1
|
Yassine M, Hassan SA, Yücel LA, Purath FFA, Korf HW, von Gall C, Ali AAH. Hepatocellular Carcinoma in Mice Affects Neuronal Activity and Glia Cells in the Suprachiasmatic Nucleus. Biomedicines 2024; 12:2202. [PMID: 39457515 PMCID: PMC11504045 DOI: 10.3390/biomedicines12102202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Chronic liver diseases such as hepatic tumors can affect the brain through the liver-brain axis, leading to neurotransmitter dysregulation and behavioral changes. Cancer patients suffer from fatigue, which can be associated with sleep disturbances. Sleep is regulated via two interlocked mechanisms: homeostatic regulation and the circadian system. In mammals, the hypothalamic suprachiasmatic nucleus (SCN) is the key component of the circadian system. It generates circadian rhythms in physiology and behavior and controls their entrainment to the surrounding light/dark cycle. Neuron-glia interactions are crucial for the functional integrity of the SCN. Under pathological conditions, oxidative stress can compromise these interactions and thus circadian timekeeping and entrainment. To date, little is known about the impact of peripheral pathologies such as hepatocellular carcinoma (HCC) on SCN. Materials and Methods: In this study, HCC was induced in adult male mice. The key neuropeptides (vasoactive intestinal peptide: VIP, arginine vasopressin: AVP), an essential component of the molecular clockwork (Bmal1), markers for activity of neurons (c-Fos), astrocytes (GFAP), microglia (IBA1), as well as oxidative stress (8-OHdG) in the SCN were analyzed by immunohistochemistry at four different time points in HCC-bearing compared to control mice. Results: The immunoreactions for VIP, Bmal1, GFAP, IBA1, and 8-OHdG were increased in HCC mice compared to control mice, especially during the activity phase. In contrast, c-Fos was decreased in HCC mice, especially during the late inactive phase. Conclusions: Our data suggest that HCC affects the circadian system at the level of SCN. This involves an alteration of neuropeptides, neuronal activity, Bmal1, activation of glia cells, and oxidative stress in the SCN.
Collapse
Affiliation(s)
- Mona Yassine
- Institute of Anatomy II, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany; (M.Y.); (S.A.H.); (L.A.Y.); (F.F.A.P.); (A.A.H.A.)
| | - Soha A. Hassan
- Institute of Anatomy II, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany; (M.Y.); (S.A.H.); (L.A.Y.); (F.F.A.P.); (A.A.H.A.)
- Department of Zoology, Faculty of Science, Suez University, P.O. Box 43221, Suez 43533, Egypt
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Lea Aylin Yücel
- Institute of Anatomy II, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany; (M.Y.); (S.A.H.); (L.A.Y.); (F.F.A.P.); (A.A.H.A.)
| | - Fathima Faiba A. Purath
- Institute of Anatomy II, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany; (M.Y.); (S.A.H.); (L.A.Y.); (F.F.A.P.); (A.A.H.A.)
| | - Horst-Werner Korf
- Institute of Anatomy I, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany;
| | - Charlotte von Gall
- Institute of Anatomy II, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany; (M.Y.); (S.A.H.); (L.A.Y.); (F.F.A.P.); (A.A.H.A.)
| | - Amira A. H. Ali
- Institute of Anatomy II, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany; (M.Y.); (S.A.H.); (L.A.Y.); (F.F.A.P.); (A.A.H.A.)
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
2
|
Korf HW. Photoneuroendocrine, circadian and seasonal systems: from photoneuroendocrinology to circadian biology and medicine. Cell Tissue Res 2024:10.1007/s00441-024-03913-7. [PMID: 39264444 DOI: 10.1007/s00441-024-03913-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/30/2024] [Indexed: 09/13/2024]
Abstract
This contribution highlights the scientific development of two intertwined disciplines, photoneuroendocrinology and circadian biology. Photoneuroendocrinology has focused on nonvisual photoreceptors that translate light stimuli into neuroendocrine signals and serve rhythm entrainment. Nonvisual photoreceptors first described in the pineal complex and brain of nonmammalian species are luminance detectors. In the pineal, they control the formation of melatonin, the highly conserved hormone of darkness which is synthesized night by night. Pinealocytes endowed with both photoreceptive and neuroendocrine capacities function as "photoneuroendocrine cells." In adult mammals, nonvisual photoreceptors controlling pineal melatonin biosynthesis and pupillary reflexes are absent from the pineal and brain and occur only in the inner layer of the retina. Encephalic photoreceptors regulate seasonal rhythms, such as the reproductive cycle. They are concentrated in circumventricular organs, the lateral septal organ and the paraventricular organ, and represent cerebrospinal fluid contacting neurons. Nonvisual photoreceptors employ different photopigments such as melanopsin, pinopsin, parapinopsin, neuropsin, and vertebrate ancient opsin. After identification of clock genes and molecular clockwork, circadian biology became cutting-edge research with a focus on rhythm generation. Molecular clockworks tick in every nucleated cell and, as shown in mammals, they drive the expression of more than 3000 genes and are of overall importance for regulation of cell proliferation and metabolism. The mammalian circadian system is hierarchically organized; the central rhythm generator is located in the suprachiasmatic nuclei which entrain peripheral circadian oscillators via multiple neuronal and neuroendocrine pathways. Disrupted molecular clockworks may cause various diseases, and investigations of this interplay will establish a new discipline: circadian medicine.
Collapse
Affiliation(s)
- Horst-Werner Korf
- Institute Anatomy I, Medical Faculty, Heinrich Heine University, Duesseldorf, Federal Republic of Germany.
| |
Collapse
|
3
|
Korf HW, von Gall C. Mouse Models in Circadian Rhythm and Melatonin Research. J Pineal Res 2024; 76:e12986. [PMID: 38965880 DOI: 10.1111/jpi.12986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 07/06/2024]
Abstract
This contribution reviews the role of inbred and transgenic mouse strains for deciphering the mammalian melatoninergic and circadian system. It focusses on the pineal organ as melatonin factory and two major targets of the melatoninergic system, the suprachiasmatic nuclei (SCN) and the hypophysial pars tuberalis (PT). Mammalian pinealocytes sharing molecular characteristics with true pineal and retinal photoreceptors synthesize and secrete melatonin into the blood and cerebrospinal fluid night by night. Notably, neuron-like connections exist between the deep pinealocytes and the habenular/pretectal region suggesting direct pineal-brain communication. Control of melatonin biosynthesis in rodents involves transcriptional regulation including phosphorylation of CREB and upregulation of mPer1. In the SCN, melatonin acts upon MT1 and MT2 receptors. Melatonin is not necessary to maintain the rhythm of the SCN molecular clockwork, but it has distinct effects on the synchronization of the circadian rhythm by light, facilitates re-entrainment of the circadian system to phase advances in the level of the SCN molecular clockwork by acting upon MT2 receptors and plays a stabilizing role in the circadian system as evidenced from locomotor activity recordings. While the effects in the SCN are subtle, melatonin is essential for PT functions. Via the MT1 receptor it drives the PT-intrinsic molecular clockwork and the retrograde and anterograde output pathways controlling seasonal rhythmicity. Although inbred and transgenic mice do not show seasonal reproduction, the pathways from the PT are fully intact if the animals are melatonin proficient. Thus, only melatonin-proficient strains are suited to investigate the circadian and melatoninergic systems.
Collapse
Affiliation(s)
- Horst-Werner Korf
- Institute of Anatomy I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Charlotte von Gall
- Institute of Anatomy II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
4
|
Zhou Z, Li X, Yin S, Zhang Z, Li X, Miao X, Cheng H, Lou Y, Tu P, Lu Y, Zhang G. LC-MS/MS method for the quantification of cortisol of hepatocellular carcinoma. Biomed Chromatogr 2024; 38:e5829. [PMID: 38351664 DOI: 10.1002/bmc.5829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 03/16/2024]
Abstract
The imbalance of steroid hormones is closely related to the occurrence and development of hepatocellular carcinoma (HCC). However, most research has focused on steroid hormone receptors, and reports about the relationship between the serum concentration of cortisol and the development of HCC are rare. The aim of this research was to establish a simple, specific, sensitive and reliable liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) method for the quantitation of cortisol in human serum and to compare the level of cortisol in serum between 221 HCC patients and 183 healthy volunteers. The results showed that the correlation coefficients of the linear regression with a weighing factor of 1/x2 ranged from 0.9933 to 0.9984 over the range of 2-1,000 ng/ml. The inter- and intra-day precision and accuracy were <10%. The matrix effect and recovery of cortisol were 94.9-102.5% and 96.3-99.8%, respectively. The concentration of cortisol in HCC patients was significantly higher than that in healthy volunteers (p < 0.05) and was not affected by sex, age, menopause or α-fetoprotein (AFP) level. The present study reveals that elevated cortisol might promote the progression of HCC.
Collapse
Affiliation(s)
- Zijing Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaoshuang Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Shengjun Yin
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
- Shanghai Key Laboratory of Children's Environment Health, School of Public Health/Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shandong Jiaotong Hospital, Jinan, China
| | - Zhiyuan Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaoyue Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaojie Miao
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Haixu Cheng
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yaqing Lou
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yingyuan Lu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Guoliang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
5
|
Lin LY, Tam KW, Huang TW. Effect of bright light therapy on cancer-related fatigue and related symptoms: A systematic review and meta-analysis of randomized controlled trials. J Psychosom Res 2023; 174:111501. [PMID: 37797569 DOI: 10.1016/j.jpsychores.2023.111501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/24/2023] [Accepted: 09/24/2023] [Indexed: 10/07/2023]
Abstract
OBJECTIVE Cancer-related fatigue (CRF) is a common side effect in cancer patients, possibly due to disrupted circadian rhythms. While bright light therapy (BLT) is known to modulate circadian rhythms, its role in mitigating CRF remains unclear. This study examined the impact of BLT on CRF and other related symptoms. METHODS PubMed, Embase, Cochrane Library, and SCOPUS databases were searched. The trials were selected according to the PRISMA guidelines. The severity and quality of CRF and related symptoms were investigated in post-BLT intervention. RESULTS Twelve trials involving 691 were included. BLT significantly reduced CRF (SMD = -0.92, 95% CI: -1.45 to -0.40, p < 0.00001, I2 = 90%) and insomnia (SMD = -2.80, 95% CI: -4.61 to -0.98, I2 = 0%). Subgroup analyzes were performed based on various factors including light illuminance and intervention duration. BLT was found to be effective in both preventing and treating CRF, though it did not significantly enhance sleep quality, depression, and quality of life (QoL). CONCLUSION BLT is a promising intervention for managing CRF in cancer patients. Its efficacy in improving sleep quality, and insomnia, reducing depression, and enhancing QoL requires further exploration. A 4-week BLT intervention with ≥10,000 lx is recommended for preventing and treating CRF, with longer or less intense interventions also showing effectiveness. Otherwise, BLT exhibited minimal adverse effects.
Collapse
Affiliation(s)
- Lee-Yuan Lin
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Ka-Wai Tam
- Cochrane Taiwan, Taipei Medical University, Taipei, Taiwan; Division of General Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
| | - Tsai-Wei Huang
- Cochrane Taiwan, Taipei Medical University, Taipei, Taiwan; School of Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan; Department of Nursing, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Center for Nursing and Healthcare Research in Clinical Practice Application, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
6
|
Yassine M, Hassan SA, Sommer S, Yücel LA, Bellert H, Hallenberger J, Sohn D, Korf HW, von Gall C, Ali AAH. Radiotherapy of the Hepatocellular Carcinoma in Mice Has a Time-Of-Day-Dependent Impact on the Mouse Hippocampus. Cells 2022; 12:cells12010061. [PMID: 36611854 PMCID: PMC9818790 DOI: 10.3390/cells12010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic liver diseases including hepatocellular carcinoma (HCC) create a state of chronic inflammation that affects the brain via the liver-brain axis leading to an alteration of neurotransmission and cognition. However, little is known about the effects of HCC on the hippocampus, the key brain region for learning and memory. Moreover, radiotherapy used to treat HCC has severe side effects that impair patients' life quality. Thus, designing optimal strategies, such as chronotherapy, to enhance the efficacy and reduce the side effects of HCC treatment is critically important. We addressed the effects of HCC and the timed administration of radiotherapy in mice on the expression of pro-inflammatory cytokines, clock genes, markers for glial activation, oxidative stress, neuronal activity and proliferation in the hippocampal neurogenic niche. Our data showed that HCC induced the upregulation of genes encoding for pro-inflammatory cytokines, altered clock gene expressions and reduced proliferation in the hippocampus. Radiotherapy, in particular when applied during the light/inactive phase enhanced all these effects in addition to glial activation, increased oxidative stress, decreased neuronal activity and increased levels of phospho(p)-ERK. Our results suggested an interaction of the circadian molecular clockwork and the brain's innate immune system as key players in liver-brain crosstalk in HCC and that radiotherapy when applied during the light/inactive phase induced the most profound alterations in the hippocampus.
Collapse
Affiliation(s)
- Mona Yassine
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Soha A. Hassan
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
- Zoology Department, Faculty of Science, Suez University, Cairo-Suez Road, Suez 43533, Egypt
| | - Simon Sommer
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Lea Aylin Yücel
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Hanna Bellert
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Johanna Hallenberger
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Dennis Sohn
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, Medical Faculty, Heinrich-Heine-University, Universität Strasse 1, 40225 Düsseldorf, Germany
| | - Horst-Werner Korf
- Institute of Anatomy I, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Charlotte von Gall
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
- Correspondence: ; Tel.: +49-21-1811-5046
| | - Amira A. H. Ali
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
- Department of Human Anatomy and Embryology, Medical Faculty, Mansoura University, El-Gomhoria St. 1, Mansoura 35516, Egypt
| |
Collapse
|
7
|
Wang C, Shen Y, Ni J, Hu W, Yang Y. Effect of chronic stress on tumorigenesis and development. Cell Mol Life Sci 2022; 79:485. [PMID: 35974132 PMCID: PMC11071880 DOI: 10.1007/s00018-022-04455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/03/2022]
Abstract
Chronic stress activates the sympathetic nervous system (SNS) and hypothalamic-pituitary-adrenal (HPA) axis to aggravates tumorigenesis and development. Although the importance of SNS and HPA in maintaining homeostasis has already attracted much attention, there is still a lot remained unknown about the molecular mechanisms by which chronic stress influence the occurrence and development of tumor. While some researches have already concluded the mechanisms underlying the effect of chronic stress on tumor, complicated processes of tumor progression resulted in effects of chronic stress on various stages of tumor remains elusive. In this reviews we concluded recent research progresses of chronic stress and its effects on premalignancy, tumorigenesis and tumor development, we comprehensively summarized the molecular mechanisms in between. And we highlight the available treatments and potential therapies for stressed patients with tumor.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Yumeng Shen
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Jiaping Ni
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Weiwei Hu
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China.
- Lingang Laboratory, Shanghai, 200032, People's Republic of China.
| | - Yong Yang
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China.
| |
Collapse
|
8
|
Abstract
Circadian rhythms are approximately 24-hour cycles of variation in physiological processes, gene expression, and behavior. They result from the interplay of internal biological clocks with daily environmental rhythms, including light/dark and feeding/fasting. Note that 24-hour rhythms of liver metabolic processes have been known for almost 100 years. Modern studies reveal that, like metabolism, hepatic gene expression is highly rhythmic. Genetic or environmental changes can disrupt the circadian rhythms of the liver, leading to metabolic disorders and hepatocellular carcinoma. In this review, we summarize the current understanding of mechanisms regulating rhythmic gene expression in the liver, highlighting the roles of transcription factors that comprise the core clock molecular as well as noncanonical regulators. We emphasize the plasticity of circadian rhythms in the liver as it responds to multiple inputs from the external and internal environments as well as the potential of circadian medicine to impact liver-related diseases.
Collapse
Affiliation(s)
- Dongyin Guan
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX,Correspondence: Dongyin Guan, PhD (); Mitchell A. Lazar, MD, PhD ()
| | - Mitchell A. Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA,Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA,Correspondence: Dongyin Guan, PhD (); Mitchell A. Lazar, MD, PhD ()
| |
Collapse
|
9
|
Zhou R, Chen X, Liang J, Chen Q, Tian H, Yang C, Liu C. A circadian rhythm-related gene signature associated with tumor immunity, cisplatin efficacy, and prognosis in bladder cancer. Aging (Albany NY) 2021; 13:25153-25179. [PMID: 34862329 PMCID: PMC8714136 DOI: 10.18632/aging.203733] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022]
Abstract
Circadian dysregulation involves malignant tumor initiation and progression, but the understanding of circadian rhythm’s roles in bladder cancer (BCa) remains insufficient. The circadian rhythm-related genes were collected and clustered based on the Cancer Genome Atlas (TCGA), and the clustering was significantly associated with the prognosis and risk clinicopathological features. Through genomic difference analysis and gene pairing, a circadian rhythm-related signature was successfully established. Kaplan-Meier survival analysis and time-dependent receiver operating curves displayed that the prognosis model was a reliable prognosis biomarker both in the training cohort (n = 396, P = 2.687e-10) and external validation cohort (n = 224, P = 1.45e-02). The patients with high risk have high immune infiltration and high expression of immune checkpoint genes, which partly account for the poor prognosis. TIDE algorithm and the validation in IMvigor210 cohort indicated that the risk signature was a promising marker for the immunotherapeutic response. The risk model could also predict the therapeutic response of cisplatin, which was validated in the Genomics of Drug Sensitivity in Cancer database (P = 0.0049), TCGA (P = 0.038), and T24 BCa cells treated with cisplatin. The functional enrichment showed the risk model was significantly correlated with some malignant phenotypes, such as angiogenesis, epithelial-mesenchymal transition, and KRAS signaling pathway. Totally, we proposed a novel circadian rhythm-related signature for prognosis evaluation, which also helped to predict the immune infiltration and cisplatin sensitivity in BCa.
Collapse
Affiliation(s)
- Ranran Zhou
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xinyu Chen
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jingjing Liang
- Department of Cardiology, Shunde Hospital of Southern Medical University, Foshan, China
| | - Qi Chen
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Hu Tian
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Cheng Yang
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Cundong Liu
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Hassan SA, Ali AAH, Sohn D, Flögel U, Jänicke RU, Korf H, von Gall C. Does timing matter in radiotherapy of hepatocellular carcinoma? An experimental study in mice. Cancer Med 2021; 10:7712-7725. [PMID: 34545699 PMCID: PMC8559477 DOI: 10.1002/cam4.4277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/18/2021] [Accepted: 08/27/2021] [Indexed: 01/10/2023] Open
Abstract
This study investigates whether a chronotherapeutic treatment of hepatocellular carcinoma (HCC) may improve treatment efficacy and mitigate side effects on non-tumoral liver (NTL). HCC was induced in Per2::luc mice which were irradiated at four time points of the day. Proliferation and DNA-double strand breaks were analyzed in irradiated and nonirradiated animals by detection of Ki67 and γ-H2AX. Prior to whole animal experiments, organotypic slice cultures were investigated to determine the dosage to be used in whole animal experiments. Irradiation was most effective at the proliferation peaks in HCC at ZT02 (early inactivity phase) and ZT20 (late activity phase). Irradiation effects on NTL were minimal at ZT20. As compared with NTL, nonirradiated HCC revealed disruption in daily variation and downregulation of all investigated clock genes except Per1. Irradiation affected rhythmic clock gene expression in NTL and HCC at all ZTs except at ZT20 (late activity phase). Irradiation at ZT20 had no effect on total leukocyte numbers. Our results indicate ZT20 as the optimal time point for irradiation of HCC in mice at which the ratio between efficacy of tumor treatment and toxic side effects was maximal. Translational studies are now needed to evaluate whether the late activity phase is the optimal time point for irradiation of HCC in man.
Collapse
Affiliation(s)
- Soha A. Hassan
- Institute of Anatomy II, Medical FacultyHeinrich‐Heine‐UniversityDüsseldorfGermany
- Zoology DepartmentFaculty of ScienceSuez UniversitySuezEgypt
| | - Amira A. H. Ali
- Institute of Anatomy II, Medical FacultyHeinrich‐Heine‐UniversityDüsseldorfGermany
- Department of Anatomy and EmbryologyFaculty of MedicineMansoura UniversityMansouraEgypt
| | - Dennis Sohn
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and RadiooncologyMedical Faculty of Heinrich‐Heine‐UniversityDüsseldorfGermany
| | - Ulrich Flögel
- Department of Molecular CardiologyHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Reiner U. Jänicke
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and RadiooncologyMedical Faculty of Heinrich‐Heine‐UniversityDüsseldorfGermany
| | - Horst‐Werner Korf
- Institute of Anatomy IMedical FacultyHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Charlotte von Gall
- Institute of Anatomy II, Medical FacultyHeinrich‐Heine‐UniversityDüsseldorfGermany
| |
Collapse
|