1
|
Angotzi AR, Leal E, Puchol S, Cerdá-Reverter JM, Morais S. Exploring the potential for an evolutionarily conserved role of the taste 1 receptor gene family in gut sensing mechanisms of fish. ANIMAL NUTRITION 2022; 11:293-308. [PMID: 36263402 PMCID: PMC9563615 DOI: 10.1016/j.aninu.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/15/2022] [Accepted: 08/09/2022] [Indexed: 11/08/2022]
Abstract
In this study, we investigated the transcriptional spatio-temporal dynamics of the taste 1 receptor (T1R) gene family repertoire in seabream (Sparus aurata [sa]), during larval ontogeny and in adult tissues. In early larval development, saT1R expression arises heterochronously, i.e. the extraoral taste-related perception in the gastrointestinal tract (GIT) anticipates first exogenous feeding (at 9 days post hatching [dph]), followed by the buccal/intraoral perception from 14 dph onwards, supporting the hypothesis that the early onset of the molecular machinery underlying saT1R expression in the GIT is not induced by food but rather genetically hardwired. During adulthood, we characterized the expression patterns of saT1R within specific tissues (n = 4) distributed in oropharingeal, GIT and brain regions substantiating their functional versatility as chemosensory signaling players to a variety of biological functions beyond oral taste sensation. Further, we provided for the first time direct evidences in fish for mRNA co-expression of a subset of saT1R genes (mostly saT1R3, i.e. the common subunit of the heterodimeric T1R complexes for the detection of “sweet” and “umami” substances), with the selected gut peptides ghrelin (ghr), cholecystokinin (cck), hormone peptide yy (pyy) and proglucagon (pg). Each peptide defines the enteroendocrine cells (ECCs) identity, and establishes on morphological basis, a direct link for T1R chemosensing in the regulation of fish digestive processes. Finally, we analyzed the spatial gene expression patterns of 2 taste signaling components functionally homologous to the mammalian G(i)α subunit gustducin, namely saG(i)α1 and saG(i)α2, and demonstrated their co-localization with the saT1R3 in EECs, thus validating their direct involvement in taste-like transduction mechanisms of the fish GIT. In conclusion, data provide new insights in the evolutionary conservation of gut sensing in fish suggesting a conserved role for nutrient sensors modulating entero-endocrine secretion.
Collapse
|
2
|
Tenugu S, Pranoty A, Mamta SK, Senthilkumaran B. Development and organisation of gonadal steroidogenesis in bony fishes - A review. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2020.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
3
|
Politis SN, Sørensen SR, Mazurais D, Servili A, Zambonino-Infante JL, Miest JJ, Clemmesen CM, Tomkiewicz J, Butts IAE. Molecular Ontogeny of First-Feeding European Eel Larvae. Front Physiol 2018; 9:1477. [PMID: 30459634 PMCID: PMC6232945 DOI: 10.3389/fphys.2018.01477] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 09/28/2018] [Indexed: 12/28/2022] Open
Abstract
Digestive system functionality of fish larvae relies on the onset of genetically pre-programmed and extrinsically influenced digestive functions. This study explored how algal supplementation (green-water) until 14 days post hatch (dph) and the ingestion of food [enriched rotifer (Brachionus plicatilis) paste] from 15 dph onward affects molecular maturation and functionality of European eel larval ingestion and digestion mechanisms. For this, we linked larval biometrics to expression of genes relating to appetite [ghrelin (ghrl), cholecystokinin (cck)], food intake [proopiomelanocortin (pomc)], digestion [trypsin (try), triglyceride lipase (tgl), amylase (amyl)], energy metabolism [ATP synthase F0 subunit 6 (atp6), cytochrome-c-oxidase 1 (cox1)], growth [insulin-like growth factor (igf1)] and thyroid metabolism [thyroid hormone receptors (thrαA, thrβB)]. Additionally, we estimated larval nutritional status via nucleic acid analysis during transition from endogenous and throughout the exogenous feeding stage. Results showed increased expression of ghrl and cck on 12 dph, marking the beginning of the first-feeding window, but no benefit of larviculture in green-water was observed. Moreover, expression of genes relating to protein (try) and lipid (tgl) hydrolysis revealed essential digestive processes occurring from 14 to 20 dph. On 16 dph, a molecular response to initiation of exogenous feeding was observed in the expression patterns of pomc, atp6, cox1, igf1, thrαA and thrβB. Additionally, we detected increased DNA contents, which coincided with increased RNA contents and greater body area, reflecting growth in feeding compared to non-feeding larvae. Thus, the here applied nutritional regime facilitated a short-term benefit, where feeding larvae were able to sustain growth and better condition than their non-feeding conspecifics. However, RNA:DNA ratios decreased from 12 dph onward, indicating a generally low larval nutritional condition, probably leading to the point-of-no-return and subsequent irreversible mortality due to unsuccessful utilization of exogenous feeding. In conclusion, this study molecularly identified the first-feeding window in European eel and revealed that exogenous feeding success occurs concurrently with the onset of a broad array of enzymes and hormones, which are known to regulate molecular processes in feeding physiology. This knowledge constitutes essential information to develop efficient larval feeding strategies and will hopefully provide a promising step toward sustainable aquaculture of European eel.
Collapse
Affiliation(s)
- Sebastian N Politis
- National Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sune R Sørensen
- National Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark.,Billund Aquaculture Service A/S, Billund, Denmark
| | - David Mazurais
- Marine Environmental Science Laboratory UMR 6539, Institut Français de Recherche pour l'Exploitation de la Mer, Plouzané, France
| | - Arianna Servili
- Marine Environmental Science Laboratory UMR 6539, Institut Français de Recherche pour l'Exploitation de la Mer, Plouzané, France
| | - Jose-Luis Zambonino-Infante
- Marine Environmental Science Laboratory UMR 6539, Institut Français de Recherche pour l'Exploitation de la Mer, Plouzané, France
| | - Joanna J Miest
- GEOMAR - Helmholtz Centre for Ocean Research, Kiel, Germany.,Department of Life and Sports Sciences, University of Greenwich, Kent, United Kingdom
| | | | - Jonna Tomkiewicz
- National Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ian A E Butts
- National Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark.,School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| |
Collapse
|
4
|
Anderson KC, Knuckey R, Cánepa M, Elizur A. A transcriptomic investigation of appetite-regulation and digestive processes in giant grouper Epinephelus lanceolatus during early larval development. JOURNAL OF FISH BIOLOGY 2018; 93:694-710. [PMID: 30232812 DOI: 10.1111/jfb.13798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
The giant grouper Epinephelus lanceolatus is an ecologically vulnerable species with high market demand. However, efforts to improve larval husbandry are hindered by a lack of knowledge surrounding larval developmental physiology. To address this shortfall, a transcriptomic approach was applied to larvae between 1 and 14 days post hatch (dph) to characterise the molecular ontogenesis of genes that influence appetite and digestion. Appetite regulating factors were detected from 1 dph, including neuropeptide Y, nesfatin-1, cocaine and amphetamine regulated transcript, cholecystokinin and pituitary adenylate cyclase activating peptide and the expression level of several genes changed sharply with the onset of exogenous feeding. The level of expression for proteases, chitinases, lipases and amylases typically followed one of two expression patterns, a general increase as development progressed, or an inverted U-shape with maximal expression at c. 6 dph. Similarly, the tendency among both expression patterns was for the level of expression to increase around the time of mouth-opening. There was also evidence to suggest the presence of putative isoforms for several digestion-related genes. We have provided an insight into appetite-regulation and digestive processes in groupers during early larval development and have developed a transcriptomic database that will aid future efforts to rear this species in an aquaculture setting.
Collapse
Affiliation(s)
- Kelli C Anderson
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Australia
- Institute for Marine and Antarctic Studies, University of Tasmania Newnham Campus, Launceston, Australia
| | - Richard Knuckey
- The Company One, Grouper Breeding Facility, Cairns, Australia
| | | | - Abigail Elizur
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Australia
| |
Collapse
|
5
|
Guerrera M, Abbate F, Di Caro G, Germanà G, Levanti M, Micale V, Montalbano G, Laurà R, Germanà A, Muglia U. Localization of cholecystokinin in the zebrafish retina from larval to adult stage. Ann Anat 2018; 218:175-181. [DOI: 10.1016/j.aanat.2018.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/15/2018] [Accepted: 01/22/2018] [Indexed: 12/20/2022]
|
6
|
Sudhakumari CC, Anitha A, Murugananthkumar R, Tiwari DK, Bhasker D, Senthilkumaran B, Dutta-Gupta A. Cloning, localization and differential expression of Neuropeptide-Y during early brain development and gonadal recrudescence in the catfish, Clarias gariepinus. Gen Comp Endocrinol 2017; 251:54-65. [PMID: 28322767 DOI: 10.1016/j.ygcen.2017.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 11/22/2022]
Abstract
Neuropeptide-Y (NPY) has diverse physiological functions which are extensively studied in vertebrates. However, regulatory role of NPY in relation to brain ontogeny and recrudescence with reference to reproduction is less understood in fish. Present report for the first time evaluated the significance of NPY by transient esiRNA silencing and also analyzed its expression during brain development and gonadal recrudescence in the catfish, Clarias gariepinus. As a first step, full-length cDNA of NPY was cloned from adult catfish brain, which shared high homology with its counterparts from other teleosts upon phylogenetic analysis. Tissue distribution revealed dominant expression of NPY in brain and testis. NPY expression increased during brain development wherein the levels were higher in 100 and 150days post hatch females than the respective age-matched males. Seasonal cycle analysis showed high expression of NPY in brain during pre-spawning phase in comparison with other reproductive phases. Localization studies exhibited the presence of NPY, abundantly, in the regions of preoptic area, hypothalamus and pituitary. Transient silencing of NPY-esiRNA directly into the brain significantly decreased NPY expression in both the male and female brain of catfish which further resulted in significant decrease of transcripts of tryptophan hydroxylase 2, catfish gonadotropin-releasing hormone (cfGnRH), tyrosine hydroxylase and 3β-hydroxysteroid dehydrogenase in brain and luteinizing hormone-β/gonadotropin-II (lh-β/GTH-II) in pituitary exhibiting its influence on gonadal axis. In addition, significant decrease of several ovary-related transcripts was observed in NPY-esiRNA silenced female catfish, indicating the plausible role of NPY in ovary through cfGnRH-GTH axis.
Collapse
Affiliation(s)
- Cheni-Chery Sudhakumari
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India.
| | - Arumugam Anitha
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - Raju Murugananthkumar
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - Dinesh Kumar Tiwari
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - Dharavath Bhasker
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - Balasubramanian Senthilkumaran
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India.
| | - Aparna Dutta-Gupta
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| |
Collapse
|
7
|
Rønnestad I, Gomes AS, Murashita K, Angotzi R, Jönsson E, Volkoff H. Appetite-Controlling Endocrine Systems in Teleosts. Front Endocrinol (Lausanne) 2017; 8:73. [PMID: 28458653 PMCID: PMC5394176 DOI: 10.3389/fendo.2017.00073] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/27/2017] [Indexed: 12/15/2022] Open
Abstract
Mammalian studies have shaped our understanding of the endocrine control of appetite and body weight in vertebrates and provided the basic vertebrate model that involves central (brain) and peripheral signaling pathways as well as environmental cues. The hypothalamus has a crucial function in the control of food intake, but other parts of the brain are also involved. The description of a range of key neuropeptides and hormones as well as more details of their specific roles in appetite control continues to be in progress. Endocrine signals are based on hormones that can be divided into two groups: those that induce (orexigenic), and those that inhibit (anorexigenic) appetite and food consumption. Peripheral signals originate in the gastrointestinal tract, liver, adipose tissue, and other tissues and reach the hypothalamus through both endocrine and neuroendocrine actions. While many mammalian-like endocrine appetite-controlling networks and mechanisms have been described for some key model teleosts, mainly zebrafish and goldfish, very little knowledge exists on these systems in fishes as a group. Fishes represent over 30,000 species, and there is a large variability in their ecological niches and habitats as well as life history adaptations, transitions between life stages and feeding behaviors. In the context of food intake and appetite control, common adaptations to extended periods of starvation or periods of abundant food availability are of particular interest. This review summarizes the recent findings on endocrine appetite-controlling systems in fish, highlights their impact on growth and survival, and discusses the perspectives in this research field to shed light on the intriguing adaptations that exist in fish and their underlying mechanisms.
Collapse
Affiliation(s)
- Ivar Rønnestad
- Department of Biology, University of Bergen, Bergen, Norway
| | - Ana S. Gomes
- Department of Biology, University of Bergen, Bergen, Norway
| | - Koji Murashita
- Department of Biology, University of Bergen, Bergen, Norway
- Research Center for Aquaculture Systems, National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Tamaki, Mie, Japan
| | - Rita Angotzi
- Department of Biology, University of Bergen, Bergen, Norway
| | - Elisabeth Jönsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Hélène Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St John’s, NL, Canada
| |
Collapse
|
8
|
Opazo R, Fuenzalida K, Plaza-Parrochia F, Romero J. Performance of Debaryomyces hansenii as a Diet for Rotifers for Feeding Zebrafish Larvae. Zebrafish 2017; 14:187-194. [PMID: 28192066 DOI: 10.1089/zeb.2016.1353] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The zebrafish larval stage is a critical moment due to high mortality rates associated with inadequate supplies of nutritional requirements. Larval feeding has important challenges associated with such factors as small mouth gape (≈100 μm), the low activity of digestive enzymes, and the intake of live food. A common zebrafish live food at the onset of exogenous feeding is rotifers, mainly Brachionus plicatilis. These rotifers should be fed with other microorganisms such as microalgae or yeast, mostly from the Saccharomyces genus. In the laboratory, the culture of microalgae is more expensive than the culture of yeast. The aim of this study was to evaluate the performance of Debaryomyces hansenii as a diet for rotifers in comparison to a microalgae-based diet (Rotigrow®). To achieve this aim, we assessed the rotifer total protein content, the rotifers fatty acid profile, zebrafish larval growth performance, the expression of key growth, and endocrine appetite regulation genes. The total protein and fatty acids content were similar in both rotifer cultures, averaging 35% of dry matter (DM) and 18% of DM, respectively. Interestingly, the fatty acids profile showed differences between the two rotifer cultures: omega-3 fatty acids were only observed in the Microalgae/rotifer, whereas, omega-6 fatty acids presented similar levels in both rotifer cultures. No differences were observed in the larval body length distribution or mortalities between the rotifer cultures. However, gh, igf-1, and cck gene expression showed significantly higher upregulation in zebrafish fed the Microalgae/rotifer diet compared with those fed the Debaryomyces/rotifer diet. In conclusion, D. hansenii could be an alternative diet for rotifer used as a live food in zebrafish larvae at the onset of exogenous feeding. The gene responses observed in this work open up the opportunity to study the effect of omega-3 supply on growth regulation in zebrafish.
Collapse
Affiliation(s)
- Rafael Opazo
- 1 Laboratorio de Biotecnología, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile , Santiago, Chile
| | - Karen Fuenzalida
- 2 Laboratorio de Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile , Santiago, Chile
| | - Francisca Plaza-Parrochia
- 1 Laboratorio de Biotecnología, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile , Santiago, Chile
| | - Jaime Romero
- 1 Laboratorio de Biotecnología, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile , Santiago, Chile
| |
Collapse
|
9
|
Volkoff H. The Neuroendocrine Regulation of Food Intake in Fish: A Review of Current Knowledge. Front Neurosci 2016; 10:540. [PMID: 27965528 PMCID: PMC5126056 DOI: 10.3389/fnins.2016.00540] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/07/2016] [Indexed: 12/14/2022] Open
Abstract
Fish are the most diversified group of vertebrates and, although progress has been made in the past years, only relatively few fish species have been examined to date, with regards to the endocrine regulation of feeding in fish. In fish, as in mammals, feeding behavior is ultimately regulated by central effectors within feeding centers of the brain, which receive and process information from endocrine signals from both brain and peripheral tissues. Although basic endocrine mechanisms regulating feeding appear to be conserved among vertebrates, major physiological differences between fish and mammals and the diversity of fish, in particular in regard to feeding habits, digestive tract anatomy and physiology, suggest the existence of fish- and species-specific regulating mechanisms. This review provides an overview of hormones known to regulate food intake in fish, emphasizing on major hormones and the main fish groups studied to date.
Collapse
Affiliation(s)
- Helene Volkoff
- Departments of Biology and Biochemistry, Memorial University of NewfoundlandSt. John's, NL, Canada
| |
Collapse
|
10
|
Volkoff H, Estevan Sabioni R, Coutinho LL, Cyrino JEP. Appetite regulating factors in pacu (Piaractus mesopotamicus): Tissue distribution and effects of food quantity and quality on gene expression. Comp Biochem Physiol A Mol Integr Physiol 2016; 203:241-254. [PMID: 27717774 DOI: 10.1016/j.cbpa.2016.09.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/22/2016] [Accepted: 09/27/2016] [Indexed: 12/22/2022]
Abstract
The pacu Piaractus mesopotamicus is an omnivorous fish considered a promising species for aquaculture. Little is known about the endocrine regulation of feeding in this species. In this study, transcripts for orexin, cocaine and amphetamine regulated transcript (CART), cholecystokinin (CCK) and leptin were isolated in pacu. Orexin, CCK and leptin have widespread mRNA distributions in brain and periphery, CART is limited to the brain. To examine the role of these peptides in the regulation of feeding and energy status, mRNA expression levels were compared between fed and fasted fish and around feeding time. Both orexin and CART brain expressions were affected by fasting and displayed periprandial changes, suggesting a role in both short- and long-term regulation of feeding. CCK intestinal expression decreased in fasted fish and displayed periprandial changes, suggesting CCK acts as a peripheral satiety factor. Leptin was not affected by fasting but displayed periprandial changes, suggesting a role as a short-term regulator. To examine if these peptides are affected by diet, brain and gut expressions were assessed in fish fed with different diets containing soy protein concentrate. Food intake, weight gain and expressions of orexin, CART, CCK and leptin were little affected by replacement of fish protein with soy protein, suggesting that pacu is able to tolerate and grow well with a diet rich in plant material. Overall, our results suggest that orexin, CART, CCK and leptin are involved in the physiology of feeding of pacu and that their expressions are little affected by plant-based diets.
Collapse
Affiliation(s)
- Hélène Volkoff
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B3X9, Canada; Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B3X9, Canada.
| | - Rafael Estevan Sabioni
- Departamento de Zootecnia, Setor de Piscicultura, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, 13418-900 Piracicaba, SP, Brazil
| | - Luiz Lehmann Coutinho
- Departamento de Zootecnia, Laboratório de Biotecnologia Animal, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, 13418-900 Piracicaba, SP, Brazil
| | - José Eurico Possebon Cyrino
- Departamento de Zootecnia, Setor de Piscicultura, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, 13418-900 Piracicaba, SP, Brazil
| |
Collapse
|
11
|
The Ontogeny and Brain Distribution Dynamics of the Appetite Regulators NPY, CART and pOX in Larval Atlantic Cod (Gadus morhua L.). PLoS One 2016; 11:e0153743. [PMID: 27100086 PMCID: PMC4839749 DOI: 10.1371/journal.pone.0153743] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 04/04/2016] [Indexed: 11/19/2022] Open
Abstract
Similar to many marine teleost species, Atlantic cod undergo remarkable physiological changes during the early life stages with concurrent and profound changes in feeding biology and ecology. In contrast to the digestive system, very little is known about the ontogeny and the localization of the centers that control appetite and feed ingestion in the developing brain of fish. We examined the expression patterns of three appetite regulating factors (orexigenic: neuropeptide Y, NPY; prepro-orexin, pOX and anorexigenic: cocaine- and amphetamine-regulated transcript, CART) in discrete brain regions of developing Atlantic cod using chromogenic and double fluorescent in situ hybridization. Differential temporal and spatial expression patterns for each appetite regulator were found from first feeding (4 days post hatch; dph) to juvenile stage (76 dph). Neurons expressing NPY mRNA were detected in the telencephalon (highest expression), diencephalon, and optic tectum from 4 dph onward. CART mRNA expression had a wider distribution along the anterior-posterior brain axis, including both telencephalon and diencephalon from 4 dph. From 46 dph, CART transcripts were also detected in the olfactory bulb, region of the nucleus of medial longitudinal fascicle, optic tectum and midbrain tegmentum. At 4 and 20 dph, pOX mRNA expression was exclusively found in the preoptic region, but extended to the hypothalamus at 46 and 76 dph. Co-expression of both CART and pOX genes were also observed in several hypothalamic neurons throughout larval development. Our results show that both orexigenic and anorexigenic factors are present in the telencephalon, diencephalon and mesencephalon in cod larvae. The telencephalon mostly contains key factors of hunger control (NPY), while the diencephalon, and particularly the hypothalamus may have a more complex role in modulating the multifunctional control of appetite in this species. As the larvae develop, the overall progression in temporal and spatial complexity of NPY, CART and pOX mRNAs expression might be correlated to the maturation of appetite control regulation. These observations suggest that teleost larvae continue to develop the regulatory networks underlying appetite control after onset of exogenous feeding.
Collapse
|
12
|
Xu C, Li XF, Tian HY, Jiang GZ, Liu WB. Feeding rates affect growth, intestinal digestive and absorptive capabilities and endocrine functions of juvenile blunt snout bream Megalobrama amblycephala. FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:689-700. [PMID: 26597852 DOI: 10.1007/s10695-015-0169-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 11/16/2015] [Indexed: 05/20/2023]
Abstract
This study aimed to investigate the optimal feeding rate for juvenile blunt snout bream (average initial weight 23.74 ± 0.09 g) based on the results on growth performance, intestinal digestive and absorptive capabilities and endocrine functions. A total of 840 fish were randomly distributed into 24 cages and fed a commercial feed at six feeding rates ranging from 2.0 to 7.0% body weight (BW)/day. The results indicated that weight gain rate increased significantly (P < 0.05) as feeding rates increased from 2.0 to 5.0% BW/day, but decreased with the further increasing feeding rates (P > 0.05). Protein efficiency ratio and nitrogen and energy retention all showed a similar trend. However, feed conversion ratio increased significantly (P < 0.05) with increasing feeding rates. Feeding rates have little effects (P > 0.05) on whole-body moisture, ash and protein contents, but significantly (P < 0.05) affect both lipid and energy contents with the highest values both observed in fish fed 4.0% BW/day. In addition, moderate ration sizes (2.0-4.0% BW/day) resulted in the enhanced activities of intestinal enzymes, including lipase, protease, Na(+), K(+)-ATPase, alkaline phosphatase and creatine kinase. Furthermore, the mRNA levels of growth hormone, insulin-like growth factors-I, growth hormone receptor and neuropeptide all increased significantly (P < 0.05) as feeding rates increased from 2.0 to 5.0% and 6.0% BW/day, but decreased significantly (P < 0.05) with the further increase in feeding rates, whereas both leptin and cholecystokinin expressions showed an opposite trend. Based on the broken-line regression analysis of SGR against feeding rates, the optimal feeding rate for juvenile blunt snout bream was estimated to be 4.57% BW/day.
Collapse
Affiliation(s)
- Chao Xu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, Jiangsu Province, People's Republic of China
- Wuxi Fisheries College, Nanjing Agricultural University, No. 69 Xuejiali, Nanquan, Binhu District, Wuxi, 214182, People's Republic of China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Hong-Yan Tian
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Guang-Zhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, Jiangsu Province, People's Republic of China.
| |
Collapse
|
13
|
Ji W, Ping HC, Wei KJ, Zhang GR, Shi ZC, Yang RB, Zou GW, Wang WM. Ghrelin, neuropeptide Y (NPY) and cholecystokinin (CCK) in blunt snout bream (Megalobrama amblycephala): cDNA cloning, tissue distribution and mRNA expression changes responding to fasting and refeeding. Gen Comp Endocrinol 2015; 223:108-19. [PMID: 26316038 DOI: 10.1016/j.ygcen.2015.08.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 08/18/2015] [Accepted: 08/22/2015] [Indexed: 01/22/2023]
Abstract
Blunt snout bream (Megalobrama amblycephala Yih, 1955) is an endemic freshwater fish in China for which the endocrine mechanism of regulation of feeding has never been examined. Ghrelin, neuropeptide Y (NPY) and cholecystokinin (CCK) play important roles in the regulation of fish feeding. In this study, full-length cDNAs of ghrelin, NPY and CCK were cloned and analyzed from blunt snout bream. Both the ghrelin and NPY genes of blunt snout bream had the same amino acid sequences as grass carp, and CCK also shared considerable similarity with that of grass carp. The three genes were expressed in a wide range of adult tissues, with the highest expression levels of ghrelin in the hindgut, NPY in the hypothalamus and CCK in the pituitary, respectively. Starvation challenge experiments showed that the expression levels of ghrelin and NPY mRNA increased in brain and intestine after starvation, and the expression levels of CCK decreased after starvation. Refeeding could bring the expression levels of the three genes back to the control levels. These results indicated that the feeding behavior of blunt snout bream was regulated by the potential correlative actions of ghrelin, NPY and CCK, which contributed to the defense against starvation. This study will further our understanding of the function of ghrelin, NPY and CCK and the molecular mechanism of feeding regulation in teleosts.
Collapse
Affiliation(s)
- Wei Ji
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of China, College of Fisheries, Huazhong Agricultural University, Wuhan, PR China; Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Wuhan, PR China
| | - Hai-Chao Ping
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of China, College of Fisheries, Huazhong Agricultural University, Wuhan, PR China
| | - Kai-Jian Wei
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of China, College of Fisheries, Huazhong Agricultural University, Wuhan, PR China; Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Wuhan, PR China.
| | - Gui-Rong Zhang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of China, College of Fisheries, Huazhong Agricultural University, Wuhan, PR China; Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Wuhan, PR China.
| | - Ze-Chao Shi
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, PR China
| | - Rui-Bin Yang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of China, College of Fisheries, Huazhong Agricultural University, Wuhan, PR China; Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Wuhan, PR China
| | - Gui-Wei Zou
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, PR China
| | - Wei-Min Wang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of China, College of Fisheries, Huazhong Agricultural University, Wuhan, PR China
| |
Collapse
|
14
|
Volkoff H. Cloning, tissue distribution and effects of fasting on mRNA expression levels of leptin and ghrelin in red-bellied piranha (Pygocentrus nattereri). Gen Comp Endocrinol 2015; 217-218:20-7. [PMID: 25980684 DOI: 10.1016/j.ygcen.2015.05.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 04/11/2015] [Accepted: 05/07/2015] [Indexed: 12/26/2022]
Abstract
cDNAs encoding the appetite regulating peptides leptin and ghrelin were isolated in red-bellied piranha (Characiforme, Serrasalmidae) and their mRNA tissue and brain distributions examined. When compared to other fish, the sequences obtained for all peptides were most similar to that of other Characiforme fish and Siluriformes. All peptides were widely expressed within the brain and in several peripheral tissues, including gastrointestinal tract. In order to better understand the role of these peptides in the regulation of feeding of red-bellied piranha, the mRNA expression levels of leptin and ghrelin were examined in both brain and intestine, in fed and 7-day fasted fish. No significant differences in expression were seen in whole brain for either peptide. Within the intestine, there was a decrease in leptin mRNA expression and an increase in ghrelin mRNA expression in fasted fish, compared to fed fish. The results suggest that leptin and ghrelin might play a major role in the regulation of feeding and energy homeostasis of red-bellied piranha and this role might be more prominent in the intestine than in the brain.
Collapse
Affiliation(s)
- Hélène Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
15
|
Volkoff H. Cloning and tissue distribution of appetite-regulating peptides in pirapitinga (Piaractus brachypomus
). J Anim Physiol Anim Nutr (Berl) 2015; 99:987-1001. [DOI: 10.1111/jpn.12318] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 02/25/2015] [Indexed: 12/16/2022]
Affiliation(s)
- H. Volkoff
- Departments of Biology and Biochemistry; Memorial University of Newfoundland; St. John's NL Canada
| |
Collapse
|