Int 2021; 21:574. [PMID: 34715860 PMCID: PMC8555304 DOI: 10.1186/s12935-021-02282-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Therapeutic resistance to radiation and chemotherapy is one of the major obstacles in cancer treatment. Although synthetic radiosensitizers are pragmatic solution to enhance tumor sensitivity, they pose concerns of toxicity and non-specificity. In the last decades, scientists scrutinized novel plant-derived radiosensitizers and chemosensitizers, such as flavones, owing to their substantial physiological effects like low toxicity and non-mutagenic properties on the human cells. The combination therapy with apigenin is potential candidate in cancer therapeutics. This review explicates the combinatorial strategies involving apigenin to overcome drug resistance and boost the anti-cancer properties. METHODS We selected full-text English papers on international databases like PubMed, Web of Science, Google Scholar, Scopus, and ScienceDirect from 1972 up to 2020. The keywords included in the search were: Apigenin, Chemoprotective, Chemosensitizing, Side Effects, and Molecular Mechanisms. RESULTS In this review, we focused on combination therapy, particularly with apigenin augmenting the anti-cancer effects of chemo drugs on tumor cells, reduce their side effects, subdue drug resistance, and protect healthy cells. The reviewed research data implies that these co-therapies exhibited a synergistic effect on various cancer cells, where apigenin sensitized the chemo drug through different pathways including a significant reduction in overexpressed genes, AKT phosphorylation, NFκB, inhibition of Nrf2, overexpression of caspases, up-regulation of p53 and MAPK, compared to the monotherapies. Meanwhile, contrary to the chemo drugs alone, combined treatments significantly induced apoptosis in the treated cells. CONCLUSION Briefly, our analysis proposed that the combination therapies with apigenin could suppress the unwanted toxicity of chemotherapeutic agents. It is believed that these expedient results may pave the path for the development of drugs with a high therapeutic index. Nevertheless, human clinical trials are a prerequisite to consider the potential use of apigenin in the prevention and treatment of various cancers. Conclusively, the clinical trials to comprehend the role of apigenin as a chemoprotective agent are still in infancy.
Collapse
Affiliation(s)
- Zahra Nozhat
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018 China
- Cellular and Molecular Endocrine Research Center, Research Institute of Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Heydarzadeh
- Cellular and Molecular Endocrine Research Center, Research Institute of Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biochemistry, School of Biological Sciences, Falavarjan Branch Islamic Azad University, Isfahan, Iran
| | - Zahra Memariani
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
5
|
Amentoflavone isolated from Selaginella sellowii Hieron induces mitochondrial dysfunction in Leishmania amazonensis promastigotes. Parasitol Int 2021; 86:102458. [PMID: 34509671 DOI: 10.1016/j.parint.2021.102458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/26/2021] [Accepted: 09/06/2021] [Indexed: 11/21/2022]
Abstract
Leishmaniasis chemotherapy is a bottleneck in disease treatment. Although available, chemotherapy is limited, toxic, painful, and does not lead to parasite clearance, with parasite resistance also being reported. Therefore, new therapeutic options are being investigated, such as plant-derived anti-parasitic compounds. Amentoflavone is the most common biflavonoid in the Selaginella genus, and its antileishmanial activity has already been described on Leishmania amazonensis intracellular amastigotes but its direct action on the parasite is controversial. In this work we demonstrate that amentoflavone is active on L. amazonensis promastigotes (IC50 = 28.5 ± 2.0 μM) and amastigotes. Transmission electron microscopy of amentoflavone-treated promastigotes showed myelin-like figures, autophagosomes as well as enlarged mitochondria. Treated parasites also presented multiple lipid droplets and altered basal body organization. Similarly, intracellular amastigotes presented swollen mitochondria, membrane fragments in the lumen of the flagellar pocket as well as autophagic vacuoles. Flow cytometric analysis after TMRE staining showed that amentoflavone strongly decreased mitochondrial membrane potential. In silico analysis shows that amentoflavone physic-chemical, drug-likeness and bioavailability characteristics suggest it might be suitable for oral administration. We concluded that amentoflavone presents a direct effect on L. amazonensis parasites, causing mitochondrial dysfunction and parasite killing. Therefore, all results point for the potential of amentoflavone as a promising candidate for conducting advanced studies for the development of drugs against leishmaniasis.
Collapse
|
6
|
Xia H. Extensive metabolism of flavonoids relevant to their potential efficacy on Alzheimer's disease. Drug Metab Rev 2021; 53:563-591. [PMID: 34491868 DOI: 10.1080/03602532.2021.1977316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder, the incidence of which is climbing with ever-growing aged population, but no cure is hitherto available. The epidemiological studies unveiled that chronic intake of flavonoids was negatively associated with AD risk. Flavonoids, a family of natural polyphenols widely distributed in human daily diets, were readily conjugated by phase II drug metabolizing enzymes after absorption in vivo, and glucuronidation could occur in 1 min following intravenous administration. Recently, as many as 191 metabolites were obtained after intragastric administration of a single flavonoid, indicating that other bioactive metabolites, besides conjugates, might be formed and account for the contradiction between efficacy of flavonoids in human or animal models and low systematic exposure of flavonoid glycosides or aglycones. In this review, metabolism of complete 68 flavonoid monomers potential for AD treatment, grouped in flavonoid O-glycosides, flavonoid aglycones, flavonoid C-glycosides, flavonoid dimers, flavonolignans and prenylated flavonoids according to their common structural elements, respectively, has been systematically retrospected, summarized and discussed, including their unequivocally identified metabolites, metabolic interconversions, metabolic locations, metabolic sites (regio- or stereo-selectivity), primarily involved metabolic enzymes or intestinal bacteria, and interspecies correlations or differences in metabolism, and their bioactive metabolites and the underlying mechanism to reverse AD pathology were also reviewed, providing whole perspective about advances on extensive metabolism of diverse potent flavonoids in vivo and in vitro up to date and aiming at elucidation of mechanism of actions of flavonoids on AD or other central nervous system (CNS) disorders.
Collapse
Affiliation(s)
- Hongjun Xia
- Medical College, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
7
|
Abstract
Amentoflavone is one of the flavonoids that are known for their antiviral effects and many of them are predicted to have inhibitory effects against severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome Coronavirus (MERS-CoV) enzymes 3-chymotrypsin-like protease (3CLpro) and papain-like protease (PLpro). Amentoflavone is a biflavonoid found in the herbal extracts of St. John's wort (Hypericum perforatum), Gingko biloba, Selaginella tamariscina, Torreya nucifera, and many other plants. Its pharmacological actions have been listed as antiviral, antibacterial, antioxidant, anti-inflammatory, antidiabetic, antidepressant, and neuroprotective. Molecular docking studies have found that amentoflavone binds strongly to the active site of the main protease (Mpro) of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). As conventional antiviral medications are met with limited success against coronavirus disease-2019 (COVID-19) and vaccines are one of the only weapons against COVID-19 in the pharmaceutical armamentarium, traditional medicines are being considered for the forefront battle against COVID-19. Clinical studies with Hypericum and Gingko extract as additional or alternative drugs/supplements are registered. Here we review the potential of amentoflavone, an active agent in both Hypericum and Gingko extract as an adjunct therapy for COVID-19. Its anti-inflammatory, antioxidant, and sepsis preventive actions could provide protection against the "cytokine storm." Compared with the herbal extracts, which induce cytochrome P450 (CYP) and uridine 5'-diphospho (UDP)-glucuronosyltransferases (UGT) activity producing a negative herb-drug interaction, amentoflavone is a potent inhibitor of CYP3A4, CYP2C9, and UGT. Further studies into the therapeutic potential of amentoflavone against the coronavirus infection are warranted.
Collapse
Affiliation(s)
- Akhilesh Vikram Singh
- School of Epidemiology and Public Health, Datta Meghe Institute of Medical Sciences, Sawangi (Meghe), Wardha, Maharashtra442004, India
| |
Collapse
|
8
|
Adewole KE, Ishola AA, Omolaso BO. Identification of potential histone deacetylase inhibitory biflavonoids from Garcinia kola (Guttiferae) using in silico protein-ligand interaction. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2020-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Overactivity of histone deacetylases (HDACs) is the underlying cause of some cancers, thus, inhibiting their overactivities is a rational treatment option. However, endeavors to employ current anti-HDACs agents in cancer treatment have yielded limited success. Consequently, there is need to explore anti-HDACs natural products, especially from plants sources, because of the intimate relationship plant products and drug discovery have enjoyed over the centuries. To identify possible HDACs inhibitors, Garcinia kola (Guttiferae) seed-derived compounds were screened in silico for HDAC-inhibitory tendencies because of their reported anticancer potentials. Fifteen G. kola-derived compounds and givinostat were docked with five selected HDACs using AutodockVina, while the binding interactions of the compounds with high binding affinities for the five HDACs were viewed with Discovery Studio Visualizer BIOVIA, 2016. Results indicated that four of the compounds studied, including amentoflavone, Garcinia biflavonoid 1, Garcinia biflavonoid 2 and kolaflavanone have higher binding propensity for all the five HDACs relative to givinostat, the standard HDAC inhibitor. This study indicated that inhibition of HDAC might be another key mechanism accountable for the bioactivities of G. kola and its intrinsic compounds. The results from this study implied that the compounds could be further investigated as drugable HDAC inhibitors with potential pharmacological applications in the treatment of cancers.
Collapse
Affiliation(s)
- Kayode E. Adewole
- Department of Biochemistry, Faculty of Basic Medical Sciences , University of Medical Sciences , Ondo City , Ondo State , Nigeria
| | - Ahmed A. Ishola
- Central Research Laboratories Limited , University Road , Ilorin , Kwara State , Nigeria
| | - Blessing O. Omolaso
- Department of Physiology, Faculty of Basic Medical Sciences , University of Medical Sciences , Ondo City , Ondo State , Nigeria
| |
Collapse
|
9
|
Liu R, Li H, Wei N, Tan Y. Simultaneous determination of two galangin metabolites from Alpinia Officinarum Hance in rat plasma by UF LC-MS/MS and its application in pharmacokinetics study. PeerJ 2021; 9:e11041. [PMID: 33777530 PMCID: PMC7977375 DOI: 10.7717/peerj.11041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
Galangin has multiple pharmacological efficacies, such as anti-cancer, anti-inflammation and anti-oxidation. Galangin can be rapidly converted into glucuronidated metabolites in vivo. This study aimed to establish an UFLC-MS/MS analytical method to simultaneously determine the concentrations of two glucuronidated metabolites of galangin, galangin-3-O-β-D-glucuronic acid (GG-1) and galangin-7-O-β-D-glucuronic acid (GG-2) in rat plasma. After oral administration of galangal extract (0.3 g/kg), blood samples were collected from the orbital sinus, then treated by methanol precipitation and further gradient-eluted with Phenomenex Kinetex 2.6 µm XB-C18 column. The mass spectrometer was manipulated in the negative electrospray ionization (ESI) and selected multiple reaction monitoring (MRM) mode for the analytes. The precursor-to-product ion pairs applied for GG-1, GG-2 and chrysin (as the internal standard, IS) were m/z 445.2→269.0, 445.2→268.9 and 253.0→142.9, respectively. The results showed that the linear ranges for both GG-1 and GG-2 were 2.0–2000.0 ng/mL (r2 > 0.995). The inter- and intra-day precision were 89.3%–109.2%, RSD was less than 15%, and the repeatability was good. The recoveries of both metabolites and IS were over 89%, and matrix effect was within 15%. The validated analytical method was further applied to study the pharmacokinetic profiles of GG-1 and GG-2 in vivo. The pharmacokinetic parameters suggested that Tmax of GG-1 was equivalent to that of GG-2, and MRT0-t, t1/2 of GG-2 were a little higher than those of GG-1. Importantly, AUC0-t and Cmax of GG-2 were almost twice as those of GG-1. In short, the validated UFLCMS/MS analytical method was feasible to simultaneously determine two galangin metabolites GG-1 and GG-2 in rat plasma and further analyze in vivo metabolism of galangin.
Collapse
Affiliation(s)
- Rangru Liu
- Hainan Provincial Key Laboratory of R&D of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, China.,Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, China.,Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education, Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Hailong Li
- Hainan Provincial Key Laboratory of R&D of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, China.,Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Na Wei
- Hainan Provincial Key Laboratory of R&D of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, China.,Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Yinfeng Tan
- Hainan Provincial Key Laboratory of R&D of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, China.,Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, China
| |
Collapse
|
10
|
Xing H, Yang J, Ren K, Qin Z, Wang P, Zhang X, Yao Z, Gonzalez FJ, Yao X. Investigation on the metabolic characteristics of isobavachin in Psoralea corylifolia L. (Bu-gu-zhi) and its potential inhibition against human cytochrome P450s and UDP-glucuronosyltransferases. J Pharm Pharmacol 2020; 72:1865-1878. [PMID: 32750744 PMCID: PMC8861878 DOI: 10.1111/jphp.13337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/09/2020] [Accepted: 06/21/2020] [Indexed: 01/16/2023]
Abstract
OBJECTIVES Isobavachin is a phenolic with anti-osteoporosis activity. This study aimed to explore its metabolic fates in vivo and in vitro, and to investigate the potential drug-drug interactions involving CYPs and UGTs. METHODS Metabolites of isobavachin in mice were first identified and characterized. Oxidation and glucuronidation study were performed using liver and intestine microsomes. Reaction phenotyping, activity correlation analysis and relative activity factor approaches were employed to identify the main CYPs and UGTs involved in isobavachin metabolism. Through kinetic modelling, inhibition mechanisms towards CYPs and UGTs were also explored. KEY FINDINGS Two glucuronides (G1 - G2) and three oxidated metabolites (M1 - M3) were identified in mice. Additionally, isobavachin underwent efficient oxidation and glucuronidation by human liver microsomes and HIM with CLint values from 5.53 to 148.79 μl/min per mg. CYP1A2, 2C19 contributed 11.3% and 17.1% to hepatic metabolism of isobavachin, respectively, with CLint values from 8.75 to 77.33 μl/min per mg. UGT1As displayed CLint values from 10.73 to 202.62 μl/min per mg for glucuronidation. Besides, significant correlation analysis also proved that CYP1A2, 2C19 and UGT1A1, 1A9 were main contributors for the metabolism of isobavachin. Furthermore, mice may be the appropriate animal model for predicting its metabolism in human. Moreover, isobavachin exhibited broad inhibition against CYP2B6, 2C9, 2C19, UGT1A1, 1A9, 2B7 with Ki values from 0.05 to 3.05 μm. CONCLUSIONS CYP1A2, 2C19 and UGT1As play an important role in isobavachin metabolism. Isobavachin demonstrated broad-spectrum inhibition of CYPs and UGTs.
Collapse
Affiliation(s)
- Han Xing
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kaidi Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zifei Qin
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Peile Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhihong Yao
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute,, National Institutes of Health, Bethesda, MD, USA
| | - Xinsheng Yao
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
11
|
Natural Antioxidants: A Review of Studies on Human and Animal Coronavirus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3173281. [PMID: 32855764 PMCID: PMC7443229 DOI: 10.1155/2020/3173281] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
Abstract
The outbreaks of viruses with wide spread and mortality in the world population have motivated the research for new therapeutic approaches. There are several viruses that cause a biochemical imbalance in the infected cell resulting in oxidative stress. These effects may be associated with the development of pathologies and worsening of symptoms. Therefore, this review is aimed at discussing natural compounds with both antioxidant and antiviral activities, specifically against coronavirus infection, in an attempt to contribute to global researches for discovering effective therapeutic agents in the treatment of coronavirus infection and its severe clinical complications. The contribution of the possible action of these compounds on metabolic modulation associated with antiviral properties, in addition to other mechanisms of action, is presented.
Collapse
|