1
|
Bhardwaj JK, Siwach A, Sachdeva D, Sachdeva SN. Revisiting cadmium-induced toxicity in the male reproductive system: an update. Arch Toxicol 2024; 98:3619-3639. [PMID: 39317800 DOI: 10.1007/s00204-024-03871-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Heavy metals like cadmium (Cd) are one of the main environmental pollutants, with no biological role in the human body. Cd has been well-documented to have disastrous effects on both plants and animals. It is known to accumulate in kidneys, lungs, liver, and testes and is thought to affect these organs' function over time, which is linked to a very long biological half-life and a very poor rate of elimination. According to recent researches, the testes are extremely vulnerable to cadmium. The disruption of the blood-testis barrier, seminiferous tubules, Sertoli cells, and Leydig cells caused by cadmium leads to the loss of sperm through various mechanisms, such as oxidative stress, spermatogenic cell death, testicular swelling, dysfunction in androgen-producing cells, interference with gene regulation, disruption of ionic homeostasis, and damage to the vascular endothelium. Additionally, through epigenetic control, cadmium disrupts the function of germ cells and somatic cells, resulting in infertile or subfertile males. A full grasp of the mechanisms underlying testicular toxicity caused by Cd is very important to develop suitable strategies to ameliorate male fertility. Therefore, this review article outlines cadmium's impact on growth and functions of the testicles, reviews therapeutic approaches and protective mechanisms, considers recent research findings, and identifies future research directions.
Collapse
Affiliation(s)
- Jitender Kumar Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
| | - Anshu Siwach
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Drishty Sachdeva
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Som Nath Sachdeva
- Department of Civil Engineering, National Institute of Technology, Kurukshetra and Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
2
|
Buranasudja V, Sanookpan K, Vimolmangkang S, Binalee A, Mika K, Krobthong S, Kerdsomboon K, Kumkate S, Poolpak T, Kidhakarn S, Yang KM, Limcharoensuk T, Auesukaree C. Pretreatment with aqueous Moringa oleifera Lam. leaf extract prevents cadmium-induced hepatotoxicity by improving cellular antioxidant machinery and reducing cadmium accumulation. Heliyon 2024; 10:e37424. [PMID: 39309955 PMCID: PMC11416483 DOI: 10.1016/j.heliyon.2024.e37424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/25/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
Cadmium (Cd) is a highly harmful pollutant that poses a serious threat to human health. The liver is the primary organ for Cd accumulation, and Cd-induced hepatotoxicity has been shown to be strongly correlated with an oxidative imbalance in hepatocytes. Our previous studies in the eukaryotic model organism Saccharomyces cerevisiae revealed that not only co-treatment but also pretreatment with aqueous Moringa oleifera Lam. leaf extract (AMOLE) effectively mitigated Cd toxicity by reducing intracellular Cd accumulation and Cd-mediated oxidative stress. In this study, we therefore investigated the preventive effect of AMOLE against Cd toxicity in human HepG2 hepatocytes. The results showed that, similar to the case of the yeast model, pretreatment with AMOLE prior to Cd exposure also significantly inhibited Cd-induced oxidative stress in HepG2 cells. Untargeted LC-MS/MS-based metabolomic analysis of AMOLE revealed that its major phytochemical constituents were organic acids, particularly phenolic acids and carboxylic acids. Additionally, DPPH-HPTLC fingerprints suggested that quercetin and other flavonoids possibly contribute to the antioxidant activities of AMOLE. Based on our findings, it appears that pretreatment with AMOLE prevented Cd-induced hepatotoxicity via three possible mechanisms: i) direct elimination of free radicals by AMOLE antioxidant compounds; ii) upregulation of antioxidant defensive machinery (GPx1, and HO-1) via Nrf2 signaling cascade to improve cellular antioxidant capacity; and iii) reduction of intracellular Cd accumulation, probably by suppressing Cd uptake. These data strongly suggest the high potential of AMOLE for clinical utility in the prevention of Cd toxicity.
Collapse
Affiliation(s)
- Visarut Buranasudja
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kittipong Sanookpan
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Nabsolute Co., Ltd., Bangkok, 10330, Thailand
| | - Sornkanok Vimolmangkang
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Asma Binalee
- HPTLC Center, Chula PharTech Co., Ltd., Bangkok, 10330, Thailand
| | - Kamil Mika
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Pharmacological Screening, Jagiellonian University Medical College, 9 Medyczna Street, Krakow, PL, 30-688, Poland
| | - Sucheewin Krobthong
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kittikhun Kerdsomboon
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, 12120, Thailand
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Supeecha Kumkate
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Toemthip Poolpak
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), CHE, OPS, MHESI, Bangkok, 10400, Thailand
| | - Siraprapa Kidhakarn
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Kwang Mo Yang
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), CHE, OPS, MHESI, Bangkok, 10400, Thailand
| | - Tossapol Limcharoensuk
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Choowong Auesukaree
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
3
|
Bartolini D, Stabile AM, Migni A, Gurrado F, Lioci G, De Franco F, Mandarano M, Svegliati-Baroni G, Di Cristina M, Bellezza G, Rende M, Galli F. Subcellular distribution and Nrf2/Keap1-interacting properties of Glutathione S-transferase P in hepatocellular carcinoma. Arch Biochem Biophys 2024; 757:110043. [PMID: 38789086 DOI: 10.1016/j.abb.2024.110043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
The oncogene and drug metabolism enzyme glutathione S-transferase P (GSTP) is also a GSH-dependent chaperone of signal transduction and transcriptional proteins with key role in liver carcinogenesis. In this study, we explored this role of GSTP in hepatocellular carcinoma (HCC) investigating the possible interaction of this protein with one of its transcription factor and metronome of the cancer cell redox, namely the nuclear factor erythroid 2-related factor 2 (Nrf2). Expression, cellular distribution, and function as glutathionylation factor of GSTP1-1 isoform were investigated in the mouse model of N-nitrosodiethylamine (DEN)-induced HCC and in vitro in human HCC cell lines. The physical and functional interaction of GSTP protein with Nrf2 and Keap1 were investigated by immunoprecipitation and gene manipulation experiments. GSTP protein increased its liver expression, enzymatic activity and nuclear levels during DEN-induced tumor development in mice; protein glutathionylation (PSSG) was increased in the tumor masses. Higher levels and a preferential nuclear localization of GSTP protein were also observed in HepG2 and Huh-7 hepatocarcinoma cells compared to HepaRG non-cancerous cells, along with increased basal and Ebselen-stimulated levels of free GSH and PSSG. GSTP activity inhibition with the GSH analogue EZT induced apoptotic cell death in HCC cells. Hepatic Nrf2 and c-Jun, two transcription factors involved in GSTP expression and GSH biosynthesis, were induced in DEN-HCC compared to control animals; the Nrf2 inhibitory proteins Keap1 and β-TrCP also increased and oligomeric forms of GSTP co-immunoprecipitated with both Nrf2 and Keap1. Nrf2 nuclear translocation and β-TrCP expression also increased in HCC cells, and GSTP transfection in HepaRG cells induced Nrf2 activation. In conclusion, GSTP expression and subcellular distribution are modified in HCC cells and apparently contribute to the GSH-dependent reprogramming of the cellular redox in this type of cancer directly influencing the transcriptional system Nrf2/Keap1.
Collapse
Affiliation(s)
- Desirée Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, 06126, Perugia, Italy.
| | - Anna Maria Stabile
- Department of Medicine and Surgery, University of Perugia, 06132, Perugia, Italy.
| | - Anna Migni
- Department of Pharmaceutical Sciences, University of Perugia, 06126, Perugia, Italy.
| | - Fabio Gurrado
- Department of Gastroenterology, Marche Polytechnic University, Ancona, Italy.
| | - Gessica Lioci
- Department of Gastroenterology, Marche Polytechnic University, Ancona, Italy.
| | | | - Martina Mandarano
- Department of Medicine and Surgery, University of Perugia, 06132, Perugia, Italy
| | - Gianluca Svegliati-Baroni
- Department of Gastroenterology, Marche Polytechnic University, Ancona, Italy; Obesity Center, Marche Polytechnic University, Ancona, Italy and Liver Injury and Transplant Unit, Ancona, Italy.
| | - Manlio Di Cristina
- Department of Medicine and Surgery, University of Perugia, 06132, Perugia, Italy.
| | - Guido Bellezza
- Department of Medicine and Surgery, University of Perugia, 06132, Perugia, Italy.
| | - Mario Rende
- Department of Medicine and Surgery, University of Perugia, 06132, Perugia, Italy.
| | - Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, 06126, Perugia, Italy.
| |
Collapse
|
4
|
Khan MZ, Khan A, Huang B, Wei R, Kou X, Wang X, Chen W, Li L, Zahoor M, Wang C. Bioactive Compounds Protect Mammalian Reproductive Cells from Xenobiotics and Heat Stress-Induced Oxidative Distress via Nrf2 Signaling Activation: A Narrative Review. Antioxidants (Basel) 2024; 13:597. [PMID: 38790702 PMCID: PMC11118937 DOI: 10.3390/antiox13050597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Oxidative stress occurs when there is an imbalance between the production of reactive oxygen species (ROS) and the body's antioxidant defenses. It poses a significant threat to the physiological function of reproductive cells. Factors such as xenobiotics and heat can worsen this stress, leading to cellular damage and apoptosis, ultimately decreasing reproductive efficiency. The nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway plays a crucial role in defending against oxidative stress and protecting reproductive cells via enhancing antioxidant responses. Dysregulation of Nrf2 signaling has been associated with infertility and suboptimal reproductive performance in mammals. Recent advancements in therapeutic interventions have underscored the critical role of Nrf2 in mitigating oxidative damage and restoring the functional integrity of reproductive cells. In this narrative review, we delineate the harmful effects of heat and xenobiotic-induced oxidative stress on reproductive cells and explain how Nrf2 signaling provides protection against these challenges. Recent studies have shown that activating the Nrf2 signaling pathway using various bioactive compounds can ameliorate heat stress and xenobiotic-induced oxidative distress and apoptosis in mammalian reproductive cells. By comprehensively analyzing the existing literature, we propose Nrf2 as a key therapeutic target for mitigating oxidative damage and apoptosis in reproductive cells caused by exposure to xenobiotic exposure and heat stress. Additionally, based on the synthesis of these findings, we discuss the potential of therapies focused on the Nrf2 signaling pathway to improve mammalian reproductive efficiency.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 511464, China
| | - Bingjian Huang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Ren Wei
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Xiyan Kou
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Xinrui Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Wenting Chen
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Liangliang Li
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Muhammad Zahoor
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien, 90372 Oslo, Norway
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| |
Collapse
|
5
|
Liu J, Yang Z, Yan Z, Duan S, Chen X, Cui D, Cao D, Kuang T, Ma X, Wang W. Chemical Micromotors Move Faster at Oil-Water Interfaces. J Am Chem Soc 2024; 146:4221-4233. [PMID: 38305127 DOI: 10.1021/jacs.3c13743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Many real-world scenarios involve interfaces, particularly liquid-liquid interfaces, that can fundamentally alter the dynamics of colloids. This is poorly understood for chemically active colloids that release chemicals into their environment. We report here the surprising discovery that chemical micromotors─colloids that convert chemical fuels into self-propulsion─move significantly faster at an oil-water interface than on a glass substrate. Typical speed increases ranged from 3 to 6 times up to an order of magnitude and were observed for different types of chemical motors and interfaces made with different oils. Such speed increases are likely caused by faster chemical reactions at an oil-water interface than at a glass-water interface, but the exact mechanism remains unknown. Our results provide valuable insights into the complex interactions between chemical micromotors and their environments, which are important for applications in the human body or in the removal of organic pollutants from water. In addition, this study also suggests that chemical reactions occur faster at an oil-water interface and that micromotors can serve as a probe for such an effect.
Collapse
Affiliation(s)
- Jiayu Liu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zhou Yang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zuyao Yan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Shifang Duan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xiaowen Chen
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Donghao Cui
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Dezhou Cao
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Ting Kuang
- Education Center of Experiments and Innovations, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xing Ma
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wei Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
6
|
Signorini C, Saso L, Ghareghomi S, Telkoparan-Akillilar P, Collodel G, Moretti E. Redox Homeostasis and Nrf2-Regulated Mechanisms Are Relevant to Male Infertility. Antioxidants (Basel) 2024; 13:193. [PMID: 38397791 PMCID: PMC10886271 DOI: 10.3390/antiox13020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/20/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Infertility represents a significant global health challenge, affecting more than 12% of couples worldwide, and most cases of infertility are caused by male factors. Several pathological pathways are implicated in male infertility. The main mechanisms involved are driven by the loss of reduction-oxidation (redox) homeostasis and the resulting oxidative damage as well as the chronic inflammatory process. Increased or severe oxidative stress leads to sperm plasma membrane and DNA oxidative damage, dysregulated RNA processing, and telomere destruction. The signaling pathways of these molecular events are also regulated by Nuclear factor-E2-related factor 2 (Nrf2). The causes of male infertility, the role of oxidative stress in male infertility and the Keap1-Nrf2 antioxidant pathway are reviewed. This review highlights the regulatory role of Nrf2 in the balance between oxidants and antioxidants as relevant mechanisms to male fertility. Nrf2 is involved in the regulation of spermatogenesis and sperm quality. Establishing a link between Nrf2 signaling pathways and the regulation of male fertility provides the basis for molecular modulation of inflammatory processes, reactive oxygen species generation, and the antioxidant molecular network, including the Nrf2-regulated antioxidant response, to improve male reproductive outcomes.
Collapse
Affiliation(s)
- Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.S.); (G.C.); (E.M.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
| | - Somayyeh Ghareghomi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417466191, Iran;
| | | | - Giulia Collodel
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.S.); (G.C.); (E.M.)
| | - Elena Moretti
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.S.); (G.C.); (E.M.)
| |
Collapse
|
7
|
Zhu K, Pu PM, Li G, Zhou LY, Li ZY, Shi Q, Wang YJ, Cui XJ, Yao M. Shenqisherong pill ameliorates neuronal apoptosis by inhibiting the JNK/caspase-3 signaling pathway in a rat model of cervical cord compression. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116901. [PMID: 37437792 DOI: 10.1016/j.jep.2023.116901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/01/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Shenqisherong (SQSR) pill is an empirical prescription of traditional Chinese medicine (TCM), which originated from the National Chinese Medical Science Master, Shi Qi. It has been widely used in the treatment of cervical spondylotic myelopathy (CSM) and promote the recovery of spinal cord function, but underlying molecular mechanism remains unclear. AIM OF THE STUDY The objective of this study was to confirm the neuroprotective effects of the SQSR pill. MATERIALS AND METHODS A rat model of chronic compression at double-level cervical cord was used in vivo. The protective role of SQSR pill on CSM rats was measured by Basso, Beattie, and Bresnahan (BBB) locomotor scale, inclined plane test, forelimb grip strength assessment, hindlimb pain threshold assessment, and gait analysis. The levels of reactive oxygen species (ROS) were examined by Dihydroethidium (DHE) staining and 2',7'-Dichlorofluorescein (DCF) assay, and apoptosis was detected by TdT-mediated dUTP nick-end labeling (TUNEL) assay. The expression of apoptosis proteins was evaluated by immunofluorescence staining and Western blot. RESULTS SQSR pill could facilitate locomotor function recovery in rats with chronic cervical cord compression, reduce local ROS in the spinal cord and downregulate the c-Jun-N-terminal kinase (JNK)/caspase-3 signaling pathway. In addition, the SQSR pill could protect primary rat cortical neurons from glutamate-treated toxicity in vitro by reducing the ROS and downregulating the phosphorylation of JNK and its downstream factors related to neuronal apoptosis meditated by the caspase cascade. Then, the neuroprotective effect was counteracted by a JNK activator. CONCLUSIONS Together, SQSR pill could ameliorate neuronal apoptosis by restraining ROS accumulation and inhibiting the JNK/caspase-3 signaling pathway, indicating that SQSR pill could be a candidate drug for CSM.
Collapse
Affiliation(s)
- Ke Zhu
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Pei-Min Pu
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Gan Li
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Long-Yun Zhou
- Rehabilitation Medicine Center, Jiangsu Provincial People's Hospital, Jiangsu, 210029, China.
| | - Zhuo-Yao Li
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Qi Shi
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Yong-Jun Wang
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Xue-Jun Cui
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Min Yao
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
8
|
Migni A, Mancuso F, Baroni T, Di Sante G, Rende M, Galli F, Bartolini D. Melatonin as a Repairing Agent in Cadmium- and Free Fatty Acid-Induced Lipotoxicity. Biomolecules 2023; 13:1758. [PMID: 38136629 PMCID: PMC10741790 DOI: 10.3390/biom13121758] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: Cadmium (Cd) is a potentially toxic element with a long half-life in the human body (20-40 years). Cytotoxicity mechanisms of Cd include increased levels of oxidative stress and apoptotic signaling, and recent studies have suggested that these aspects of Cd toxicity contribute a role in the pathobiology of non-alcoholic fatty liver disease (NAFLD), a highly prevalent ailment associated with hepatic lipotoxicity and an increased generation of reactive oxygen species (ROS). In this study, Cd toxicity and its interplay with fatty acid (FA)-induced lipotoxicity have been studied in intestinal epithelium and liver cells; the cytoprotective function of melatonin (MLT) has been also evaluated. (2) Methods: human liver cells (HepaRG), primary murine hepatocytes and Caco-2 intestinal epithelial cells were exposed to CdCl2 before and after induction of lipotoxicity with oleic acid (OA) and/or palmitic acid (PA), and in some experiments, FA was combined with MLT (50 nM) treatment. (3) Results: CdCl2 toxicity was associated with ROS induction and reduced cell viability in both the hepatic and intestinal cells. Cd and FA synergized to induce lipid droplet formation and ROS production; the latter was higher for PA compared to OA in liver cells, resulting in a higher reduction in cell viability, especially in HepaRG and primary hepatocytes, whereas CACO-2 cells showed higher resistance to Cd/PA-induced lipotoxicity compared to liver cells. MLT showed significant protection against Cd toxicity either considered alone or combined with FFA-induced lipotoxicity in primary liver cells. (4) Conclusions: Cd and PA combine their pro-oxidant activity to induce lipotoxicity in cellular populations of the gut-liver axis. MLT can be used to lessen the synergistic effect of Cd-PA on cellular ROS formation.
Collapse
Affiliation(s)
- Anna Migni
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy;
| | - Francesca Mancuso
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy; (F.M.); (T.B.); (G.D.S.); (M.R.)
| | - Tiziano Baroni
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy; (F.M.); (T.B.); (G.D.S.); (M.R.)
| | - Gabriele Di Sante
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy; (F.M.); (T.B.); (G.D.S.); (M.R.)
| | - Mario Rende
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy; (F.M.); (T.B.); (G.D.S.); (M.R.)
| | - Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy;
| | - Desirée Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy;
| |
Collapse
|
9
|
Alrashada YN, Hassanien HA, Abbas AO, Alkhamis SA, Alkobaby AI. Dietary propolis improves the growth performance, redox status, and immune response of Nile tilapia upon a cold-stress challenge. PLoS One 2023; 18:e0293727. [PMID: 37917758 PMCID: PMC10621851 DOI: 10.1371/journal.pone.0293727] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023] Open
Abstract
The purpose of this research was to demonstrate the potential of adding propolis (PR) to the diet of Nile tilapia (Oreochromis niloticus) to mitigate the harmful effect of cold stress (CS) on the growth performance, redox status, and immunological response. Two trials were conducted in this study. First, 210 Nile tilapia fingerlings (28.61±0.20 g) were used in a preliminary trial to determine the appropriate PR level and supplementation period to be applied for the main trial. Fish were assigned into 7 treatment groups (3 aquaria replicates × 10 fish per aquarium in each treatment group) according to the rate of PR supplementation in the fish diets at 0, 2, 4, 6, 8, 10, and 12 g/kg for 6 consecutive weeks. The average body weight and body weight gain were determined weekly. It was found that PR supplementation at 10 g/kg in fish diet for 4 weeks was enough to obtain significant results on the growth performance of Nile tilapia. For the main trial of the present study, 480 Nile tilapia fingerlings (average weight 29.93±0.11 g) were distributed into randomized 2 PR × 2 CS factorial treatment groups (6 replicate aquariums containing 20 fish in each group). Fish of PR groups received a basal diet for a feeding period of 4 weeks, included with 10 g/kg PR (+ PR group) or without PR inclusion (- PR group). Fish of the CS groups were either challenged with cold stress at 18°C (+ CS group) or maintained at a temperature of 26°C during the feeding period (- CS group). The results showed that CS challenge significantly (p < 0.05) impaired the growth indices, redox status, and immune response in the challenged fish compared to the non-challenged fish. On contradictory, the inclusion of PR into fish diets enhanced (p < 0.05) the feed intake, growth indices, antioxidant enzyme activity, and immunological parameters. Moreover, PR treatment alleviated the CS deterioration of fish weights, specific growth rates, feed efficiency, antioxidant enzyme activity, lymphocyte proliferation, and phagocytosis activity and alleviated the elevated mortality, H/L ratio, and malondialdehyde levels by cold stress. It is concluded that the inclusion of propolis at 10 g/kg in the diet of Nile tilapia fish could be approved as a nutritional approach to enhance their performance, especially when stressed by low-temperature conditions.
Collapse
Affiliation(s)
- Yousof N. Alrashada
- Department of Animal and Fish Production, College of Agriculture and Food Sciences, King Faisal University, Hofuf, AL-HASA, Saudi Arabia
| | - Hesham A. Hassanien
- Department of Animal and Fish Production, College of Agriculture and Food Sciences, King Faisal University, Hofuf, AL-HASA, Saudi Arabia
- Animal Production Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Ahmed O. Abbas
- Department of Animal and Fish Production, College of Agriculture and Food Sciences, King Faisal University, Hofuf, AL-HASA, Saudi Arabia
- Animal Production Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Sami A. Alkhamis
- Department of Animal and Fish Production, College of Agriculture and Food Sciences, King Faisal University, Hofuf, AL-HASA, Saudi Arabia
| | - Akram I. Alkobaby
- Animal Production Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
10
|
Hassanien HA, Alrashada YN, Abbas AO, Abdelwahab AM. Dietary propolis complementation relieves the physiological and growth deterioration induced by Flavobacterium columnare infection in juveniles of common carp (Cyprinus carpio). PLoS One 2023; 18:e0292976. [PMID: 37831671 PMCID: PMC10575500 DOI: 10.1371/journal.pone.0292976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
The current study was proposed to explore the role of dietary propolis (PR) supplementation in alleviating the negative effects of columnaris disease (CD) challenge on the growth performance, plasma biochemicals, antioxidant activity, stress indicators, and immunological reactions of common carp (Cyprinus carpio) fish. Five hundred forty common carp juveniles were evenly placed in thirty-six 100-L tanks and stocked for acclimatization to the lab conditions with a control diet within a started period of 14 days. Fish (average initial weight of 7.11±0.06 g) were randomly distributed into one of six treatment groups (6 replicate tanks × 15 fish per tank in each treatment group). Fish in the first group was assigned as a negative control without CD challenge or PR supplementation. Fish in the other five groups were challenged with CD by immersion of fish for 60 min into a 10-L water bath supplemented with 6×106 CFU/mL (median lethal dose, LD50) of pathogenic F. columnare bacteria. After infection, the fish were restored to their tanks and fed on a basal diet supplemented with PR at 0, 3, 6, 9, or 12 g/kg diet. The experimental period continued for 6 consecutive weeks in which the feed was introduced twice a day (8:00 and 15:00 h) at a rate of 2% of the fish biomass. Ten percent of water was siphoned and renewed after each meal every day, in addition to 50% of water refreshment after cleaning the tank every three days. The tanks were continuously aerated and provided with standard rearing conditions for carp fish (24.0±1.12°C, 7.7±0.22 pH, 6.3±0.16 mg/L O2, and 14L/10D photoperiod). The growth performance traits such as feed intake (FI), weight gain (WG), final weight (FW), specific growth rate (SGR), feed efficiency (FE), and cumulative mortality rates (CM) were recorded during the experimental period. At the end of the trial, blood samples were obtained from the fish to evaluate some plasma biochemicals, including aspartate aminotransaminase (AST), alanine aminotransferase (ALT), creatinine (CRE), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH), antioxidant biomarkers, including total antioxidant capacity (TAOC), total superoxide dismutase (TSOD), reduced glutathione (rGSH), and catalase (CAT), stress indicators, including heterophil to lymphocyte (H/L) ratio, cortisol (COR), malondialdehyde (MDA), and myeloperoxidase (MPO), and immunological reactions, including peripheral blood leukocyte proliferation (PBLP), phagocytosis activity (PHG), lysozyme activity (LYS), alternative complement hemolytic action (ACH50), and total immunoglobulin concentration (TIG). In addition, samples of infected fish gills were taken to quantify the number of F. columnare in the PR-supplemented groups using the quantitative real-time polymerase chain reaction (qPCR) technique. The results showed that incorporating PR into the dietary ingredients of common carp has a protective effect against the challenge with F. columnare infection. There were linear and quadratic positive trends (P < 0.05) in most parameters of growth performance, plasma biochemicals, antioxidant activity, stress indicators, and immunological reactions with the increased PR-supplemented levels in the diet of infected fish. The best results were obtained when using PR at 9 g/kg in the diet, while higher levels (12 g/kg PR) showed an adverse trend in the evaluated parameters. The FI, WG, FW, SGR, and FE were improved by approximately 37, 104, 34, 73, and 49% in the fish treated with 9 g/kg PR compared to none-PR-infected fish. In addition, adding PR at the 9 g/kg diet level was the best dose that reduced the H/L ratio, COR, MDA, and MPO by about 14, 52, 48, and 29%, respectively, in the infected fish. Furthermore, the mortality rate was reduced by 94%, and the number of pathogenic bacteria cells adherent to the fish gills was lowered by 96% in the infected fish treated with 9 g/kg PR compared to none-PR infected fish. Our results concluded that dietary supplementation with 9 g/kg PR could be a promising nutritional approach for improving the growth performance, physiological profile, and health status of common carp fish, particularly when challenged with F. columnare or similar bacterial infections.
Collapse
Affiliation(s)
- Hesham A. Hassanien
- Department of Animal and Fish Production, College of Agriculture and Food Sciences, King Faisal University, Hofuf, AL-HASA, Saudi Arabia
- Animal Production Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Yousof N. Alrashada
- Department of Animal and Fish Production, College of Agriculture and Food Sciences, King Faisal University, Hofuf, AL-HASA, Saudi Arabia
| | - Ahmed O. Abbas
- Department of Animal and Fish Production, College of Agriculture and Food Sciences, King Faisal University, Hofuf, AL-HASA, Saudi Arabia
- Animal Production Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Abdelwahab M. Abdelwahab
- Department of Animal and Fish Production, College of Agriculture and Food Sciences, King Faisal University, Hofuf, AL-HASA, Saudi Arabia
- Department of Animal Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| |
Collapse
|
11
|
Huang H, Chen Y, Hu J, Guo X, Zhou S, Yang Q, Du Y, Jin Y, Liu G, Peng Y. Quercetin and its derivatives for wound healing in rats/mice: Evidence from animal studies and insight into molecular mechanisms. Int Wound J 2023; 21:e14389. [PMID: 37818786 PMCID: PMC10828129 DOI: 10.1111/iwj.14389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 10/13/2023] Open
Abstract
Aimed to clarify the effect of quercetin and its derivatives on wound healing in animal experiments. PubMed, Embase, Science Direct, Web of Science, SinoMed, Vip Journal Integration Platform, China National Knowledge Infrastructure and WanFang databases were searched for animal experiments investigating the effect of quercetin and its derivatives on wound healing to April 2023. The Review Manager 5.4 software was used to conduct meta-analysis. Eighteen studies were enrolled in this article. According to the SYRCLE's RoB tool assessment, these studies exposed relatively low methodological quality. It was shown that animals with cutaneous wound receiving quercetin had faster wound healing in wound closure (%) than the control group. Moreover, the difference in efficacy gradually emerged after third day (WMD = 7.13 [5.52, 8.74]), with a peak reached on the tenth day after wounding (WMD = 19.78 [17.82, 21.74]). Subgroup analysis revealed that quercetin for wound closure (%) was independent of the types of rats and mice, wound area and with or without diabetes. Clear conclusion was also shown regarding the external application of quercetin for wound healing (WMD = 17.77 [11.11, 24.43]). A significant reduction in the distribution of inflammatory cells occurred in the quercetin group. Quercetin could increase blood vessel density (WMD = 1.85 [0.68, -3.02]), fibroblast distribution and collagen fraction. Biochemical indicators, including IL-1β, IL-10, TNF-α, TGF-β, vascular endothelial growth factor (VEGF), hydroxyproline and alpha-smooth muscle actin (α-SMA), had the consistent results. Quercetin and its derivatives could promote the recovery of cutaneous wound in animals, through inhibiting inflammatory response and accelerating angiogenesis, proliferation of fibroblast and collagen deposition.
Collapse
Affiliation(s)
- He‐chen Huang
- Shuguang Hospital Affiliated to Shanghai University of traditional Chinese medicineShanghaiChina
| | - Yan Chen
- Shanghai Municipal Hospital of Traditional Chinese MedicineAffiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jie Hu
- Shanghai Municipal Hospital of Traditional Chinese MedicineAffiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xiu‐tian Guo
- Shanghai Municipal Hospital of Traditional Chinese MedicineAffiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Shao‐rong Zhou
- Shuguang Hospital Affiliated to Shanghai University of traditional Chinese medicineShanghaiChina
| | - Qi‐qi Yang
- Shuguang Hospital Affiliated to Shanghai University of traditional Chinese medicineShanghaiChina
| | - Yu‐qing Du
- Shuguang Hospital Affiliated to Shanghai University of traditional Chinese medicineShanghaiChina
| | - Yu Jin
- Shuguang Hospital Affiliated to Shanghai University of traditional Chinese medicineShanghaiChina
| | - Guo‐bin Liu
- Shuguang Hospital Affiliated to Shanghai University of traditional Chinese medicineShanghaiChina
| | - Yun‐hua Peng
- Shuguang Hospital Affiliated to Shanghai University of traditional Chinese medicineShanghaiChina
| |
Collapse
|
12
|
Tang J, Zhang N, Chen S, Hu K, Li Y, Fang Y, Wu Z, Zhang Y, Xu L. Cadmium (Cd) and 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) co-exposure induces acute kidney injury through oxidative stress and RIPK3-dependent necroptosis. ENVIRONMENTAL TOXICOLOGY 2023; 38:2332-2343. [PMID: 37357614 DOI: 10.1002/tox.23869] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/27/2023]
Abstract
Environmental pollution is complex, and co-exposure can accurately reflect the true environmental conditions that are important for assessment of human health. Cadmium (Cd) is a widespread toxicant that can cause acute kidney injury (AKI), while its combined effect with 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) is not fully understood. Thus, we used an in vivo model where C57BL/6J mice were treated with low dietary intake of Cd (5 mg/kg/day) and/or BDE-47 (1 mg/kg/day) for 28 days to examine AKI, and in vitro experiments to investigate the possible mechanism. Results showed that Cd or BDE-47 caused pathological kidney damage, accompanied by elevated urea nitrogen (BUN) and urinary creatinine, as well as increased interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), and reduced IL-10 in kidney tissues. In vitro Cd or BDE-47 exposure decreased cell viability and induced cell swelling and blebbing of human embryonic kidney 293 (HEK-293) and renal tubular epithelial cell lines (HKCs), and changes in co-exposure was larger than that in Cd and BDE-47 treatment. Oxidative stress indicators of the reactive oxygen species (ROS) and malondialdehyde (MDA) were elevated, while the antioxidant superoxide dismutase (SOD) was decreased. Necrosis occurred with increased lactate dehydrogenase (LDH) release and propidium iodide (PI) staining, which was attenuated by the ROS scavenger N-acetyl-L-cysteine (NAC). Furthermore, necroptotic genes of receptor-interacting protein kinase-3 (RIPK3), classical mixed lineage kinase domain-like protein-dependent (MLKL), IL-1β and TNF-α were up-regulated, whereas RIPK1 was down-regulated, which was attenuated by the RIPK3 inhibitor GSK872. These findings demonstrate that Cd or BDE-47 alone produces kidney toxicities, and co-exposure poses an additive effect, resulting in AKI via inducing oxidative stress and regulating RIPK3-dependent necroptosis, which offers a further mechanistic understanding for kidney damage, and the combined effect of environmental pollutants should be noticed.
Collapse
Affiliation(s)
- Jie Tang
- Department of Pathology, Jiaxing key laboratory of infectious diseases and bacterial resistance research, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, China
| | - Nenghua Zhang
- Department of Pathology, Jiaxing key laboratory of infectious diseases and bacterial resistance research, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, China
| | - Shipiao Chen
- Department of Preventive Medicine, Forensic and Pathology Laboratory, Institute of Forensic Science, College of Medicine, Jiaxing University, Jiaxing, China
| | - Kewei Hu
- Department of Preventive Medicine, Forensic and Pathology Laboratory, Institute of Forensic Science, College of Medicine, Jiaxing University, Jiaxing, China
| | - Yintao Li
- Department of Preventive Medicine, Forensic and Pathology Laboratory, Institute of Forensic Science, College of Medicine, Jiaxing University, Jiaxing, China
| | - Yipeng Fang
- Department of Preventive Medicine, Forensic and Pathology Laboratory, Institute of Forensic Science, College of Medicine, Jiaxing University, Jiaxing, China
| | - Zhenqiang Wu
- Department of Preventive Medicine, Forensic and Pathology Laboratory, Institute of Forensic Science, College of Medicine, Jiaxing University, Jiaxing, China
| | - Yi Zhang
- Department of Pathology, Jiaxing key laboratory of infectious diseases and bacterial resistance research, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, China
| | - Long Xu
- Department of Preventive Medicine, Forensic and Pathology Laboratory, Institute of Forensic Science, College of Medicine, Jiaxing University, Jiaxing, China
| |
Collapse
|
13
|
Rossi SP, Matzkin ME, Riviere E, Martinez G, Ponzio R, Levalle O, Terradas C, Calandra RS, Frungieri MB. Melatonin improves oxidative state and lactate metabolism in rodent Sertoli cells. Mol Cell Endocrinol 2023; 576:112034. [PMID: 37516434 DOI: 10.1016/j.mce.2023.112034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Antioxidant actions of melatonin and its impact on testicular function and fertility have already been described. Considering that Sertoli cells contribute to provide structural support and nutrition to germ cells, we evaluated the effect of melatonin on oxidative state and lactate metabolism in the immature murine TM4 cell line and in immature hamster Sertoli cells. A prooxidant stimulus applied to rodent Sertoli cells expressing MT1/MT2 receptors, increased lipid peroxidation whereas decreased antioxidant enzymes (superoxide dismutase 1, catalase, peroxiredoxin 1) expression and catalase activity. These changes were prevented by melatonin. Furthermore, melatonin stimulated lactate dehydrogenase (LDH) expression/activity via melatonin receptors, and increased intracellular lactate production in rodent Sertoli cells. Interestingly, oral melatonin supplementation in infertile men positively regulated LDHA testicular mRNA expression. Overall, our work provides insights into the potential benefits of melatonin on Sertoli cells contributing to testicular development and the future establishment of a sustainable spermatogenesis.
Collapse
Affiliation(s)
- Soledad P Rossi
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, 1428, Ciudad de Buenos Aires, Argentina; Departamento de Bioquímica Humana, Cátedra 1, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, 1121, Ciudad de Buenos Aires, Argentina.
| | - María E Matzkin
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, 1428, Ciudad de Buenos Aires, Argentina; Departamento de Bioquímica Humana, Cátedra 1, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, 1121, Ciudad de Buenos Aires, Argentina
| | - Eugenia Riviere
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, 1428, Ciudad de Buenos Aires, Argentina
| | - Gustavo Martinez
- Fertilis, Av. Fondo de la Legua 277, B1609JEC, San Isidro, Buenos Aires, Argentina
| | - Roberto Ponzio
- Instituto de Investigaciones en Reproducción, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, 1121, Ciudad de Buenos Aires, Argentina
| | - Oscar Levalle
- División Endocrinología, Hospital Durand, Facultad de Medicina, Universidad de Buenos Aires, Díaz Vélez 5044, 1405, Ciudad de Buenos Aires, Argentina
| | - Claudio Terradas
- División Endocrinología, Hospital Durand, Facultad de Medicina, Universidad de Buenos Aires, Díaz Vélez 5044, 1405, Ciudad de Buenos Aires, Argentina
| | - Ricardo S Calandra
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, 1428, Ciudad de Buenos Aires, Argentina
| | - Mónica B Frungieri
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, 1428, Ciudad de Buenos Aires, Argentina; Cátedra de Química, Ciclo Básico Común, Universidad de Buenos Aires, Ciudad de Buenos Aires, C1405CAE, Argentina
| |
Collapse
|
14
|
Luo H, Liu R, Lang Y, Zhao J, Zhuang C, Wang J, Liang C, Zhang J. Melatonin alleviated fluoride-induced impairment of spermatogenesis and sperm maturation process via Interleukin-17A. Food Chem Toxicol 2023:113867. [PMID: 37269891 DOI: 10.1016/j.fct.2023.113867] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Fluoride-induced male reproductive failure is a major environmental and human health concern, but interventions are still lacking. Melatonin (MLT) has potential functions in regulating testicular damage and interleukin-17 (IL-17) production. This study aims to explore whether MLT can mitigate fluoride-induced male reproductive toxicity through IL-17A, and screen the potential targets. So the wild type and IL-17A knockout mice were employed and treated with sodium fluoride (100 mg/L) by drinking water and MLT (10 mg/kg.BW, intraperitoneal injection per two days starting from week 16) for 18 weeks. Bone F- concentrations, grade of dental damage, sperm quality, spermatogenic cells counts, histological morphology of testis and epididymis, and the mRNA expression of spermatogenesis and maturation, classical pyroptosis related and immune factor genes were detected respectively. The results revealed that MLT supplementations alleviated fluoride-induced impairment of spermatogenesis and maturation process, protecting the morphology of testis and epididymis through IL-17A pathway, and Tesk1 and Pten were identified as candidate targets from 29 regulation genes. Taken together, this study demonstrated a new physiological role for MLT in the protection against fluoride-induced reproductive injury and possible regulation mechanisms, which providing a useful therapeutic strategy for male reproductive function failure caused by fluoride or other environmental pollutants.
Collapse
Affiliation(s)
- Huifeng Luo
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Rongxiu Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Yilin Lang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Jinhui Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Cuicui Zhuang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Jundong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Chen Liang
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China.
| | - Jianhai Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China.
| |
Collapse
|
15
|
Zhou SM, Li JZ, Chen HQ, Zeng Y, Yuan WB, Shi Y, Wang N, Fan J, Zhang Z, Xu Y, Cao J, Liu WB. FTO-Nrf2 axis regulates bisphenol F-induced leydig cell toxicity in an m6A-YTHDF2-dependent manner. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121393. [PMID: 36878272 DOI: 10.1016/j.envpol.2023.121393] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/19/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Studies have shown that Bisphenol F (BPF) as an emerging bisphenol pollutant also has caused many hazards to the reproductive systems of humans and animals. However, its specific mechanism is still unclear. The mouse TM3 Leydig cell was used to explore the mechanism of BPF-induced reproductive toxicity in this study. The results showed BPF (0, 20, 40 and 80 μM) exposure for 72 h significantly increased cell apoptosis and decreased cell viability. Correspondingly, BPF increased the expression of P53 and BAX, and decreased the expression of BCL2. Moreover, BPF significantly increased the intracellular ROS level in TM3 cells, and significantly decreased oxidative stress-related molecule Nrf2. BPF decreased the expression of FTO and YTHDF2, and increased the total cellular m6A level. ChIP results showed that AhR transcriptionally regulated FTO. Differential expression of FTO revealed that FTO reduced the apoptosis rate of BPF-exposed TM3 cells and increased the expression of Nrf2, MeRIP confirmed that overexpression of FTO reduced the m6A of Nrf2 mRNA. After differential expression of YTHDF2, it was found that YTHDF2 enhanced the stability of Nrf2, and RIP assay showed that YTHDF2 was bound to Nrf2 mRNA. Nrf2 agonist enhanced the protective effect of FTO on TM3 cells exposure to BPF. Our study is the first to demonstrate that AhR transcriptionally regulated FTO, and then FTO regulated Nrf2 in a m6A-modified manner through YTHDF2, thereby affecting apoptosis in BPF-exposed TM3 cells to induce reproductive damage. It provides new insights into the importance of FTO-YTHDF2-Nrf2 signaling axis in BPF-induced reproductive toxicity and provided a new idea for the prevention of male reproductive injury.
Collapse
Affiliation(s)
- Shi-Meng Zhou
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China; School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China
| | - Jing-Zhi Li
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Hong-Qiang Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China; Department of Environmental Health, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Yong Zeng
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China; Department of Environmental Health, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Wen-Bo Yuan
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Yu Shi
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China; College of Pharmacy & Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Na Wang
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China; School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Jun Fan
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Zhe Zhang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Yuanyuan Xu
- School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Wen-Bin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China; Department of Environmental Health, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
16
|
Melatonin Supplementation during the Late Gestational Stage Enhances Reproductive Performance of Sows by Regulating Fluid Shear Stress and Improving Placental Antioxidant Capacity. Antioxidants (Basel) 2023; 12:antiox12030688. [PMID: 36978937 PMCID: PMC10045541 DOI: 10.3390/antiox12030688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
In this study, the effects of daily melatonin supplementation (2 mg/kg) at the late gestational stage on the reproductive performance of the sows have been investigated. This treatment potentially increased the litter size and birth survival rate and significantly increased the birth weight as well as the weaning weight and survival rate of piglets compared to the controls. The mechanistic studies have found that these beneficial effects of melatonin are not mediated by the alterations of reproductive hormones of estrogen and progesterone, nor did the glucose and lipid metabolisms, but they were the results of the reduced oxidative stress in placenta associated with melatonin supplementation. Indeed, the melatonergic system, including mRNAs and proteins of AANAT, MTNR1A and MTNR1B, has been identified in the placenta of the sows. The RNA sequencing of placental tissue and KEGG analysis showed that melatonin activated the placental tissue fluid shear stress pathway to stimulate the Nrf2 signaling pathway, which upregulated its several downstream antioxidant genes, including MGST1, GSTM3 and GSTA4, therefore, suppressing the placental oxidative stress. All these actions may be mediated by the melatonin receptor of MTNR1B.
Collapse
|
17
|
Effects and Mechanisms Activated by Treatment with Cationic, Anionic and Zwitterionic Liposomes on an In Vitro Model of Porcine Pre-Pubertal Sertoli Cells. Int J Mol Sci 2023; 24:ijms24021201. [PMID: 36674712 PMCID: PMC9865246 DOI: 10.3390/ijms24021201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Liposomes have been successfully used as drug-delivery vehicles, but there are no clinical studies on improved fertility and the few reported experimental studies have been performed in animal models far from humans. The aim of this paper was to study the effects of treatment with cationic, anionic and zwitterionic liposomes on our superior mammalian model of porcine prepubertal Sertoli cells (SCs) to find a carrier of in vitro test drugs for SCs. Porcine pre-pubertal SCs cultures were incubated with different liposomes. Viability, apoptosis/necrosis status (Annexin-V/Propidium iodide assay), immunolocalisation of β-actin, vimentin, the phosphorylated form of AMP-activated protein Kinase (AMPK)α and cell ultrastructure (Transmission Electron Microscopy, TEM) were analysed. Zwitterionic liposomes did not determine changes in the cell cytoplasm. The incubation with anionic and cationic liposomes modified the distribution of actin and vimentin filaments and increased the levels of the phosphorylated form of AMPKα. The Annexin/Propidium Iodide assay suggested an increase in apoptosis. TEM analysis highlighted a cytoplasmic vacuolisation. In conclusion, these preliminary data indicated that zwitterionic liposomes were the best carrier to use in an in vitro study of SCs to understand the effects of molecules or drugs that could have a clinical application in the treatment of certain forms of male infertility.
Collapse
|
18
|
Mancuso F, Arato I, Bellucci C, Lilli C, Eugeni E, Aglietti MC, Stabile AM, Pistilli A, Brancorsini S, Gaggia F, Calvitti M, Baroni T, Luca G. Zinc restores functionality in porcine prepubertal Sertoli cells exposed to subtoxic cadmium concentration via regulating the Nrf2 signaling pathway. Front Endocrinol (Lausanne) 2023; 14:962519. [PMID: 36843583 PMCID: PMC9950629 DOI: 10.3389/fendo.2023.962519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/24/2023] [Indexed: 02/12/2023] Open
Abstract
INTRODUCTION Among substances released into the environment by anthropogenic activities, the heavy metal cadmium (Cd) is known to induce severe testicular injury causing male subfertility/infertility. Zinc (Zn) is another heavy metal that, unlike Cd, is physiologically present in the testis, being essential for spermatogenesis. We aimed to examine the possibility that 50 µM ZnCl2 could counteract the toxic effects induced by Cd in an in vitro model of porcine prepubertal Sertoli cells (SCs) exposed to both subtoxic (5 μM) and toxic (10 μM) concentrations of CdCl2 for 48 h. MATERIALS AND METHODS Apoptosis, cell cycle, and cell functionality were assessed. The gene expression of Nrf2 and its downstream antioxidant enzymes, ERK1/2, and AKT kinase signaling pathways were evaluated. MATERIALS AND RESULTS We found that Zn, in co-treatment with subtoxic and toxic Cd concentration, increased the number of metabolically active SCs compared to Cd exposure alone but restored SC functionality only in co-treatment with subtoxic Cd concentration with respect to subtoxic Cd alone. Exposure of Cd disrupted cell cycle in SCs, and Zn co-treatment was not able to counteract this effect. Cd alone induced SC death through apoptosis and necrosis in a dose-dependent manner, and co-treatment with Zn increased the pro-apoptotic effect of Cd. Subtoxic and toxic Cd exposures activated the Nrf2 signaling pathway by increasing gene expression of Nrf2 and its downstream genes (SOD, HO-1, and GSHPx). Zn co-treatment with subtoxic Cd attenuated upregulation on the Nrf2 system, while with toxic Cd, the effect was more erratic. Studying ERK1/2 and AKT pathways as a target, we found that the phosphorylation ratio of p-ERK1/2 and p-AKT was upregulated by both subtoxic and toxic Cd exposure alone and in co-treatment with Zn. DISCUSSION Our results suggest that Zn could counteract Cd effects by increasing the number of metabolically active SCs, fully or partially restoring their functionality by modulating Nrf2, ERK1/2, and AKT pathways. Our SC model could be useful to study the effects of early Cd exposure on immature testis, evaluating the possible protective effects of Zn.
Collapse
Affiliation(s)
- Francesca Mancuso
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Iva Arato
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Catia Bellucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Cinzia Lilli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Elena Eugeni
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Division of Medical Andrology and Endocrinology of Reproduction, Saint Mary Hospital, Terni, Italy
| | | | - Anna Maria Stabile
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Stefano Brancorsini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- International Biotechnological Center for Endocrine, Metabolic and Embryo-Reproductive Translational Research (CIRTEMER), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Francesco Gaggia
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Mario Calvitti
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Tiziano Baroni
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- International Biotechnological Center for Endocrine, Metabolic and Embryo-Reproductive Translational Research (CIRTEMER), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- *Correspondence: Tiziano Baroni,
| | - Giovanni Luca
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Division of Medical Andrology and Endocrinology of Reproduction, Saint Mary Hospital, Terni, Italy
- International Biotechnological Center for Endocrine, Metabolic and Embryo-Reproductive Translational Research (CIRTEMER), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
19
|
Zhai Z, Huang Y, Zhang Y, Zhao L, Li W. Clinical Research Progress of Small Molecule Compounds Targeting Nrf2 for Treating Inflammation-Related Diseases. Antioxidants (Basel) 2022; 11:1564. [PMID: 36009283 PMCID: PMC9405369 DOI: 10.3390/antiox11081564] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Studies have found that inflammation is a symptom of various diseases, such as coronavirus disease 2019 (COVID-19) and rheumatoid arthritis (RA); it is also the source of other diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), lupus erythematosus (LE), and liver damage. Nrf2 (nuclear factor erythroid 2-related factor 2) is an important multifunctional transcription factor in cells and plays a central regulatory role in cellular defense mechanisms. In recent years, several studies have found a strong association between the activation of Nrf2 and the fight against inflammation-related diseases. A number of small molecule compounds targeting Nrf2 have entered clinical research. This article reviews the research status of small molecule compounds that are in clinical trials for the treatment of COVID-19, rheumatoid arthritis, Alzheimer's disease, Parkinson's disease, lupus erythematosus, and liver injury.
Collapse
Affiliation(s)
- Zhenzhen Zhai
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yanxin Huang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yawei Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lili Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wen Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education & Key Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou 450001, China
| |
Collapse
|