1
|
Ye Z, Liu R, Wang H, Zuo A, Jin C, Wang N, Sun H, Feng L, Yang H. Neuroprotective potential for mitigating ischemia-reperfusion-induced damage. Neural Regen Res 2025; 20:2199-2217. [PMID: 39104164 DOI: 10.4103/nrr.nrr-d-23-01985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/22/2024] [Indexed: 08/07/2024] Open
Abstract
Reperfusion following cerebral ischemia causes both structural and functional damage to brain tissue and could aggravate a patient's condition; this phenomenon is known as cerebral ischemia-reperfusion injury. Current studies have elucidated the neuroprotective role of the sirtuin protein family (Sirtuins) in modulating cerebral ischemia-reperfusion injury. However, the potential of utilizing it as a novel intervention target to influence the prognosis of cerebral ischemia-reperfusion injury requires additional exploration. In this review, the origin and research progress of Sirtuins are summarized, suggesting the involvement of Sirtuins in diverse mechanisms that affect cerebral ischemia-reperfusion injury, including inflammation, oxidative stress, blood-brain barrier damage, apoptosis, pyroptosis, and autophagy. The therapeutic avenues related to Sirtuins that may improve the prognosis of cerebral ischemia-reperfusion injury were also investigated by modulating Sirtuins expression and affecting representative pathways, such as nuclear factor-kappa B signaling, oxidative stress mediated by adenosine monophosphate-activated protein kinase, and the forkhead box O. This review also summarizes the potential of endogenous substances, such as RNA and hormones, drugs, dietary supplements, and emerging therapies that regulate Sirtuins expression. This review also reveals that regulating Sirtuins mitigates cerebral ischemia-reperfusion injury when combined with other risk factors. While Sirtuins show promise as a potential target for the treatment of cerebral ischemia-reperfusion injury, most recent studies are based on rodent models with circadian rhythms that are distinct from those of humans, potentially influencing the efficacy of Sirtuins-targeting drug therapies. Overall, this review provides new insights into the role of Sirtuins in the pathology and treatment of cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Zi Ye
- The Clinical Medical College, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Runqing Liu
- The Clinical Medical College, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Hangxing Wang
- Division of Infectious Diseases, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Aizhen Zuo
- The Clinical Medical College, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Cen Jin
- School of Medical Imaging, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Nan Wang
- Division of Gastroenterology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Huiqi Sun
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu Province, China
| | - Luqian Feng
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Hua Yang
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| |
Collapse
|
2
|
Zhuang Y, Du X, Yang L, Jiang Z, Yu B, Gu W, Cui W, Lu H. Drop to Gate Nasal Drops Attenuates Sepsis-Induced Cognitive Dysfunction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403564. [PMID: 38966875 DOI: 10.1002/smll.202403564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/17/2024] [Indexed: 07/06/2024]
Abstract
Nasal administration can bypass the blood-brain barrier and directly deliver drugs to the brain, providing a non-invasive route for central nervous system (CNS) diseases. Inspired by the appearance that a gate can block the outside world and the characteristics of the sol-gel transition can form a "gate" in the nasal cavity, a Drop to Gate nasal drop (DGND) is designed to set a gate in nose, which achieves protecting role from the influence of nasal environment. The DGND demonstrates the efficiency and application prospect of delivering drugs to the brain through the N-to-B. The effective concentration of single administration is increased through the hydrophobic interaction between C8-GelMA and SRT1720 (SA), and then cross-linked under UV to form nanogel, which can respond to MMP in the inflammatory microenvironment of sepsis-induced cognitive dysfunction. Finally, the SA/nanogel is compounded into the thermogel, which can respond to the nasal cavity temperature to form DGND in situ, increasing the residence time and delivery efficiency of drugs in the nasal cavity. In vitro, the DGND alleviates lipopolysaccharides (LPS)-induced BV2 inflammation. In vivo, DGND effectively targets the nasal mucosa and deliver drugs to the brain, which activate Sirt1 to alleviate inflammation mediated by microglia and improve cognitive dysfunction in sepsis mice.
Collapse
Affiliation(s)
- Yaping Zhuang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu, Shanghai, 200025, P. R. China
| | - Xiyu Du
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, No. 221 Yan'an West Road, Jing'an, Shanghai, 200040, P. R. China
| | - Li Yang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu, Shanghai, 200025, P. R. China
| | - Zhaoshun Jiang
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, No. 221 Yan'an West Road, Jing'an, Shanghai, 200040, P. R. China
| | - Buwei Yu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu, Shanghai, 200025, P. R. China
| | - Weidong Gu
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, No. 221 Yan'an West Road, Jing'an, Shanghai, 200040, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu, Shanghai, 200025, P. R. China
| | - Han Lu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu, Shanghai, 200025, P. R. China
| |
Collapse
|
3
|
Grzeczka A, Graczyk S, Kordowitzki P. Pleiotropic Effects of Resveratrol on Aging-Related Cardiovascular Diseases-What Can We Learn from Research in Dogs? Cells 2024; 13:1732. [PMID: 39451250 PMCID: PMC11505706 DOI: 10.3390/cells13201732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
Resveratrol (RES) is a polyphenol with natural anti-inflammatory and antioxidant properties. It is found in abundance in plants, i.e., grapes and mulberry fruit. In addition, synthetic forms of RES exist. Since the discovery of its specific biological properties, RES has emerged as a candidate substance not only with modeling effects on the immune response but also as an important factor in preventing the onset and progression of cardiovascular disease (CVD). Previous research provided strong evidence of the effects of RES on platelets, mitochondria, cardiomyocytes, and vascular endothelial function. In addition, RES positively affects the coagulation system and vasodilatory function and improves blood flow. Not only in humans but also in veterinary medicine, cardiovascular diseases have one of the highest incidence rates. Canine and human species co-evolved and share recent evolutionary selection processes, and interestingly, numerous pathologies of companion dogs have a human counterpart. Knowledge of the impact of RES on the cardiovascular system of dogs is becoming clearer in the literature. Dogs have long been recognized as valuable animal models for the study of various human diseases as they share many physiological and genetic similarities with humans. In this review, we aim to shed light on the pleiotropic effects of resveratrol on cardiovascular health in dogs as a translational model for human cardiovascular diseases.
Collapse
Affiliation(s)
| | | | - Pawel Kordowitzki
- Department for Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Toruń, Poland; (A.G.)
| |
Collapse
|
4
|
Neha, Chaudhary S, Tiwari P, Parvez S. Amelioration of Phytanic Acid-Induced Neurotoxicity by Nutraceuticals: Mechanistic Insights. Mol Neurobiol 2024; 61:7303-7318. [PMID: 38374317 DOI: 10.1007/s12035-024-03985-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
Phytanic acid (PA) (3,7,11,15-tetramethylhexadecanoic acid) is a methyl-branched fatty acid that enters the body through food consumption, primarily through red meat, dairy products, and fatty marine foods. The metabolic byproduct of phytol is PA, which is then oxidized by the ruminal microbiota and some marine species. The first methyl group at the 3-position prevents the β-oxidation of branched-chain fatty acid (BCFA). Instead, α-oxidation of PA results in the production of pristanic acid (2,10,14-tetramethylpentadecanoic acid) with CO2. This fatty acid (FA) builds up in individuals with certain peroxisomal disorders and is historically linked to neurological impairment. It also causes oxidative stress in synaptosomes, as demonstrated by an increase in the production of reactive oxygen species (ROS), which is a sign of oxidative stress. This review concludes that the nutraceuticals (melatonin, piperine, quercetin, curcumin, resveratrol, epigallocatechin-3-gallate (EGCG), coenzyme Q10, ω-3 FA) can reduce oxidative stress and enhanced the activity of mitochondria. Furthermore, the use of nutraceuticals completely reversed the neurotoxic effects of PA on NO level and membrane potential. Additionally, the review further emphasizes the urgent need for more research into dairy-derived BCFAs and their impact on human health.
Collapse
Affiliation(s)
- Neha
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110 062, India
| | - Shaista Chaudhary
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110 062, India
| | - Prachi Tiwari
- Department of Physiotherapy, School of Nursing Sciences and Allied Health, Jamia Hamdard, New Delhi, 110 062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110 062, India.
| |
Collapse
|
5
|
Pawluk H, Tafelska-Kaczmarek A, Sopońska M, Porzych M, Modrzejewska M, Pawluk M, Kurhaluk N, Tkaczenko H, Kołodziejska R. The Influence of Oxidative Stress Markers in Patients with Ischemic Stroke. Biomolecules 2024; 14:1130. [PMID: 39334896 PMCID: PMC11430825 DOI: 10.3390/biom14091130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/27/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Stroke is the second leading cause of death worldwide, and its incidence is rising rapidly. Acute ischemic stroke is a subtype of stroke that accounts for the majority of stroke cases and has a high mortality rate. An effective treatment for stroke is to minimize damage to the brain's neural tissue by restoring blood flow to decreased perfusion areas of the brain. Many reports have concluded that both oxidative stress and excitotoxicity are the main pathological processes associated with ischemic stroke. Current measures to protect the brain against serious damage caused by stroke are insufficient. For this reason, it is important to investigate oxidative and antioxidant strategies to reduce oxidative damage. This review focuses on studies assessing the concentration of oxidative stress biomarkers and the level of antioxidants (enzymatic and non-enzymatic) and their impact on the clinical prognosis of patients after stroke. Mechanisms related to the production of ROS/RNS and the role of oxidative stress in the pathogenesis of ischemic stroke are presented, as well as new therapeutic strategies aimed at reducing the effects of ischemia and reperfusion.
Collapse
Affiliation(s)
- Hanna Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Agnieszka Tafelska-Kaczmarek
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Torun, Poland
| | - Małgorzata Sopońska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Marta Porzych
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Martyna Modrzejewska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Mateusz Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Natalia Kurhaluk
- Institute of Biology, Pomeranian University in Slupsk, Arciszewski 22B, 76-200 Slupsk, Poland
| | - Halina Tkaczenko
- Institute of Biology, Pomeranian University in Slupsk, Arciszewski 22B, 76-200 Slupsk, Poland
| | - Renata Kołodziejska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| |
Collapse
|
6
|
Chen C, Deng Z, Yu Z, Chen Y, Yu T, Liang C, Ye Y, Huang Y, Lyu FJ, Liang G, Chang Y. The role of melatonergic system in intervertebral disc degeneration and its association with low back pain: a clinical study. PeerJ 2024; 12:e17464. [PMID: 39006038 PMCID: PMC11243980 DOI: 10.7717/peerj.17464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/05/2024] [Indexed: 07/16/2024] Open
Abstract
Objective The mechanisms of intervertebral disc degeneration (IVDD) in low back pain (LBP) patients are multiples. In this study, we attempt to investigate whether melatonergic system plays a potential role in IVDD patients with LBP by analyzing their clinical specimens. The fucus will be given to the correlation between the melatonin receptor expression and intervertebral disc tissue apoptosis. Methods In this clinical study, 107 lumbar intervertebral disc nucleus pulposus (NP) specimens from patients with LBP were collected with patients' consents. The disc height (DH) discrepancy ratio, range of motion and sagittal parameters of the pathological plane were measured and Pfirrmann grade was used to classified the grades of IVDD level. Discs at grades 1-3 were served as normal control and grades 4-5 were considered as IVDD. The expression levels of melatonin receptor 1A (MT1) and 1B (MT2) were measured by immunohistochemistry. The apoptosis of NP was assessed using TUNEL staining. Their potential associations among MT1/2, DH, apoptosis, sagittal parameters with IVDD and LBP were evaluated with statistical analysis. Results The incidence of IVDD was positively associated with age and negatively related to VAS scores for LBP (p < 0.001). Patients with higher degree of IVDD also have higher DH discrepancy ratio (p < 0.001), higher prevalence of lumbar instability (p = 0.003) and higher cell apoptosis compared to the control. Nevertheless, no statistically significant correlation was identified between Pfirrmann grade and lumbar sagittal parameters. MT1 and MT2 both were highly expressed in the NP tissues. Importantly, MT1 expression but not MT2 was significantly increased in the intervertebral disc tissue of patients with IVDD and its level correlated well with cell apoptosis level and the severity of IVDD as well as lower VAS scores for LBP. Conclusion The highly elevated MT1 expression was found in NP tissues of patients with IVDD and LBP compared to the control. This phenomenon probably reflects the compensating response of the body to the pathological alteration of the IVDD and LBP. Therefore, these findings provide the novel information to use selective agonists of MT1 to target IVDD and LBP clinically.
Collapse
Affiliation(s)
- Chong Chen
- Department of Spine Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zongyuan Deng
- Department of Spine Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhengran Yu
- Department of Spine Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yifan Chen
- Department of Spine Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Tao Yu
- Department of Spine Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Changxiang Liang
- Department of Spine Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yongyu Ye
- Department of Spine Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yongxiong Huang
- Department of Spine Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Feng-Juan Lyu
- Joint Center for Regenerative Medicine Research of South China University of Technology and The University of Western Australia, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Guoyan Liang
- Department of Spine Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yunbing Chang
- Department of Spine Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Giri A, Mehan S, Khan Z, Das Gupta G, Narula AS, Kalfin R. Modulation of neural circuits by melatonin in neurodegenerative and neuropsychiatric disorders. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3867-3895. [PMID: 38225412 DOI: 10.1007/s00210-023-02939-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/30/2023] [Indexed: 01/17/2024]
Abstract
Neurodegenerative and neuropsychiatric disorders are two broad categories of neurological disorders characterized by progressive impairments in movement and cognitive functions within the central and peripheral nervous systems, and have emerged as a significant cause of mortality. Oxidative stress, neuroinflammation, and neurotransmitter imbalances are recognized as prominent pathogenic factors contributing to cognitive deficits and neurobehavioral anomalies. Consequently, preventing neurodegenerative and neuropsychiatric diseases has surfaced as a pivotal challenge in contemporary public health. This review explores the investigation of neurodegenerative and neuropsychiatric disorders using both synthetic and natural bioactive compounds. A central focus lies on melatonin, a neuroregulatory hormone secreted by the pineal gland in response to light-dark cycles. Melatonin, an amphiphilic molecule, assumes multifaceted roles, including scavenging free radicals, modulating energy metabolism, and synchronizing circadian rhythms. Noteworthy for its robust antioxidant and antiapoptotic properties, melatonin exhibits diverse neuroprotective effects. The inherent attributes of melatonin position it as a potential key player in the pathophysiology of neurological disorders. Preclinical and clinical studies have demonstrated melatonin's efficacy in alleviating neuropathological symptoms across neurodegenerative and neuropsychiatric conditions (depression, schizophrenia, bipolar disorder, and autism spectrum disorder). The documented neuroprotective prowess of melatonin introduces novel therapeutic avenues for addressing neurodegenerative and psychiatric disorders. This comprehensive review encompasses many of melatonin's applications in treating diverse brain disorders. Despite the strides made, realizing melatonin's full neuroprotective potential necessitates further rigorous clinical investigations. By unravelling the extended neuroprotective benefits of melatonin, future studies promise to deepen our understanding and augment the therapeutic implications against neurological deficits.
Collapse
Affiliation(s)
- Aditi Giri
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy Moga, Punjab, India.
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy Moga, Punjab, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | | | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC, 27516, USA
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, Sofia, 1113, Bulgaria
- Department of Healthcare, South-West University "NeofitRilski", Ivan Mihailov St. 66, Blagoevgrad, 2700, Bulgaria
| |
Collapse
|
8
|
Xu Q, Cheung RTF. Melatonin at repeated doses alleviates hyperglycemia-exacerbated cerebral ischemia-reperfusion injury at 72 h via anti-inflammation and anti-apoptosis. IBRO Neurosci Rep 2024; 16:418-427. [PMID: 38500787 PMCID: PMC10945201 DOI: 10.1016/j.ibneur.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/28/2024] [Accepted: 03/03/2024] [Indexed: 03/20/2024] Open
Abstract
Objective We aimed to investigate how hyperglycemia would exacerbate cerebral ischemia-reperfusion injury (CIRI) in a rat model of type 1 diabetes mellitus (T1DM) and explore the beneficial effects of multiple doses of melatonin in T1DM induced CIRI. Method The T1DM rat model was induced with streptozocin, and melatonin (10 mg/kg) was injected at 0.5 h before ischemia as well as at 24 and 48 h after reperfusion. Results When compared to normoglycemic (NG) rats, T1DM rats had hyperglycemia with weight loss before CIRI. Despite comparable degrees of ischemia and initial reperfusion, T1DM rats tended to have greater weight loss and had worse neurological deficits and larger infarct volume than NG rats up to 72 h after CIRI. Persistent activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway but not of apoptosis or calpains was a crucial factor in T1DM-mediated exacerbation of CIRI at 72 h. Despite lacking effects on baseline hyperglycemia, ischemia and initial reperfusion, melatonin at multiple doses lessened post-CIRI weight loss, neurological deficits and infarct volume in T1DM rats at 72 h. when compared to vehicle-treated T1DM rats with CIRI. Beneficial effects of melatonin treatment included decreased activation of NF-κB pathway, apoptosis and calpains, leading to reduced expression of inducible nitric oxide synthase and enhanced neuronal density. Conclusion Melatonin at multiple doses can alleviate T1DM-mediated exacerbation of CIRI at 72 h through anti-inflammation and anti-apoptosis.
Collapse
Affiliation(s)
- Qian Xu
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Raymond Tak Fai Cheung
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Research Centre of Heart, Brain, Hormone & Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
9
|
Boxiang Q, Liping S, Tong Q. Cuscuta chinensis Lam. Flavonoids (CCLF) alleviate the symptoms of sepsis-associated encephalopathy via PI3K/Nrf2 pathway. Behav Brain Res 2024; 465:114887. [PMID: 38499156 DOI: 10.1016/j.bbr.2024.114887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 03/20/2024]
Abstract
Sepsis-associated encephalopathy (SAE) frequently encounters patients who are in intensive care units and ∼70% of patients with severe systemic infection. However, due to the unclear pathological mechanisms of SAE, the desease-modifying drug is still lack. Here, we aimed to explore whether the flavonoid components extracted from CCL (CCLF) seeds possess protective effects on SAE animals, and systematically evaluate the transcriptomic alteration (in the hippocampus) after CCLF treatment on SAE animals employing RNA sequencing. We observed that CCLF improved the brain's learning and memory abilities and the structural integrity of BBB using cecal ligation and puncture (CLP)-induced SAE animal models, evaluated by behavioral test and tissue examination of animals respectively. RNA sequencing results showed that CCLF treatment reverses SAE-induced transcriptomic alteration in the hippocampus. Moreover, CCLF also dramatically relieved inflammatory (such as TNF-α, IL-2, and IL-6) and oxidative (MDA and SOD activity) stresses, and inhibited SAE-induced neuron apoptosis in brain tissues. More importantly, CCLF restored the PI3K/AKT signaling pathway and then induced the Nrf2 nuclear translocation to drive HO-1 expression both in vitro and in vivo. LY294002, an inhibitor of PI3K, obviously blocked CCLF's functions on anti-apoptosis, anti-inflammation, and anti-oxidation in vivo, demonstrating that CCLF achieves its bioactivities in a PI3K/AKT signaling dependent manner. Altogether, CCLF exhibits remarkable neuro-protective function and may be a promising candidate for further clinical trials for SAE treatment.
Collapse
Affiliation(s)
- Qi Boxiang
- Medicine Intensive Care Unit, Nantong University Affiliated Maternal and Child Health Hospital/ Nantong Children Hospital, Jiangsu, 226000, PR China.
| | - Sheng Liping
- Medicine Intensive Care Unit, Xuzhou Children Hospital, Xuzhou, Jiangsu, 221000, PR China
| | - Qian Tong
- Medicine Intensive Care Unit, Xuzhou Children Hospital, Xuzhou, Jiangsu, 221000, PR China
| |
Collapse
|
10
|
Gu X, Xie Y, Cao Q, Hou Z, Zhang Y, Wang W. Fisetin alleviates cerebral ischemia/reperfusion injury by regulating Sirt1/Foxc1/Ubqln1 pathway-mediated proteostasis. Int Immunopharmacol 2024; 130:111742. [PMID: 38452414 DOI: 10.1016/j.intimp.2024.111742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/02/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Cerebral ischemia/reperfusion injury (IRI) is pathologically associated with protein damage. The flavonoid fisetin has good therapeutic effects on cerebral IRI. However, the role of fisetin in regulating protein damage during cerebral IRI development remains unclear. This study investigated the pharmacological effects of fisetin on protein damage during cerebral IRI progression and defined the underlying mechanism of action. METHODS In vivo and in vitro models of cerebral IRI were established by middle cerebral artery occlusion/reperfusion (MACO/R) and oxygen-glucose deprivation/reperfusion (OGD/R) treatment, respectively. Triphenyl tetrazolium chloride staining was performed to detect cerebral infarct size, and the modified neurologic severity score was used to examine neurological deficits. LDH activity and protein damage were assessed using kits. HT22 cell vitality and apoptosis were examined using CCK-8 assay and TUNEL staining, respectively. Interactions between Foxc1, Ubqln1, Sirt1, and Ezh2 were analyzed using CoIP, ChIP and/or dual-luciferase reporter gene assays. RESULTS Fisetin alleviated protein damage and ubiquitinated protein aggregation and neuronal death caused by MCAO/R and OGD/R. Ubqln1 knockdown abrogated the inhibitory effect of fisetin on OGD/R-induced protein damage, ubiquitinated protein aggregation, and neuronal death in HT22 cells. Further experiments demonstrated that Foxc1 functions as a transcriptional activator of Ubqln1 and that Sirt1 promotes Foxc1 expression by deacetylating Ezh2 and inhibiting its activity. Furthermore, Sirt1 knockdown abrogated fisetin-mediated biological effects on OGD/R-treated HT22 cells. CONCLUSION Fisetin improved proteostasis during cerebral IRI by regulating the Sirt1/Foxc1/Ubqln1 signaling axis. Our findings strongly suggest that fisetin-mediated inhibition of protein damage after ischemic stroke is a part of the mechanism through which fisetin is neuroprotective in cerebral IRI.
Collapse
Affiliation(s)
- Xunhu Gu
- Department of Neurology, The Second Affliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yuqin Xie
- Department of Laboratory Medicine, Nanchang medical College, Nanchang 330006, Jiangxi, China
| | - Qian Cao
- Department of Neurology, The Second Affliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Zhuo Hou
- Department of Neurology, The Second Affliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yan Zhang
- Department of Neurosurgery, The Second Affliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China.
| | - Wei Wang
- Department of Neurology, The Second Affliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
11
|
Zhang C, Ma Y, Zhao Y, Guo N, Han C, Wu Q, Mu C, Zhang Y, Tan S, Zhang J, Liu X. Systematic review of melatonin in cerebral ischemia-reperfusion injury: critical role and therapeutic opportunities. Front Pharmacol 2024; 15:1356112. [PMID: 38375039 PMCID: PMC10875093 DOI: 10.3389/fphar.2024.1356112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
Cerebral ischemia-reperfusion (I/R) injury is the predominant causes for the poor prognosis of ischemic stroke patients after reperfusion therapy. Currently, potent therapeutic interventions for cerebral I/R injury are still very limited. Melatonin, an endogenous hormone, was found to be valid in preventing I/R injury in a variety of organs. However, a systematic review covering all neuroprotective effects of melatonin in cerebral I/R injury has not been reported yet. Thus, we perform a comprehensive overview of the influence of melatonin on cerebral I/R injury by collecting all available literature exploring the latent effect of melatonin on cerebral I/R injury as well as ischemic stroke. In this systematic review, we outline the extensive scientific studies and summarize the beneficial functions of melatonin, including reducing infarct volume, decreasing brain edema, improving neurological functions and attenuating blood-brain barrier breakdown, as well as its key protective mechanisms on almost every aspect of cerebral I/R injury, including inhibiting oxidative stress, neuroinflammation, apoptosis, excessive autophagy, glutamate excitotoxicity and mitochondrial dysfunction. Subsequently, we also review the predictive and therapeutic implications of melatonin on ischemic stroke reported in clinical studies. We hope that our systematic review can provide the most comprehensive introduction of current advancements on melatonin in cerebral I/R injury and new insights into personalized diagnosis and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Chenguang Zhang
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yumei Ma
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yating Zhao
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Na Guo
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chen Han
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qian Wu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Changqing Mu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yue Zhang
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shutong Tan
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jian Zhang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Shenyang, Liaoning, China
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning, China
| | - Xu Liu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
12
|
Lu D, Liu Y, Huang H, Hu M, Li T, Wang S, Shen S, Wu R, Cai W, Lu T, Lu Z. Melatonin Offers Dual-Phase Protection to Brain Vessel Endothelial Cells in Prolonged Cerebral Ischemia-Recanalization Through Ameliorating ER Stress and Resolving Refractory Stress Granule. Transl Stroke Res 2023; 14:910-928. [PMID: 36181629 DOI: 10.1007/s12975-022-01084-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 10/07/2022]
Abstract
Ischemic-reperfusion injury limits the time window of recanalization therapy in cerebral acute ischemic stroke (AIS). Brain vessel endothelial cells (BVECs) form the first layer of the blood-brain barrier (BBB) and are thus the first sufferer of ischemic-reperfusion disorder. The current study demonstrates that melatonin can reduce infarct volume, alleviate brain edema, ameliorate neurological deficits, and protect BBB integrity in prolonged-stroke mice. Here, we demonstrate that endoplasmic reticulum (ER)-associated injury contributes to BVEC death in the dural phase of reperfusion after prolonged ischemia. When encountering ischemia, ER stress arises, specifically activating PERK-EIF2α signaling and the subsequent programmed cell death. Prolonged ischemia leads stress granules (SGs) to be refractory, which remain unresolved and accumulate in ER during recanalization. During reperfusion, refractory SGs activate PKR-EIF2α and further exacerbate BVEC injury. We report that melatonin treatment downregulates ER stress in the ischemic period and enhances dissociation of the refractory SGs during reperfusion, thus offering dual-phase protection to BVECs in prolonged cerebral stroke. Mechanistically, melatonin enhances autophagy in BVECs, which preserves ER function and resolves refractory SGs. We, therefore, propose that melatonin is a potential treatment to extend the time window of delayed recanalization therapy in AIS.
Collapse
Affiliation(s)
- Danli Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Yuxin Liu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Huipeng Huang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Mengyan Hu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Tiemei Li
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Shisi Wang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Shishi Shen
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Ruizhen Wu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Wei Cai
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China.
- Center of Clinical Immunology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Tingting Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China.
| | - Zhengqi Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China.
| |
Collapse
|
13
|
Yan M, Li Z, Dai S, Li S, Yu P. The potential effect of salvianolic acid B against rat ischemic brain injury in combination with mesenchymal stem cells. J Chem Neuroanat 2023; 133:102338. [PMID: 37708947 DOI: 10.1016/j.jchemneu.2023.102338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) and Salvianolic acid B (SAB) are known to exert potent anti-inflammatory and anti-oxidative properties. But the effect of SAB and MSCs combination treatment on the cerebral ischemia/reperfusion injury (CI/RI) is not clear. METHODS After the CI/RI animal model established, rats were administered with MSCs and SAB individually or combination treatment. To evaluate the therapeutic potential, behavioral tests, TTC staining, Hematoxylin-eosin (HE) staining, and immunofluorescence assays were performed to evaluate the neuroprotection and endogenous neurogenesis. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and enzyme linked immunosorbent assay (ELISA) were performed to evaluate the anti-apoptosis and anti-inflammatory effect. Meanwhile, the expression of the TLR4/NF-ĸB/MYD88 signal pathway-related proteins was evaluated by Western blot. RESULTS MSCs and SAB individually or combination treatment have protective effect in CI/RI rats. More importantly, the rats with the combination treatment showed a better behavioral recovery, neurogenesis and smaller infarct size compared with the rats administered with MSCs or SAB individually. Further research showed that the combination treatment decreased CI/RI induced inflammatory cytokines and oxidative stress, including inhibiting the production of IL-1β, IL-6, TNF-α, decreasing the levels of malondialdehyde (MDA), and increased the activity of superoxide dismutase (SOD). In addition, the neuroprotection effect of SAB and MSCs combination was achieved through the regulation of TLR4/NF-κB/MyD88 signaling pathway related proteins, including inhibition the protein levels of TLR4, MYD88, p-NF-κB p65, TRAF6-and action of SIRT1 in brain tissues. CONCLUSION The present study indicated that the MSCs and SAB combination treatment had better protective effect against rat ischemic brain injury. The combination of SAB and MSCs may provide a potent and promising strategy for the treatment of ischemic stroke and is worthy for further development.
Collapse
Affiliation(s)
- Minli Yan
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310000, Zhejiang, China
| | - Zheming Li
- College of Pharmacy, Hangzhou Medical College, Hangzhou 310000, Zhejiang, China
| | - Shijie Dai
- College of Pharmacy, Hangzhou Medical College, Hangzhou 310000, Zhejiang, China
| | - Shouye Li
- College of Pharmacy, Hangzhou Medical College, Hangzhou 310000, Zhejiang, China.
| | - Pingping Yu
- Department of Pharmacy, Ningbo No. 2 Hospital, Ningbo 315000, Zhejiang, China.
| |
Collapse
|
14
|
Kobroob A, Kongkaew A, Wongmekiat O. Melatonin Reduces Aggravation of Renal Ischemia-Reperfusion Injury in Obese Rats by Maintaining Mitochondrial Homeostasis and Integrity through AMPK/PGC-1α/SIRT3/SOD2 Activation. Curr Issues Mol Biol 2023; 45:8239-8254. [PMID: 37886963 PMCID: PMC10605397 DOI: 10.3390/cimb45100520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
This study examined the potential benefits of melatonin against renal ischemia and reperfusion (IR) injury in obesity and explored the underlying mechanisms. Obesity was induced in Wistar rats by feeding a high-fat diet for 16 weeks. Three obese groups that underwent renal IR induction (30-min renal ischemia followed by 24-h reperfusion) were randomly assigned to receive melatonin at ischemic onset, reperfusion onset, or pretreatment for 4 weeks before IR induction. Groups of vehicle-treated obese and normal-diet-fed rats that underwent sham or IR induction were also included in the study. The results showed that renal functional and structural impairments after IR incidence were aggravated in obese rats compared to normal-diet-fed rats. The obese-IR rats also exhibited oxidative stress, mitochondrial dysfunction, apoptosis, and mitochondrial dynamics and mitophagy imbalances, which were all considerably improved upon melatonin treatment, irrespective of the treatment time. This study suggests the prophylactic and therapeutic efficacy of melatonin in IR-induced acute kidney injury (AKI) in obese individuals, which may improve the prognosis of AKI in these populations. The benefits of melatonin are likely mediated by the modification of various signaling molecules within the mitochondria that maintain mitochondrial redox balance and lead to the protection of mitochondrial homeostasis and integrity.
Collapse
Affiliation(s)
- Anongporn Kobroob
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand;
| | - Aphisek Kongkaew
- Research Administration Section, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Orawan Wongmekiat
- Integrative Renal Research Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
15
|
Jin ZL, Gao WY, Guo F, Liao SJ, Hu MZ, Yu T, Yu SZ, Shi Q. Ring Finger Protein 146-mediated Long-chain Fatty-acid-Coenzyme a Ligase 4 Ubiquitination Regulates Ferroptosis-induced Neuronal Damage in Ischemic Stroke. Neuroscience 2023; 529:148-161. [PMID: 37591333 DOI: 10.1016/j.neuroscience.2023.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Abstract
Ischemic stroke (IS) is one of the leading causes of disability and death worldwide. Long-chain fatty-acid-coenzyme A ligase 4 (ACSL4) is a critical isozyme for ferroptosis that participates in the progression of IS. RING finger protein 146 (RNF146) is an E3 ligase predicted to interact with ACSL4 and regulated by activating transcription factor 3 (ATF3). The molecular mechanism of the RNF146/ACSL4 axis in IS is still unclear. Oxygen-glucose deprivation/reperfusion (OGD/R) treatment was used as the in vitro model, and middle cerebral artery occlusion (MCAO) mice were established for the in vivo model for IS. The protein level of ACSL4 was monitored by Western blot during ischemic injury. RNF146 was overexpressed in vitro and in vivo. The interaction of RNF146 and ACSL4 was determined by co-immunoprecipitation (Co-IP) assay. Chromatin immunoprecipitation (ChIP) assay and luciferase assay were utilized to determine the regulation of ATF3 on RNF146. Ferroptosis was evaluated by the levels of lactate dehydrogenase (LDH), malondialdehyde (MDA), Fe2+, and protein levels of related genes including ACSL4, SLC7A11, and GPX4. ACSL4 was downregulated upon OGD treatment and then increased by re-oxygenation. RNF146 was responsible for the ubiquitination and degradation of ACSL4 protein. RNF146 overexpression could prevent the stimulation of OGD/R-induced LDH, MDA, and Fe2+ levels and ferroptosis-related gene expression. ATF3 could activate the transcription and expression of RNF146, leading to the inhibition of OGD/R-induced neuron ferroptosis. The ATF3-mediated RNF146 could alleviate neuronal damage in IS by regulating ACSL4 ubiquitination and ferroptosis, providing a novel theoretical basis for exploring therapeutic targets and strategies.
Collapse
Affiliation(s)
- Zheng-Long Jin
- Department of Neurology, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Ji'nan University, Jiangmen 529000, Guangdong Province, PR China
| | - Wen-Ying Gao
- Department of TCM Pediatrics, Jiangmen Maternal and Child Health Hospital, Jiangmen 529030, Guangdong Province, PR China
| | - Fu Guo
- Department of Neurology, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Ji'nan University, Jiangmen 529000, Guangdong Province, PR China
| | - Shao-Jun Liao
- Department of Spine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, Guangdong Province, PR China
| | - Ming-Zhe Hu
- Department of Neurology, The Affiliated Hospital of Shandong University of TCM, Jinan 250000, Shandong Province, PR China
| | - Tao Yu
- Department of Neurology, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Ji'nan University, Jiangmen 529000, Guangdong Province, PR China
| | - Shang-Zhen Yu
- Department of Neurology, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Ji'nan University, Jiangmen 529000, Guangdong Province, PR China
| | - Qing Shi
- Department of Neurology, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Ji'nan University, Jiangmen 529000, Guangdong Province, PR China.
| |
Collapse
|
16
|
Zhao ZM, Mei S, Zheng QY, Wang J, Yin YR, Zhang JJ, Wang XZ. Melatonin or vitamin C attenuates lead acetate-induced testicular oxidative and inflammatory damage in mice by inhibiting oxidative stress mediated NF-κB signaling. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115481. [PMID: 37716076 DOI: 10.1016/j.ecoenv.2023.115481] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/17/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023]
Abstract
Lead (Pb) acts as an environmental endocrine disruptor and has negative effects in animals; excessive accumulation of lead causes reproductive dysfunction in male animals. Oxidative stress plays a vital role in Pb-induced injury. However, the mechanisms underlying chronic testicular toxicity of Pb remain unclear. In this study, we aimed to determine the effects of lead acetate on reproductive function in male mice, identify the underlying mechanisms, and test counter measures to alleviate the toxic effects. Male mice were dosed with lead acetate (500 mg/L) in free drinking water for 12 weeks, and administered melatonin (5 mg/kg) or vitamin C (500 mg/kg) by intraperitoneal injection. Blood from the eyeball, testicles, and sperm from the caudal epididymis were collected after 12 weeks and analyzed. Pb exposure reduced sperm count and motility, increased sperm malformation (P < 0.01), disrupted testicular morphology and structure, and decreased the expression of steroid hormone synthesis-related enzymes and serum testosterone concentration (P < 0.01). Pb also increased the number of inflammatory cells and the levels of the pro-inflammatory cytokines TNF-α and IL-6 (P < 0.01), and activated NF-κB signaling. Furthermore, the ROS yield and oxidation indicators LPO and MDA were significantly increased (P < 0.01), and the antioxidant indicators T-AOC, SOD, and GSH were significantly reduced (P < 0.01). Treatment with melatonin or vitamin C reversed the effects of lead acetate; vitamin C was more effective in restoring SOD activity (P < 0.01) and enhancing ZO-1 protein levels (P < 0.01). Thus, long-term exposure to lead acetate at low concentrations could adversely affect sperm quality and induce inflammatory damage by oxidative stress mediated NF-κB signaling. Vitamin C could act as a protective agent and improve reproductive dysfunction in male animals after lead accumulation.
Collapse
Affiliation(s)
- Ze-Min Zhao
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest, University, Beibei, Chongqing 400715, PR China
| | - Su Mei
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest, University, Beibei, Chongqing 400715, PR China
| | - Qi-Yue Zheng
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest, University, Beibei, Chongqing 400715, PR China
| | - Jiao Wang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest, University, Beibei, Chongqing 400715, PR China
| | - Yi-Ru Yin
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest, University, Beibei, Chongqing 400715, PR China
| | - Jiao-Jiao Zhang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest, University, Beibei, Chongqing 400715, PR China
| | - Xian-Zhong Wang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest, University, Beibei, Chongqing 400715, PR China.
| |
Collapse
|
17
|
Xu Q, Cheung RTF. Melatonin mitigates type 1 diabetes-aggravated cerebral ischemia-reperfusion injury through anti-inflammatory and anti-apoptotic effects. Brain Behav 2023; 13:e3118. [PMID: 37327371 PMCID: PMC10498092 DOI: 10.1002/brb3.3118] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/15/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023] Open
Abstract
INTRODUCTION Cerebral ischemia and diabetes mellitus (DM) are common diseases that often coexist and interact with each other. DM doubles the risk of ischemic stroke, and cerebral ischemia causes stress-induced hyperglycemia. Most experimental stroke studies used healthy animals. Melatonin is neuroprotective against cerebral ischemia-reperfusion injury (CIRI) in non-DM, normoglycemic animals through anti-oxidant effect, anti-inflammation, and anti-apoptosis. Previous studies have also reported a negative correlation between hyperglycemia and urinary melatonin metabolite. OBJECTIVES The present study investigated the effects of type 1 DM (T1DM) on CIRI in rats and the role of melatonin against CIRI in T1DM animals. RESULTS Our results revealed that T1DM aggravated CIRI, leading to greater weight loss, increased infarct volume, and worse neurological deficit. T1DM aggravated the post-CIRI activation of nuclear factor kappa B (NF-κB) pathway and increase in pro-apoptotic markers. A single intraperitoneal injection of melatonin at 10 mg/kg given 30 min before ischemia onset attenuated CIRI in T1DM rats, resulting in less weight loss, decreased infarct volume, and milder neurological deficit when compared with the vehicle group. Melatonin treatment achieved anti-inflammatory and anti-apoptotic effects with reduced NF-κB pathway activation, reduced mitochondrial cytochrome C release, decreased calpain-mediated spectrin breakdown product (SBDP), and decreased caspase-3-mediated SBDP. The treatment also led to fewer iNOS+ cells, milder CD-68+ macrophage/microglia infiltration, decreased TUNEL+ apoptotic cells, and better neuronal survival. CONCLUSIONS T1DM aggravates CIRI. Melatonin treatment is neuroprotective against CIRI in T1DM rats via anti-inflammatory and anti-apoptotic effects.
Collapse
Affiliation(s)
- Qian Xu
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Raymond Tak Fai Cheung
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- Research Centre of Heart, Brain, Hormone & Healthy Aging, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| |
Collapse
|
18
|
Huan Y, Hao G, Shi Z, Liang Y, Dong Y, Quan H. The role of dynamin-related protein 1 in cerebral ischemia/hypoxia injury. Biomed Pharmacother 2023; 165:115247. [PMID: 37516018 DOI: 10.1016/j.biopha.2023.115247] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023] Open
Abstract
Mitochondrial dysfunction, especially in terms of mitochondrial dynamics, has been reported to be closely associated with neuronal outcomes and neurological impairment in cerebral ischemia/hypoxia injury. Dynamin-related protein 1 (Drp1) is a cytoplasmic GTPase that mediates mitochondrial fission and participates in neuronal cell death, calcium signaling, and oxidative stress. The neuroprotective role of Drp1 inhibition has been confirmed in several central nervous system disease models, demonstrating that targeting Drp1 may shed light on novel approaches for the treatment of cerebral ischemia/hypoxia injury. In this review, we aimed to highlight the roles of Drp1 in programmed cell death, oxidative stress, mitophagy, and mitochondrial function to provide a better understanding of mitochondrial disturbances in cerebral ischemia/hypoxia injury, and we also summarize the advances in novel chemical compounds targeting Drp1 to provide new insights into potential therapies for cerebral ischemia/hypoxia injury.
Collapse
Affiliation(s)
- Yu Huan
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Guangzhi Hao
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Zuolin Shi
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Yong Liang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Yushu Dong
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China.
| | - Huilin Quan
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
19
|
Li W, Zhang Z, Li J, Mu J, Sun M, Wu X, Niu X, Yang Y, Yan H, Xu X, Xue C, Qian L, Tian Y. Silibinin exerts neuroprotective effects against cerebral hypoxia/reoxygenation injury by activating the GAS6/Axl pathway. Toxicology 2023; 495:153598. [PMID: 37544575 DOI: 10.1016/j.tox.2023.153598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023]
Abstract
Ischemic stroke is regarded one of the most common causes of brain vulnerability. Silibinin (SIL), extracted from the seeds of Silybinisus laborinum L., has been found to exhibit obvious therapeutic effects on neurodegenerative diseases. GAS6 has been proven to have significant neuroprotective effects; however, the role of SIL and GAS6 in ischemic stroke remains unclear. This study aimed to investigate the protective effects of SIL against cerebral ischemia-reperfusion injury in neuroblastoma N2a cells, as well as the mechanisms involved. Firstly, the toxicity of SIL was evaluated, and safe concentrations were chosen for subsequent experiments. Then, SIL exerts significant neuroprotection against hypoxia/reoxygenation (HR) injury in N2a cells, as manifested by increased cell viability, decreased apoptotic rate, LDH, and ROS generation. Additionally, SIL was found to inhibit HR-induced apoptosis, mitochondria dysfunction, and oxidative stress. However, silencing of GAS6 inhibited the neuroprotective effects of SIL. To sum up, these results suggest that SIL may be a promising therapeutic agent for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Weiping Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Zhe Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Jiawen Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Jun Mu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Meng Sun
- Department of Cardiology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan 030001, China
| | - Xue Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Xiaochen Niu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Huanle Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Xiaoling Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Chengxu Xue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Lu Qian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China.
| | - Ye Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China.
| |
Collapse
|
20
|
Liu Y, Wang L, Yang G, Chi X, Liang X, Zhang Y. Sirtuins: Promising Therapeutic Targets to Treat Ischemic Stroke. Biomolecules 2023; 13:1210. [PMID: 37627275 PMCID: PMC10452362 DOI: 10.3390/biom13081210] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Stroke is a major cause of mortality and disability globally, with ischemic stroke (IS) accounting for over 80% of all stroke cases. The pathological process of IS involves numerous signal molecules, among which are the highly conserved nicotinamide adenine dinucleotide (NAD+)-dependent enzymes known as sirtuins (SIRTs). SIRTs modulate various biological processes, including cell differentiation, energy metabolism, DNA repair, inflammation, and oxidative stress. Importantly, several studies have reported a correlation between SIRTs and IS. This review introduces the general aspects of SIRTs, including their distribution, subcellular location, enzyme activity, and substrate. We also discuss their regulatory roles and potential mechanisms in IS. Finally, we describe the current therapeutic methods based on SIRTs, such as pharmacotherapy, non-pharmacological therapeutic/rehabilitative interventions, epigenetic regulators, potential molecules, and stem cell-derived exosome therapy. The data collected in this study will potentially contribute to both clinical and fundamental research on SIRTs, geared towards developing effective therapeutic candidates for future treatment of IS.
Collapse
Affiliation(s)
- Yue Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Y.L.); (L.W.); (X.C.)
| | - Liuding Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Y.L.); (L.W.); (X.C.)
| | - Guang Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China;
| | - Xiansu Chi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Y.L.); (L.W.); (X.C.)
| | - Xiao Liang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Y.L.); (L.W.); (X.C.)
| | - Yunling Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Y.L.); (L.W.); (X.C.)
| |
Collapse
|
21
|
Yu SY, Sun Q, Chen SN, Wang F, Chen R, Chen J, Liu CF, Li J. Circadian Rhythm Disturbance in Acute Ischemic Stroke Patients and Its Effect on Prognosis. Cerebrovasc Dis 2023; 53:14-27. [PMID: 37423205 DOI: 10.1159/000528724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 12/05/2022] [Indexed: 07/11/2023] Open
Abstract
INTRODUCTION Poststroke sleep disturbances are common and can affect stroke outcomes, but the clinical studies mainly focus on breathing-related sleep disorders, while the bidirectional impact of circadian rhythm dysfunction in ischemic stroke remains unknown. This study observed the characteristics of melatonin secretion in acute ischemic stroke patients and evaluated whether melatonin rhythm impacts the prognosis after stroke by assessing the neurological function, cognition, emotion, and quality of life 3 months after stroke. METHODS Acute ischemic stroke patients were selected from the Department of Neurology Inpatients of the Second Hospital affiliated with Soochow University from October 2019 to July 2021. Healthy control subjects were recruited at the same time. Demographic and clinical data were collected, and relevant scale scores (including neurological function, cognition, emotion, and sleep) were assessed within 2 weeks of onset and followed up 3 months later. All participants collected salivary melatonin samples on the 4th day of hospitalization and dim light melatonin onset (DLMO) was calculated according to melatonin concentration. Stroke patients were then divided into three groups based on their DLMO values. RESULTS A total of 74 stroke patients and 33 control subjects were included in this analysis. Compared with healthy controls, stroke patients exhibited a delayed melatonin rhythm during the acute phase of stroke (21:36 vs. 20:38, p = 0.004). Stroke patients were then divided into three groups, namely normal (n = 36), delayed (n = 28), or advanced DLMO (n = 10), based on their DLMO values. A χ2 test showed that there were significant differences in the rate of poor prognosis (p = 0.011) and depression tendency (p = 0.028) among the three groups. A further pairwise comparison revealed that stroke patients with delayed DLMO were more likely to experience poor short-term outcomes than normal DLMO group (p = 0.003). The average melatonin concentration of stroke patients at 5 time points was significantly lower than that of the control group (3.145 vs. 7.065 pg/mL, p < 0.001). Accordingly, we split stroke patients into three groups, namely low melatonin level (n = 14), normal melatonin level (n = 54), or high melatonin level (n = 6). Unfortunately, there were no great differences in the clinical characteristics, cognition, emotion, sleep quality, and short-term outcome among groups. CONCLUSIONS This is a preliminary study, and our results indicate that changes in melatonin secretion phase of stroke patients may have effect on their short-term prognosis.
Collapse
Affiliation(s)
- Si-Yuan Yu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qian Sun
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Sheng-Nan Chen
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Rui Chen
- Department of Respiratory Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jing Chen
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Li
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Lianyungang Oriental Hospital, Lianyungang, China
| |
Collapse
|
22
|
Yilmaz U, Tanbek K, Gul S, Gul M, Koc A, Sandal S. Melatonin Attenuates Cerebral Ischemia/Reperfusion Injury through Inducing Autophagy. Neuroendocrinology 2023; 113:1035-1050. [PMID: 37321200 DOI: 10.1159/000531567] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
INTRODUCTION The aim of this study was to investigate how melatonin administration for 3 days or 7 days following cerebral ischemia (CI) injury would affect autophagy and, therefore, survival in neurons of the penumbra region. Moreover, it was also aimed at determining how this melatonin treatment would affect the neurological deficit score and rotarod and adhesive removal test durations. METHODS Focal CI (90 min) was achieved in a total of 105 rats utilizing a middle cerebral artery occlusion model. After the start of reperfusion, the groups were treated with melatonin (10 mg/kg/day) for 3 days or 7 days. In all groups, neurological deficit scoring, rotarod, and adhesive removal tests were executed during reperfusion. Infarct areas were determined by TTC (2,3,5-triphenyltetrazolium chloride) staining at the end of the 3rd and 7th days of reperfusion. Beclin-1, LC3, p62, and caspase-3 protein levels were assessed using Western blot and immunofluorescence methods in the brain tissues. Moreover, penumbra areas were evaluated by transmission electron microscopy (TEM). RESULTS Following CI, it was observed that melatonin treatment improved the rotarod and adhesive removal test durations from day 5 and reduced the infarct area after CI. It also induced autophagic proteins Beclin-1, LC3, and p62 and suppressed the apoptotic protein cleaved caspase-3. According to TEM findings, melatonin treatment partially reduced the damage in neurons after CI. CONCLUSION Melatonin treatment following CI reduced the infarct area and induced the autophagic proteins Beclin-1, LC3, and p62 by inhibiting the apoptotic caspase-3 protein. The functional reflection of melatonin treatment on neurological test scores was became significant from the 5th day onward.
Collapse
Affiliation(s)
- Umit Yilmaz
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Kevser Tanbek
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Semir Gul
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Mehmet Gul
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Ahmet Koc
- Department of Medical Biology and Genetics, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Suleyman Sandal
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| |
Collapse
|
23
|
Yawoot N, Sengking J, Govitrapong P, Tocharus C, Tocharus J. Melatonin modulates the aggravation of pyroptosis, necroptosis, and neuroinflammation following cerebral ischemia and reperfusion injury in obese rats. Biochim Biophys Acta Mol Basis Dis 2023:166785. [PMID: 37302429 DOI: 10.1016/j.bbadis.2023.166785] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
Obesity is well-established as a common comorbidity in ischemic stroke. The increasing evidence has revealed that it also associates with the exacerbation of brain pathologies, resulting in increasingly severe neurological outcomes following cerebral ischemia and reperfusion (I/R) damage. Mechanistically, pyroptosis and necroptosis are novel forms of regulated death that relate to the propagation of inflammatory signals in case of cerebral I/R. Previous studies noted that pyroptotic and necroptotic signaling were exacerbated in I/R brain of obese animals and led to the promotion of brain tissue injury. This study aimed to investigate the roles of melatonin on pyroptosis, necroptosis, and pro-inflammatory pathways occurring in the I/R brain of obese rats. Male Wistar rats were given a high-fat diet for 16 weeks to induce the obese condition, and then were divided into 4 groups: Sham-operated, I/R treated with vehicle, I/R treated with melatonin (10 mg/kg), and I/R treated with glycyrrhizic acid (10 mg/kg). All drugs were administered via intraperitoneal injection at the onset of reperfusion. The development of neurological deficits, cerebral infarction, histological changes, neuronal death, and glial cell hyperactivation were investigated. This study revealed that melatonin effectively improved these detrimental parameters. Furthermore, the processes of pyroptosis, necroptosis, and inflammation were all diminished by melatonin treatment. A summary of the findings is that melatonin effectively reduces ischemic brain pathology and thereby improves post-stroke outcomes in obese rats by modulating pyroptosis, necroptosis, and inflammation.
Collapse
Affiliation(s)
- Nuttapong Yawoot
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jirakhamon Sengking
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Piyarat Govitrapong
- Chulabhorn Graduate Institute, Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Functional Food Research Center for Well-being, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
24
|
Dou X, Luo Q, Xie L, Zhou X, Song C, Liu M, Liu X, Ma Y, Liu X. Medical Prospect of Melatonin in the Intervertebral Disc Degeneration through Inhibiting M1-Type Macrophage Polarization via SIRT1/Notch Signaling Pathway. Biomedicines 2023; 11:1615. [PMID: 37371708 DOI: 10.3390/biomedicines11061615] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
The study aims to explore the medical prospect of melatonin (MLT) and the underlying therapeutic mechanism of MLT-mediated macrophage (Mφ) polarization on the function of nucleus pulposus (NP) in intervertebral disc degeneration (IDD). RAW 264.7 Mφs were induced by lipopolysaccharide (LPS) to simulate Mφ polarization and the inflammatory reaction of Mφs with or without MLT were detected. Conditioned medium (CM) collected from these activated Mφs with or without MLT treatment were further used to incubate NP cells. The oxidative stress, inflammation and extracellular matrix (ECM) metabolism in NP cells were determined. Then, the changes in SIRT1/Notch signaling were detected. The agonist (SRT1720) and inhibitor (EX527) of SIRT1 were used to further explore the association among MLT. The interaction between SIRT1 and NICD was detected by immunoprecipitation (IP). Finally, puncture-induced rat IDD models were established and IDD degrees were clarified by X-ray, MRI, H&E staining and immunofluorescence (IF). The results of flow cytometry and inflammation detection indicated that LPS could induce M1-type Mφ polarization with pro-inflammatory properties. MLT significantly inhibited the aforementioned process and inhibited M1-type Mφ polarization, accompanied by the alleviation of inflammation. Compared with those without MLT, the levels of oxidative stress, pro-inflammatory cytokines and ECM catabolism in NP cells exposed to CM with MLT were markedly downregulated in a dose-dependent manner. The inhibition of SIRT1 and the enhancement of Notch were observed in activated Mφs and they can be reversed after MLT treatment. This prediction was further confirmed by using the SRT1720 and EX527 to activate or inhibit the signaling. The interaction between SIRT1 and NICD was verified by IP. In vivo study, the results of MRI, Pfirrmann grade scores and H&E staining demonstrated the degree of disc degeneration was significantly lower in the MLT-treated groups when compared with the IDD control group. The IF data showed M1-type Mφ polarization decreased after MLT treatment. MLT could inhibit M1-type Mφ polarization and ameliorate the NP cell injury caused by inflammation in vitro and vivo, which is of great significance for the remission of IDD. The SIRT1/Notch signaling pathway is a promising target for MLT to mediate Mφ polarization.
Collapse
Affiliation(s)
- Xinyu Dou
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing 100191, China
| | - Qipeng Luo
- Pain Medical Center, Peking University Third Hospital, Beijing 100191, China
| | - Linzhen Xie
- Peking University Fourth School of Clinical Medicine, Beijing 100035, China
| | - Xuchang Zhou
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Chunyu Song
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Meijuan Liu
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Xiao Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing 100191, China
| | - Yunlong Ma
- Pain Medical Center, Peking University Third Hospital, Beijing 100191, China
| | - Xiaoguang Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing 100191, China
| |
Collapse
|
25
|
Melatonin Activates Anti-Inflammatory Features in Microglia in a Multicellular Context: Evidence from Organotypic Brain Slices and HMC3 Cells. Biomolecules 2023; 13:biom13020373. [PMID: 36830742 PMCID: PMC9952958 DOI: 10.3390/biom13020373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Melatonin (MEL) is a neurohormone endowed with neuroprotective activity, exerted both directly on neuronal cells and indirectly through modulation of responsive glial cells. In particular, MEL's effects on microglia are receptor-mediated and in part dependent on SIRT1 activation. In the present study, we exploited the highly preserved cytoarchitecture of organotypic brain cultures (OC) to explore the effects of MEL on hippocampal microglia in a 3D context as compared to a single cell type context represented by the human HMC3 cell line. We first evaluated the expression of MEL receptor MT1 and SIRT1 and then investigated MEL action against an inflammatory stimulation with LPS: OCs were cultured for a total of 2 weeks and during this time exposed to 0.1 μg/mL of LPS for 24 h either on day 1 (LPS 1°) or on day 11 (LPS 11°). MEL was added immediately after plating and kept for the entire experiment. Under these conditions, both MEL and LPS induced amoeboid microglia. However, the same round phenotype matched different polarization features. LPS increased the number of nuclear-NF-kB+ round cells and MEL alone or in combination with LPS increased BDNF+ round microglia. In addition, MEL contrasted LPS effects on NF-kB expression. Data from HMC3 microglia confirmed MEL's anti-inflammatory effects against LPS in terms of CASP1 induction and BDNF release, identifying SIRT1 as a mediator. However, no effects were evident for MEL alone on HMC3 microglia. Overall, our results point to the importance of the multicellular context for full MEL activity, especially in a preventive view, and support the use of OCs as a favorable model to explore inflammatory responses.
Collapse
|
26
|
Suofu Y, Jauhari A, Nirmala ES, Mullins WA, Wang X, Li F, Carlisle DL, Friedlander RM. Neuronal melatonin type 1 receptor overexpression promotes M2 microglia polarization in cerebral ischemia/reperfusion-induced injury. Neurosci Lett 2023; 795:137043. [PMID: 36586530 PMCID: PMC9936831 DOI: 10.1016/j.neulet.2022.137043] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/09/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
Microglial activation is readily detected following cerebral ischemia/reperfusion-induced injury. Activated microglia polarize into either classic pro-inflammatory M1 or protective M2 microglia following ischemia/reperfusion-induced injury. Melatonin is protective immediately after ischemia/reperfusion-induced brain injury. However, the ability of melatonin to affect longer-term recovery from ischemic/reperfusion-induced injury as well as its ability to modulate microglia/macrophage polarization are unknown. The goal of this study is to understand the impact of melatonin on mice 14 days after injury, as well as to understand how melatonin affects microglial polarization of neuronal MT1 activation following cerebral ischemia/reperfusion. We utilized NSEMT1-GFP transgenic mice which overexpress MT1 (melatonin type 1 receptor) in neurons. Melatonin-treated or vehicle treated wild type and NSEMT1-GFP mice underwent middle cerebral artery occlusion (MCAO)/reperfusion and followed for 14 days. Neuronal MT1 overexpression significantly reduced infarct volumes, improved motor function, and ameliorated weight loss. Additionally, melatonin treatment reduced infarct volume in NSEMT1-GFP mice as compared to untreated wild type, melatonin treated wild type, and untreated NSEMT1-GFP mice. Melatonin improved neurological function and prevented weight loss in NSEMT1-GFP mice compared with melatonin treated wild type mice. Finally, melatonin treatment in combination with MT1 overexpression reduced the numbers of Iba1+/CD16+ M1 microglia and increased the numbers of Iba1+/ CD206+ M2 microglia after ischemic injury. In conclusion, neuronal MT1 mediates melatonin-induced long-term recovery after cerebral ischemia, at least in part, by shifting microglial polarization toward the neuroprotective M2 phenotype.
Collapse
Affiliation(s)
- Yalikun Suofu
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Abhishek Jauhari
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Emilia S Nirmala
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - William A Mullins
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xiaomin Wang
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fang Li
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Diane L Carlisle
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robert M Friedlander
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
27
|
Wu QJ, Zhang TN, Chen HH, Yu XF, Lv JL, Liu YY, Liu YS, Zheng G, Zhao JQ, Wei YF, Guo JY, Liu FH, Chang Q, Zhang YX, Liu CG, Zhao YH. The sirtuin family in health and disease. Signal Transduct Target Ther 2022; 7:402. [PMID: 36581622 PMCID: PMC9797940 DOI: 10.1038/s41392-022-01257-8] [Citation(s) in RCA: 212] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 12/30/2022] Open
Abstract
Sirtuins (SIRTs) are nicotine adenine dinucleotide(+)-dependent histone deacetylases regulating critical signaling pathways in prokaryotes and eukaryotes, and are involved in numerous biological processes. Currently, seven mammalian homologs of yeast Sir2 named SIRT1 to SIRT7 have been identified. Increasing evidence has suggested the vital roles of seven members of the SIRT family in health and disease conditions. Notably, this protein family plays a variety of important roles in cellular biology such as inflammation, metabolism, oxidative stress, and apoptosis, etc., thus, it is considered a potential therapeutic target for different kinds of pathologies including cancer, cardiovascular disease, respiratory disease, and other conditions. Moreover, identification of SIRT modulators and exploring the functions of these different modulators have prompted increased efforts to discover new small molecules, which can modify SIRT activity. Furthermore, several randomized controlled trials have indicated that different interventions might affect the expression of SIRT protein in human samples, and supplementation of SIRT modulators might have diverse impact on physiological function in different participants. In this review, we introduce the history and structure of the SIRT protein family, discuss the molecular mechanisms and biological functions of seven members of the SIRT protein family, elaborate on the regulatory roles of SIRTs in human disease, summarize SIRT inhibitors and activators, and review related clinical studies.
Collapse
Affiliation(s)
- Qi-Jun Wu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie-Ning Zhang
- grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huan-Huan Chen
- grid.412467.20000 0004 1806 3501Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xue-Fei Yu
- grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia-Le Lv
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Yang Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ya-Shu Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Gang Zheng
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun-Qi Zhao
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Fan Wei
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing-Yi Guo
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fang-Hua Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Chang
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Xiao Zhang
- grid.412467.20000 0004 1806 3501Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cai-Gang Liu
- grid.412467.20000 0004 1806 3501Department of Cancer, Breast Cancer Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Hong Zhao
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
28
|
DiNicolantonio JJ, McCarty MF, O'Keefe JH. Nutraceutical activation of Sirt1: a review. Open Heart 2022; 9:openhrt-2022-002171. [PMID: 36522127 PMCID: PMC9756291 DOI: 10.1136/openhrt-2022-002171] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
The deacetylase sirtuin 1 (Sirt1), activated by calorie restriction and fasting, exerts several complementary effects on cellular function that are favourable to healthspan; it is often thought of as an 'anti-aging' enzyme. Practical measures which might boost Sirt1 activity are therefore of considerable interest. A number of nutraceuticals have potential in this regard. Nutraceuticals reported to enhance Sirt1 synthesis or protein expression include ferulic acid, tetrahydrocurcumin, urolithin A, melatonin, astaxanthin, carnosic acid and neochlorogenic acid. The half-life of Sirt1 protein can be enhanced with the natural nicotinamide catabolite N1-methylnicotinamide. The availability of Sirt1's obligate substrate NAD+ can be increased in several ways: nicotinamide riboside and nicotinamide mononucleotide can function as substrates for NAD+ synthesis; activators of AMP-activated kinase-such as berberine-can increase expression of nicotinamide phosphoribosyltransferase, which is rate limiting for NAD+ synthesis; and nutraceutical quinones such as thymoquinone and pyrroloquinoline quinone can boost NAD+ by promoting oxidation of NADH. Induced ketosis-as via ingestion of medium-chain triglycerides-can increase NAD+ in the brain by lessening the reduction of NAD+ mediated by glycolysis. Post-translational modifications of Sirt1 by O-GlcNAcylation or sulfonation can increase its activity, suggesting that administration of glucosamine or of agents promoting hydrogen sulfide synthesis may aid Sirt1 activity. Although resveratrol has poor pharmacokinetics, it can bind to Sirt1 and activate it allosterically-as can so-called sirtuin-activating compound drugs. Since oxidative stress can reduce Sirt1 activity in multiple ways, effective antioxidant supplementation that blunts such stress may also help preserve Sirt1 activity in some circumstances. Combination nutraceutical regimens providing physiologically meaningful doses of several of these agents, capable of activating Sirt1 in complementary ways, may have considerable potential for health promotion. Such measures may also amplify the benefits of sodium-glucose cotransporter-2 (SGLT2) inhibitors in non-diabetic disorders, as these benefits appear to reflect upregulation of Sirt1 and AMP-activated protein kinase activities.
Collapse
Affiliation(s)
- James J DiNicolantonio
- Department of Preventive Cardiology, Saint Luke's Mid America Heart Institute, Kansas City, Missouri, USA
| | - Mark F McCarty
- Catalytic Longevity Foundation, Encinitas, California, USA
| | - James H O'Keefe
- Department of Preventive Cardiology, Saint Luke's Mid America Heart Institute, Kansas City, Missouri, USA
| |
Collapse
|
29
|
Increased Oxidative Stress Markers in Acute Ischemic Stroke Patients Treated with Thrombolytics. Int J Mol Sci 2022; 23:ijms232415625. [PMID: 36555265 PMCID: PMC9779811 DOI: 10.3390/ijms232415625] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
One of the most common neurological disorders involving oxidative stress is stroke. During a stroke, the balance of redox potential in the cell is disturbed, and, consequently, protein oxidation or other intracellular damage occurs, ultimately leading to apoptosis. The pineal gland hormone, melatonin, is one of the non-enzymatic antioxidants. It not only modulates the perianal rhythm but also has anti-inflammatory properties and protects against stress-induced changes. The focus of this research was to evaluate the concentration of the carbonyl groups and melatonin metabolite in time in patients with acute ischemic stroke that were treated with intravenous thrombolysis. This included a comparison of the functional status of patients assessed according to neurological scales with the control sample comprising healthy people. The studies showed that the serum concentrations of carbonyl groups, which were elevated in patients with ischemic stroke (AIS) in comparison to the control samples, had an impact on the patients' outcome. A urine concentration of the melatonin metabolite, which was lower in patients than controls, was related to functional status after 24 h from cerebral thrombolysis. It shows that determination of carbonyl groups at different time intervals may be an important potential marker of protein damage in patients with AIS treated with cerebral thrombolysis, and that impaired melatonin metabolism induces a low antioxidant protection. Thus, due to the neuroprotective effects of melatonin, attention should also be paid to the design and conduct of clinical trials and hormone supplementation in AIS patients to understand the interactions between exogenous melatonin and its endogenous rhythm, as well as how these relationships may affect patient outcomes.
Collapse
|
30
|
Miao Z, Miao Z, Liu M, Xu S. Melatonin ameliorates imidacloprid-induced intestinal injury by negatively regulating the PGN/P38MAPK pathway in the common carp (Cyprinuscarpio). FISH & SHELLFISH IMMUNOLOGY 2022; 131:1063-1074. [PMID: 36375784 DOI: 10.1016/j.fsi.2022.11.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Imidacloprid (IMI), one of the most frequently used neonicotinoid insecticides in agriculture, is resided in surface water worldwide and poses a threat to aquatic organisms. Melatonin (MT) provides effective protection against insecticide-induced toxicity, nevertheless, the toxic effects and whether MT attenuates intestinal injury caused by IMI exposure in the common carps remains poorly explored. Previous studies have reported adverse effects of IMI exposure on intestinal health status. Therefore, we first demonstrated that IMI altered the composition and function of the intestinal microbiota, destroying the integrity of intestinal ultrastructure, increasing intestinal permeability. Meanwhile, metagenomic sequencing and ELISA kits results hypothesized that peptidoglycan (PGN) is an IMI-triggered intestinal microbial metabolite. Subsequently, we thus further elucidated that IMI induced an increase in intestinal tight junction permeability by inducing PGN secretion in vitro model. MT addition dramatically attenuated IMI-induced intestinal toxicity by remitting PGN synthesis and thus resecuring tight junction permeability, thereby reducing intestinal injury. SB203580 was supplied as a P38MAPK inhibitor to alleviate the increased permeability of tight junctions induced by IMI/PGN. Therefore, these findings confirmed that MT protects against IMI-induced intestinal injury by negatively regulating PGN/P38MAPK pathway to antagonize the increased tight junction permeability.
Collapse
Affiliation(s)
- Zhiruo Miao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhiying Miao
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Min Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
31
|
Wang J, Gao S, Lenahan C, Gu Y, Wang X, Fang Y, Xu W, Wu H, Pan Y, Shao A, Zhang J. Melatonin as an Antioxidant Agent in Stroke: An Updated Review. Aging Dis 2022; 13:1823-1844. [PMID: 36465183 PMCID: PMC9662272 DOI: 10.14336/ad.2022.0405] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/05/2022] [Indexed: 08/22/2023] Open
Abstract
Stroke is a devastating disease associated with high mortality and disability worldwide, and is generally classified as ischemic or hemorrhagic, which share certain similar pathophysiological processes. Oxidative stress is a critical factor involved in stroke-induced injury, which not only directly damages brain tissue, but also enhances a series of pathological signaling cascades, contributing to inflammation, brain edema, and neuronal death. To alleviate these serious secondary brain injuries, neuroprotective agents targeting oxidative stress inhibition may serve as a promising treatment strategy. Melatonin is a hormone secreted by the pineal gland, and has various properties, such as antioxidation, anti-inflammation, circadian rhythm modulation, and promotion of tissue regeneration. Numerous animal experiments studying stroke have confirmed that melatonin exerts considerable neuroprotective effects, partially via anti-oxidative stress. In this review, we introduce the possible role of melatonin as an antioxidant in the treatment of stroke based on the latest published studies of animal experiments and clinical research.
Collapse
Affiliation(s)
- Junjie Wang
- Department of Neurosurgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Cameron Lenahan
- Department of Biomedical Science, Burrell College of Osteopathic Medicine, Las Cruces, NM, USA.
| | - Yichen Gu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Weilin Xu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Haijian Wu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Yuanbo Pan
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Brain Research Institute, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
32
|
Partsernyak AS, Polyakova VO, Trufanov AG, Medvedev DS, Trotsyuk DV, Markin K, Kurasov ES, Kuznetsova EV, Krasichkov AS. Melatonin: Manager of psychosomatic and metabolic disorders in polymorbid cardiovascular pathology. Front Neurosci 2022; 16:989497. [PMID: 36248667 PMCID: PMC9554144 DOI: 10.3389/fnins.2022.989497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives To investigate the relationship between changes in circadian patterns of melatonin and clinical manifestations of polymorbid cardiovascular pathology (PCVP) in young men and to analyze the effectiveness of their complex treatment. Materials and methods We made the immunohistochemical (IHC) analysis of epiphysis tissues from autopsies of 25 men aged 32–44 with PCVP and metabolic syndrome (MS) who had died as a result of ischemic cardiomyopathy (IC) and 25 persons after the car accident as a control group. Then, 93 young men aged 35–44 with PCVP, metabolic syndrome, and depressive spectrum disorders (DSD) were divided into three groups: (1) standard therapy; (2) standard therapy and psychotherapy sessions; (3) standard therapy in combination with psychotherapeutic and psychophysiological visual and auditory correction sessions. The control group included 24 conditionally healthy male volunteers. Before and after the treatment, we studied the anthropometric status, lipid and carbohydrate metabolism indicators, the level of urinary 6-hydroxymelatonin sulfate, the degree of nocturnal decrease in blood pressure (BP), and the relationship of these indicators with circadian variations of melatonin excretion. Results Young polymorbid patients who died from IC have a lower expression of melatonin type 1 and 2 receptors. All patients with PCVP showed a decrease in the nocturnal melatonin excretion fraction and a correlation with higher severity of depressive (r = −0.72) and anxiety (r = −0.66) symptoms. Reduced values of the 6-hydroxymelatonin sulfate (6-SM) in the 1st (r = 0.45), 2nd (r = 0.39), and 3rd (r = 0.51) groups before treatment was associated with periods of increased BP. The achievement of melatonin excretion reference values and normalization of biochemical parameters of carbohydrate and lipid metabolism, daily BP profile, and psychophysiological state were noted in all three patients’ groups, with a more pronounced effect in group 3. Conclusion Low nocturnal melatonin excretion levels are associated with greater severity of clinical symptoms and a higher risk of death in patients with PCVP. Therefore, comprehensive therapy may be more effective for correcting this disease.
Collapse
Affiliation(s)
- Alexander S. Partsernyak
- Department of Military Field Therapy, Kirov Military Medical Academy, Saint Petersburg, Russia
- *Correspondence: Alexander S. Partsernyak,
| | - Victoria O. Polyakova
- Center for Molecular Biomedicine, St. Petersburg Research Institute of Phthisiopulmonology, Saint Petersburg, Russia
| | - Artem G. Trufanov
- Department of Neurology, Kirov Military Medical Academy, Saint Petersburg, Russia
- Department of Software Engineering and Computer Applications, Saint Petersburg Electrotechnical University “LETI”, Saint Petersburg, Russia
| | - Dmitriy S. Medvedev
- Department of Physiological Assessment and Medical Correction, Research Institute of Hygiene, Occupational Pathology and Human Ecology of the Federal Medical Biological Agency of Russia, Kuzmolovsky, Russia
| | - Dina V. Trotsyuk
- Department of Internal Diseases, Private Educational Institution of Higher Education “St. Petersburg Medical and Social Institute”, Saint Petersburg, Russia
| | - Kirill Markin
- Department of Psychiatry, Kirov Military Medical Academy, Saint Petersburg, Russia
| | - Evgeniy S. Kurasov
- Department of Psychiatry, Kirov Military Medical Academy, Saint Petersburg, Russia
| | | | - Alexander S. Krasichkov
- Department of Radio Engineering Systems, Saint Petersburg Electrotechnical University “LETI”, Saint Petersburg, Russia
| |
Collapse
|
33
|
Nutraceutical Prevention of Diabetic Complications—Focus on Dicarbonyl and Oxidative Stress. Curr Issues Mol Biol 2022; 44:4314-4338. [PMID: 36135209 PMCID: PMC9498143 DOI: 10.3390/cimb44090297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/25/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative and dicarbonyl stress, driven by excess accumulation of glycolytic intermediates in cells that are highly permeable to glucose in the absence of effective insulin activity, appear to be the chief mediators of the complications of diabetes. The most pathogenically significant dicarbonyl stress reflects spontaneous dephosphorylation of glycolytic triose phosphates, giving rise to highly reactive methylglyoxal. This compound can be converted to harmless lactate by the sequential activity of glyoxalase I and II, employing glutathione as a catalyst. The transcription of glyoxalase I, rate-limiting for this process, is promoted by Nrf2, which can be activated by nutraceutical phase 2 inducers such as lipoic acid and sulforaphane. In cells exposed to hyperglycemia, glycine somehow up-regulates Nrf2 activity. Zinc can likewise promote glyoxalase I transcription, via activation of the metal-responsive transcription factor (MTF) that binds to the glyoxalase promoter. Induction of glyoxalase I and metallothionein may explain the protective impact of zinc in rodent models of diabetic complications. With respect to the contribution of oxidative stress to diabetic complications, promoters of mitophagy and mitochondrial biogenesis, UCP2 inducers, inhibitors of NAPDH oxidase, recouplers of eNOS, glutathione precursors, membrane oxidant scavengers, Nrf2 activators, and correction of diabetic thiamine deficiency should help to quell this.
Collapse
|
34
|
Melatonin attenuates bone cancer pain via the SIRT1/HMGB1 pathway. Neuropharmacology 2022; 220:109254. [PMID: 36122662 DOI: 10.1016/j.neuropharm.2022.109254] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/08/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022]
Abstract
Bone cancer pain (BCP), which seriously affects the quality of life of patients, remains a clinically challenging problem. Hence, there is an urgent need to investigate new mechanisms and develop new therapeutics to relieve BCP. In the present study, we investigated the analgesic effect of melatonin on BCP and the underlying mechanisms. Male C57BL/6 mice were used to establish BCP models. We found that the levels of sirtuin 1 (SIRT1) and nucleus-high mobility group box-1 (HMGB1) were decreased, whilst the levels of HMGB1, cytoplasm-HMGB1 and inflammatory cytokines (TNF-α, IL-6, IL-1β) were increased in the spinal cord of BCP mice on days 7, 14 and 21 after implantation compared with the levels in sham mice. Intrathecal administration of melatonin dose-dependently increased values of PWMT and TWL compared with the BCP group. However, intrathecal administration of EX527 (a selective SIRT1 antagonist) reversed the analgesic effect of melatonin. Moreover, mice in the melatonin group exhibited an increase in SIRT1 and nucleus-HMGB1, whilst there was a decrease in HMGB1, cytoplasm-HMGB1, rage, acetyl-HMGB1 and inflammatory cytokines compared with those in BCP mice. EX527 also reversed these changes. Furthermore, SIRT1 physically interacted with HMGB1 in the BCP mice. In conclusion, intrathecal administration of melatonin attenuates BCP through SIRT1-dependent inhibition of HMGB1 translocation and inflammatory cytokines. Melatonin may be a promising drug for the clinical treatment of BCP.
Collapse
|
35
|
Modulation of autophagy by melatonin via sirtuins in stroke: From mechanisms to therapies. Life Sci 2022; 307:120870. [PMID: 35948118 DOI: 10.1016/j.lfs.2022.120870] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/20/2022]
Abstract
Sirtuins perform an important effect on the neural cell fate following stroke. Several mechanisms that have been correlated with stroke are oxidative stress, apoptosis, necrosis and autophagy. Autophagy is usually regarded as unitary of the neural cell survival mechanisms. Recently, the importance of the sirtuins effect on autophagy by antioxidant agents for stroke treatment mentioned in various studies. One of these agents is melatonin. Melatonin can modulate autophagy by changing on sirtuin pathways. Melatonin and its metabolites adjust various sirtuins pathways related to apoptosis, proliferation, metastases, autophagy and inflammation in case of stroke. In this review, we will discuss about the modulation of autophagy by melatonin via sirtuins in stroke.
Collapse
|
36
|
Intranasally administered melatonin core-shell polymeric nanocapsules: A promising treatment modality for cerebral ischemia. Life Sci 2022; 306:120797. [PMID: 35841976 DOI: 10.1016/j.lfs.2022.120797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 11/22/2022]
Abstract
AIMS The neurohormone melatonin (MEL) has been reported as a promising neuroprotective molecule, however it suffers pharmaceutical limitations such as poor solubility and low bioavailability, which hinder its pharmacological and clinical potential. In the current work, MEL was loaded in core-shell nanocarrier system; polymeric nanocapsules (PNCs), and assessed for its potential in cerebral ischemia reperfusion injury rat model when administered intranasally. KEY FINDINGS Adopting a D-optimal factorial design, MEL-PNCs were successfully formulated using the nanoprecipitation technique. MEL-PNCs exhibited a particle size ranging from 143.5 to 444 nm, negative zeta potential values ranging from -24.2 to -38.7 mV, cumulative release % for MEL ranging from 36.79 to 41.31 % over 8 h period, with overall good storage properties. The selected MEL-PNCs formulation displayed 8-fold higher permeation than the drug solution across sheep nasal mucosa. MEL-PNCs administered intranasally decreased oxidative stress and hippocampal inflammation, and the histological examination revealed the significant restoration of hippocampal neurons. SIGNIFICANCE MEL-PNCs administered intranasally could be a promising treatment modality in brain ischemia.
Collapse
|
37
|
Feng R, Qin X, Li Q, Olugbenga Adeniran S, Huang F, Li Y, Zhao Q, Zheng P. Progesterone regulates inflammation and receptivity of cells via the NF-κB and LIF/STAT3 pathways. Theriogenology 2022; 186:50-59. [DOI: 10.1016/j.theriogenology.2022.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/06/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022]
|
38
|
Resveratrol and neuroprotection: an insight into prospective therapeutic approaches against Alzheimer's disease from bench to bedside. Mol Neurobiol 2022; 59:4384-4404. [PMID: 35545730 DOI: 10.1007/s12035-022-02859-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/28/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and cognitive impairment; yet, there is currently no treatment. A buildup of Aβ, tau protein phosphorylation, oxidative stress, and inflammation in AD is pathogenic. The accumulation of amyloid-beta (Aβ) peptides in these neurocognitive areas is a significant characteristic of the disease. Therefore, inhibiting Aβ peptide aggregation has been proposed as the critical therapeutic approach for AD treatment. Resveratrol has been demonstrated in multiple studies to have a neuroprotective, anti-inflammatory, and antioxidant characteristic and the ability to minimize Aβ peptides aggregation and toxicity in the hippocampus of Alzheimer's patients, stimulating neurogenesis and inhibiting hippocampal degeneration. Furthermore, resveratrol's antioxidant effect promotes neuronal development by activating the silent information regulator-1 (SIRT1), which can protect against the detrimental effects of oxidative stress. Resveratrol-induced SIRT1 activation is becoming more crucial in developing novel therapeutic options for AD and other diseases that have neurodegenerative characteristics. This review highlighted a better knowledge of resveratrol's mechanism of action and its promising therapeutic efficacy in treating AD. We also highlighted the therapeutic potential of resveratrol as an AD therapeutic agent, which is effective against neurodegenerative disorders.
Collapse
|
39
|
Chen G, Shan X, Li L, Dong L, Huang G, Tao H. circHIPK3 regulates apoptosis and mitochondrial dysfunction induced by ischemic stroke in mice by sponging miR-148b-3p via CDK5R1/SIRT1. Exp Neurol 2022; 355:114115. [DOI: 10.1016/j.expneurol.2022.114115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 11/27/2022]
|
40
|
McCarty MF, Lewis Lujan L, Iloki Assanga S. Targeting Sirt1, AMPK, Nrf2, CK2, and Soluble Guanylate Cyclase with Nutraceuticals: A Practical Strategy for Preserving Bone Mass. Int J Mol Sci 2022; 23:4776. [PMID: 35563167 PMCID: PMC9104509 DOI: 10.3390/ijms23094776] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 12/15/2022] Open
Abstract
There is a vast pre-clinical literature suggesting that certain nutraceuticals have the potential to aid the preservation of bone mass in the context of estrogen withdrawal, glucocorticoid treatment, chronic inflammation, or aging. In an effort to bring some logical clarity to these findings, the signaling pathways regulating osteoblast, osteocyte, and osteoclast induction, activity, and survival are briefly reviewed in the present study. The focus is placed on the following factors: the mechanisms that induce and activate the RUNX2 transcription factor, a key driver of osteoblast differentiation and function; the promotion of autophagy and prevention of apoptosis in osteoblasts/osteoclasts; and the induction and activation of NFATc1, which promotes the expression of many proteins required for osteoclast-mediated osteolysis. This analysis suggests that the activation of sirtuin 1 (Sirt1), AMP-activated protein kinase (AMPK), the Nrf2 transcription factor, and soluble guanylate cyclase (sGC) can be expected to aid the maintenance of bone mass, whereas the inhibition of the serine kinase CK2 should also be protective in this regard. Fortuitously, nutraceuticals are available to address each of these targets. Sirt1 activation can be promoted with ferulic acid, N1-methylnicotinamide, melatonin, nicotinamide riboside, glucosamine, and thymoquinone. Berberine, such as the drug metformin, is a clinically useful activator of AMPK. Many agents, including lipoic acid, melatonin, thymoquinone, astaxanthin, and crucifera-derived sulforaphane, can promote Nrf2 activity. Pharmacological doses of biotin can directly stimulate sGC. Additionally, certain flavonols, notably quercetin, can inhibit CK2 in high nanomolar concentrations that may be clinically relevant. Many, though not all, of these agents have shown favorable effects on bone density and structure in rodent models of bone loss. Complex nutraceutical regimens providing a selection of these nutraceuticals in clinically meaningful doses may have an important potential for preserving bone health. Concurrent supplementation with taurine, N-acetylcysteine, vitamins D and K2, and minerals, including magnesium, zinc, and manganese, plus a diet naturally high in potassium, may also be helpful in this regard.
Collapse
Affiliation(s)
| | - Lidianys Lewis Lujan
- Department of Research and Postgraduate in Food Science, Sonoran University, Hermosillo 83200, Mexico;
| | - Simon Iloki Assanga
- Department of Biological Chemical Sciences, Sonoran University, Hermosillo 83200, Mexico;
| |
Collapse
|
41
|
Liu M, Zhong W, Li C, Su W. Fluoxetine attenuates apoptosis in early brain injury after subarachnoid hemorrhage through Notch1/ASK1/p38 MAPK signaling pathway. Bioengineered 2022; 13:8396-8411. [PMID: 35383529 PMCID: PMC9162017 DOI: 10.1080/21655979.2022.2037227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a severe brain condition associated with a significantly high incidence and mortality. As a consequence of SAH, early brain injury (EBI) may contribute to poor SAH patient outcomes. Apoptosis is a signaling pathway contributing to post-SAH early brain injury and the diagnosis of the disease. Fluoxetine is a well-studied serotonin selective reuptake inhibitor (SSRI). However, its role in apoptosis has not been clearly understood. The present investigation assessed the effects of Fluoxetine in apoptosis and the potential Notch1/ASK1/p38 MAPK signaling pathway in EBI after SAH. Adult C57BL/6 J mice were subjected to SAH. Study mice (56) were randomly divided into 4 groups: the surgery without SAH (sham (n = 8), SAH+ vehicle; (SAH+V) (n = 16), surgery+ Fluoxetine (Fluox), (n = 16) and SAH+ Fluoxetine (n = 16). Various parameters were investigated 12, 24, 48, and 72 h after induction of SAH. Western blot analysis, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining, Immunohistochemistry (IHC), and flow cytometry were carried out in every experimental group. According to the findings, the SAH downregulated NOTCH1 signaling pathway, Jlk6 inhibited Notch1, Notch1 inactivation increased apoptotic protein expression and suppressed Bax, and cytochrome C. Fluoxetine reversed the effects of notch1 inhibition in SAH. The Neuroprotective Fluoxetine effects involved suppression of apoptosis post-SAH. In summary, early Fluoxetine treatment significantly attenuates apoptosis and the expression of apoptosis-related proteins after 72 h post-SAH. Fluoxetine may ameliorate early brain injury after subarachnoid hemorrhage through anti-apoptotic effects and Notch1/ASK1/p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Ming Liu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan City, Shandong Province, China
| | - Weiying Zhong
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan City, Shandong Province, China
| | - Chao Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan City, Shandong Province, China
| | - Wandong Su
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan City, Shandong Province, China
| |
Collapse
|
42
|
Leelaviwat N, Mekraksakit P, Cross KM, Landis DM, McLain M, Sehgal L, Payne JD. Melatonin: Translation of Ongoing Studies Into Possible Therapeutic Applications Outside Sleep Disorders. Clin Ther 2022; 44:783-812. [DOI: 10.1016/j.clinthera.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 12/14/2022]
|
43
|
DiNicolantonio JJ, McCarty MF, Assanga SI, Lujan LL, O'Keefe JH. Ferulic acid and berberine, via Sirt1 and AMPK, may act as cell cleansing promoters of healthy longevity. Open Heart 2022; 9:openhrt-2021-001801. [PMID: 35301252 PMCID: PMC8932268 DOI: 10.1136/openhrt-2021-001801] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/08/2022] [Indexed: 12/11/2022] Open
Abstract
Ferulic acid, a bacterial metabolite of anthocyanins, seems likely to be a primary mediator of the health benefits associated with anthocyanin-rich diets, and has long been employed in Chinese cardiovascular medicine. In rodent studies, it has exerted wide-ranging antioxidant and anti-inflammatory effects, the molecular basis of which remains rather obscure. However, recent studies indicate that physiologically relevant concentrations of ferulic acid can boost expression of Sirt1 at mRNA and protein levels in a range of tissues. Sirt1, a class III deacetylase, functions to detect a paucity of oxidisable substrate, and in response works in various ways to promote cellular survival and healthful longevity. Sirt1 promotes ‘cell cleansing’ and cell survival by boosting autophagy, mitophagy, mitochondrial biogenesis, phase 2 induction of antioxidant enzymes via Nrf2, and DNA repair—while inhibiting NF-kB-driven inflammation, apoptosis, and cellular senescence, and boosting endothelial expression of the protective transcription factor kruppel-like factor 2. A deficit of the latter appears to mediate the endothelial toxicity of the SARS-CoV-2 spike protein. Ferulic acid also enhances the activation of AMP-activated kinase (AMPK) by increasing expression and activity of its activating kinase LKB1—whereas AMPK in turn amplifies Sirt1 activity by promoting induction of nicotinamide phosphoribosyltranferase, rate-limiting for generation of Sirt1’s obligate substrate NAD+. Curiously, AMPK acts by independent mechanisms to potentiate many of the effects mediated by Sirt1. Hence, it is proposed that ferulic acid may exert complementary or synergistic health-promoting effects when used in conjunction with clinically useful AMPK activators, such as the nutraceutical berberine. Additional nutraceuticals which might have potential for amplifying certain protective effects of ferulic acid/berberine are also discussed.
Collapse
Affiliation(s)
- James J DiNicolantonio
- Preventive Cardiology, Saint Luke's Mid America Heart Institute, Kansas City, Missouri, USA
| | | | - Simon Iloki Assanga
- Department of Research and Postgraduate in Food Science, University of Sonora, Hermosillo, Mexico
| | - Lidianys Lewis Lujan
- Department of Research and Postgraduate in Food Science, University of Sonora, Hermosillo, Mexico
| | - James H O'Keefe
- Charles and Barbara Duboc Cardio Health & Wellness Center, St Luke's Mid America Heart Institute, Kansas City, Missouri, USA
| |
Collapse
|
44
|
DiNicolantonio JJ, McCarty MF, O'Keefe JH. Coenzyme Q10 deficiency can be expected to compromise Sirt1 activity. Open Heart 2022; 9:e001927. [PMID: 35296520 PMCID: PMC8928362 DOI: 10.1136/openhrt-2021-001927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
For reasons that remain unclear, endogenous synthesis and tissue levels of coenzyme Q10 (CoQ10) tend to decline with increasing age in at least some tissues. When CoQ10 levels are sufficiently low, this compromises the efficiency of the mitochondrial electron transport chain, such that production of superoxide by site 2 increases and the rate of adenosine triphosphate production declines. Moreover, CoQ10 deficiency can be expected to decrease activities of Sirt1 and Sirt3 deacetylases, believed to be key determinants of health span. Reduction of the cytoplasmic and mitochondrial NAD+/NADH ratio consequent to CoQ10 deficit can be expected to decrease the activity of these deacetylases by lessening availability of their obligate substrate NAD+ The increased oxidant production induced by CoQ10 deficiency can decrease the stability of Sirt1 protein by complementary mechanisms. And CoQ10 deficiency has also been found to lower mRNA expression of Sirt1. An analysis of the roles of Sirt1/Sirt3 in modulation of cellular function helps to rationalise clinical benefits of CoQ10 supplementation reported in heart failure, hypertension, non-alcoholic fatty liver disease, metabolic syndrome and periodontal disease. Hence, correction of CoQ10 deficiency joins a growing list of measures that have potential for amplifying health protective Sirt1/Sirt3 activities.
Collapse
Affiliation(s)
- James J DiNicolantonio
- Department of Preventive Cardiology, Saint Luke's Mid America Heart Institute, Kansas City, Missouri, USA
| | | | - James H O'Keefe
- Saint Luke's Mid America Heart Institute, University of Missouri-Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
45
|
Bao M, Huang W, Zhao Y, Fang X, Zhang Y, Gao F, Huang D, Wang B, Shi G. Verapamil Alleviates Myocardial Ischemia/Reperfusion Injury by Attenuating Oxidative Stress via Activation of SIRT1. Front Pharmacol 2022; 13:822640. [PMID: 35281891 PMCID: PMC8905444 DOI: 10.3389/fphar.2022.822640] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/21/2022] [Indexed: 02/05/2023] Open
Abstract
Myocardial ischemia/reperfusion (I/R) injury is a potential complication of ischemic heart disease after recanalization. One of the primary reasons for I/R injury is the excessive accumulation of reactive oxygen species (ROS) in cardiomyocytes. Verapamil, a classic calcium channel blocker, has the potential to mitigate I/R-evoked oxidative stress. However, the underlying mechanisms have not been fully elucidated. SIRT1 is an essential regulator of I/R and offers resistance to oxidative stress arising from I/R. It is still inconclusive if verapamil can reduce myocardial I/R-triggered oxidative damage through modulating SIRT1 antioxidant signaling. To verify our hypothesis, the H9c2 cardiomyocytes and the mice were treated with verapamil and then exposed to hypoxia/reoxygenation (H/R) or I/R in the presence or absence of the SIRT1 inhibitor EX527. As expected, verapamil stimulated SIRT1 antioxidant signaling evidenced by upregulation of SIRT1, FoxO1, SOD2 expressions and downregulation of Ac-FoxO1 expression in vitro and in vivo. In addition, verapamil remarkably suppressed H/R and I/R-induced oxidative stress proven by declined ROS level and MDA content. The cardioprotective actions of verapamil via SIRT1 were further confirmed in the experiments with the presence of the specific SIRT1 inhibitor EX527. We demonstrated that verapamil alleviated myocardial I/R-evoked oxidative stress partially via activation of SIRT1 antioxidant signaling. Subsequently, verapamil protected against cardiac dysfunction and myocardial infarction accompanied by oxidative stress.
Collapse
Affiliation(s)
- Mi Bao
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Weiyi Huang
- Department of Clinical Pharmacy, Shantou University Medical College, Shantou, China
- Pharmaceutical Laboratory, The First Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Yang Zhao
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Xinzhe Fang
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Yanmei Zhang
- Department of Pharmacology, Shantou University Medical College, Shantou, China
- Pharmaceutical Laboratory, The First Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Fenfei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou, China
- Pharmaceutical Laboratory, The First Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Danmei Huang
- Department of Pharmacology, Shantou University Medical College, Shantou, China
- Pharmaceutical Laboratory, The First Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Bin Wang
- Department of Pharmacology, Shantou University Medical College, Shantou, China
- Pharmaceutical Laboratory, The First Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Ganggang Shi
- Department of Pharmacology, Shantou University Medical College, Shantou, China
- Pharmaceutical Laboratory, The First Affiliated Hospital, Shantou University Medical College, Shantou, China
- Department of Cardiovascular Diseases, The First Affiliated Hospital, Shantou University Medical College, Shantou, China
| |
Collapse
|
46
|
McCarty MF. Nutraceutical and Dietary Strategies for Up-Regulating Macroautophagy. Int J Mol Sci 2022; 23:2054. [PMID: 35216170 PMCID: PMC8875972 DOI: 10.3390/ijms23042054] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/04/2022] Open
Abstract
Macroautophagy is a "cell cleansing" process that rids cells of protein aggregates and damaged organelles that may contribute to disease pathogenesis and the dysfunctions associated with aging. Measures which boost longevity and health span in rodents typically up-regulate macroautophagy, and it has often been suggested that safe strategies which can promote this process in humans may contribute to healthful aging. The kinase ULK1 serves as a trigger for autophagy initiation, and the transcription factors TFEB, FOXO1, ATF4 and CHOP promote expression of a number of proteins which mediate macroautophagy. Nutraceutical or dietary measures which stimulate AMPK, SIRT1, eIF5A, and that diminish the activities of AKT and mTORC1, can be expected to boost the activities of these pro-autophagic factors. The activity of AMPK can be stimulated with the phytochemical berberine. SIRT1 activation may be achieved with a range of agents, including ferulic acid, melatonin, urolithin A, N1-methylnicotinamide, nicotinamide riboside, and glucosamine; correction of ubiquinone deficiency may also be useful in this regard, as may dietary strategies such as time-restricted feeding or intermittent fasting. In the context of an age-related decrease in cellular polyamine levels, provision of exogenous spermidine can boost the hypusination reaction required for the appropriate post-translational modification of eIF5A. Low-protein plant-based diets could be expected to increase ATF4 and CHOP expression, while diminishing IGF-I-mediated activation of AKT and mTORC1. Hence, practical strategies for protecting health by up-regulating macroautophagy may be feasible.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity Foundation, San Diego, CA 92109, USA
| |
Collapse
|
47
|
Zheng P, Qin X, Feng R, Li Q, Huang F, Li Y, Zhao Q, Huang H. Alleviative effect of melatonin on the decrease of uterine receptivity caused by blood ammonia through ROS/NF-κB pathway in dairy cow. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113166. [PMID: 35030520 DOI: 10.1016/j.ecoenv.2022.113166] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/16/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
High concentration of blood ammonia can affect the uterus receptivity and decrease fecundity in dairy cow. Melatonin can reduce reactive oxygen species (ROS) level and has antioxidant and anti-inflammatory effects. However, it is not clear whether melatonin can alleviate ammonia-induced apoptosis of endometrial epithelial cell (EEC) and reduced uterus receptivity. The bovine EEC were treated with ammonium chloride and/or melatonin. Cell viability, apoptosis, oxidative stress and mitochondrial membrane potential were measured and the expression of apoptosis-related genes (p53, Cyt-c, Bax, Bcl-2, caspase-8, caspase-9 and caspase-3), uterus receptivity related genes (VEGF, LIF and EGF) and inflammatory factors (TLR-4, IL-6 and NF-κB) were detected. In addition, the expression of VEGF was detected after adding NF-κB inhibitor (40 μM) and IL-6 (1 ng/mL and 50 ng/mL). The results showed that ammonia significantly increased intracellular ROS level, mRNA and protein expression of Bax, p53, Cyt-c, caspase-9, caspase-8, caspase-3, TLR-4, NF-κB and IL-6, promoted cell apoptosis, while decreased mitochondrial membrane potential, the mRNA and protein expression of VEGF and EGF. Interestingly, melatonin significantly mitigated ammonia-induced changes. However, melatonin could not alleviate ammonia-induced changes of IL-6 and VEGF when NF-κB signal pathway was inhibited. The addition of IL-6 significantly reduced mRNA and protein expression of VEGF. In conclusion, ammonia induced EEC apoptosis through ROS production and activation of mitochondrial apoptosis pathway, and induced inflammatory response through TLR4/NF-κB/IL-6 pathway. Melatonin alleviated EEC apoptosis by inhibiting ROS pathway, and reduced IL-6 expression by inhibiting TLR-4/NF-κB signal pathway, which eventually improved VEGF expression and uterus receptivity in dairy cows.
Collapse
Affiliation(s)
- Peng Zheng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Xue Qin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Rui Feng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Qi Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Fushuo Huang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yulong Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Qian Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - He Huang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
48
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:1689-1699. [DOI: 10.1093/jpp/rgac036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 07/18/2022] [Indexed: 11/13/2022]
|
49
|
Kobylińska A, Posmyk MM. Melatonin Protects Tobacco Suspension Cells against Pb-Induced Mitochondrial Dysfunction. Int J Mol Sci 2021; 22:13368. [PMID: 34948164 PMCID: PMC8703733 DOI: 10.3390/ijms222413368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
Recent studies have shown that melatonin is an important molecule in plant physiology. It seems that the most important is that melatonin effectively eliminates oxidative stress (direct and indirect antioxidant) and switches on different defence strategies (preventive and interventive actions) during environmental stresses. In the presented report, exogenous melatonin potential to protect Nicotiana tabacum L. line Bright Yellow 2 (BY-2) exposed to lead against death was examined. Analyses of cell proliferation and viability, the level of intracellular calcium, changes in mitochondrial membrane potential (ΔΨm) as well as possible translocation of cytochrome c from mitochondria to cytosol and subsequent caspase-like proteolytic activity were conducted. Our results indicate that pretreatment BY-2 with melatonin protected tobacco cells against mitochondrial dysfunction and caspase-like activation caused by lead. The findings suggest the possible role of this indoleamine in the molecular mechanism of mitochondria, safeguarding against potential collapse and cytochrome c release. Thus, it seems that applied melatonin acted as an effective factor, promoting survival and increasing plant tolerance to lead.
Collapse
Affiliation(s)
| | - Małgorzata Maria Posmyk
- Department of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Łódź, Poland;
| |
Collapse
|
50
|
Liu L, Cao Q, Gao W, Li BY, Zeng C, Xia Z, Zhao B. Melatonin ameliorates cerebral ischemia-reperfusion injury in diabetic mice by enhancing autophagy via the SIRT1-BMAL1 pathway. FASEB J 2021; 35:e22040. [PMID: 34800293 DOI: 10.1096/fj.202002718rr] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022]
Abstract
Diabetic brains are more vulnerable to ischemia-reperfusion injury. Previous studies have proved that melatonin could protect against cerebral ischemia-reperfusion (CIR) injury in non-diabetic stroke models; however, its roles and the underlying mechanisms against CIR injury in diabetic mice remain unknown. Streptozotocin-induced diabetic mice and high-glucose-cultured HT22 cells were exposed to melatonin, with or without administration of the autophagy inhibitor 3-methyladenine (3-MA) and the specifically silent information regulator 1 (SIRT1) inhibitor EX527, and then subjected to CIR or oxygen-glucose deprivation/reperfusion operation. We found that diabetic mice showed aggravated brain damage, increased apoptosis and oxidative stress, and deficient autophagy following CIR compared with non-diabetic counterparts. Melatonin treatment exhibited improved histological damage, neurological outcomes, and cerebral infarct size. Intriguingly, melatonin markedly increased cell survival, anti-oxidative and anti-apoptosis effects, and significantly enhanced autophagy. However, these effects were largely attenuated by 3-MA or EX527. Additionally, our cellular experiments demonstrated that melatonin increased the SIRT1-BMAL1 pathway-related proteins' expression in a dose-dependent manner. In conclusion, these results indicate that melatonin treatment can protect against CIR-induced brain damage in diabetic mice, which may be achieved by the autophagy enhancement mediated by the SIRT1-BMAL1 pathway.
Collapse
Affiliation(s)
- Lian Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Quan Cao
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenwei Gao
- Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bing-Yu Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Cheng Zeng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|