1
|
Kierończyk B, Rawski M, Mikołajczak Z, Szymkowiak P, Stuper-Szablewska K, Józefiak D. Black Soldier Fly Larva Fat in Broiler Chicken Diets Affects Breast Meat Quality. Animals (Basel) 2023; 13:ani13071137. [PMID: 37048393 PMCID: PMC10093744 DOI: 10.3390/ani13071137] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/06/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
This study aimed to evaluate the dose-dependent effect of black soldier fly (BFL) larvae fat inclusion in broiler chicken diets on breast meat quality. Four hundred 1-day-old male birds (Ross 308) were assigned to the following four treatments (10 replicates with 10 birds each): HI0, a basal diet without dietary fat inclusion, and HI03, HI06, and HI09, basal diets enriched with 30 g/kg, 60 g/kg, and 90 g/kg of BSF larvae fat, respectively. Principal component analysis showed noticeable differentiation between the selected plant, animal, and insect-origin dietary fats. The BSF fat exhibits a strong relationship with saturated fatty acids (SFAs), resulting in a high concentration of C12:0 and C14:0. The fatty acid (FA) profile in breast muscle obtained from broilers fed diets with increasing insect fat inclusion showed a significant linear effect in terms of C12:0, C15:0, C18:2, C18:3n6, and total FAs. The proportion of dietary insect fat had a quadratic effect on meat color. The water-holding capacity indices have stayed consistent with the meat color changes. Throughout the experiment, favorable growth performance results were noticed in HI06. The present study confirmed that BSF larvae fat negatively affects the n3 level in meat. However, the physicochemical indices related to consumer acceptance were not altered to negatively limit their final decision, even when a relatively high inclusion of insect fat was used.
Collapse
Affiliation(s)
- Bartosz Kierończyk
- Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland
| | - Mateusz Rawski
- Laboratory of Inland Fisheries and Aquaculture, Department of Zoology, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Wojska Polskiego 71c, 60-625 Poznań, Poland
| | - Zuzanna Mikołajczak
- Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland
| | - Piotr Szymkowiak
- Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland
| | - Kinga Stuper-Szablewska
- Department of Chemistry, Faculty of Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland
| | - Damian Józefiak
- Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland
| |
Collapse
|
2
|
Li W, Li H, Yan C, Chen S, Zhao X. The transcriptome pattern of liver, spleen and hypothalamus provides insights into genetic and biological changes in roosters in response to castration. Front Genet 2022; 13:1030886. [DOI: 10.3389/fgene.2022.1030886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
Chicken is widely accepted by consumers because of its delicate taste and abundant animal protein. The rooster after castration (capon) is believed to show better flavor, however, the molecular changes of the underpinned metabolism after castration is not yet understood. In this study, we aimed to figure out the alternation of meat quality and underpinned molecular mechanism via transcriptomic profiling of liver, spleen and hypothalamus as targeted organs in response to the castration. We identified differential expressed genes and their enriched functions and pathways in these organs between capon and rooster samples through RNA-seq analysis. In the liver, the lipid metabolism with targeted FABP1gene was found significantly enriched, which may be as one of the factors contributing to increased fat deposition and thus better meat flavor in capons than roosters, as predicted by the significantly lower shear force in capons than in roosters in meat quality experiments. However, the ability to xenobiotic detoxification and excretion, vitamin metabolism, and antioxidative effect of hemoglobin evidenced of the capon may be compromised by the alternation of SULT, AOX1, CYP3A5, HBA1, HBBA, and HBAD. Besides, in both the spleen and hypothalamus, PTAFR, HPX, CTLA4, LAG3, ANPEP, CD24, ITGA2B, ITGB3, CD2, CD7, and BLB2 may play an important role in the immune system including function of platelet and T cell, development of monocyte/macrophage and B cell in capons as compared to roosters. In conclusion, our study sheds lights into the possible molecular mechanism of better meat flavor, fatty deposit, oxidative detoxification and immune response difference between capons and roosters.
Collapse
|
3
|
Effects of Sex on the Muscle Development and Meat Composition in Wuliangshan Black-Bone Chickens. Animals (Basel) 2022; 12:ani12192565. [PMID: 36230306 PMCID: PMC9558948 DOI: 10.3390/ani12192565] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
This study was conducted to illustrate the morphological features of the breast and thigh muscles at four developmental stages (1, 42, 84, and 126 days of age) of Wuliangshan Black-bone chickens and to compare the chemical composition, fatty acid, and amino acid contents of their meat at 126 days of age (D126). In total, 80 chickens (male, n = 40 and female, n = 40) in the sixth generation from the breeding farm were used in the experiment under free-range rearing conditions. The cross-sectional areas (CSA) of muscle fibers and meat composition were compared between different sex and different muscle types. The results showed that gender did not affect the CSA of the breast muscle fibers but did affect the CSA of the thigh muscle fibers at D42, D84, and D126 (p < 0.05). Muscle types affected the CSA of muscle fibers: male chickens exhibited significantly higher values than female chickens at D42, D84, and D126 (p < 0.05). The results of moisture, crude protein, and crude fat at D126 showed that moisture contents were higher in the thigh muscles than in the breast muscles in male and female chickens (p < 0.05). Gender affected the crude protein contents and crude fat contents: the breast muscle crude protein content was significantly higher than that in the thigh muscle, both in males and females (p < 0.05), whereas the crude fat contents were significantly higher in females than in males (p < 0.05); moreover, the thigh muscle fat contents were significantly higher than those of the breast muscles both in males and females (p < 0.05). Gender and muscle types also affected the fatty acid contents: the PUFA contents of the breast and thigh muscles were significantly higher in male than in female chickens (p < 0.05). Muscle types significantly influenced the total EAA, NEAA, and flavor amino acid contents. The total EAA contents of the breast muscles were significantly higher than those of the thigh muscles in males and females (p < 0.05), whereas the total NEAA and total flavor amino acid contents of the thigh muscles were significantly higher than those of the breast muscles (p < 0.05). Our results may lead to a better understanding of the effects of gender on the breast and thigh muscle development and meat composition of Wuliangshan Black-bone chicken.
Collapse
|
4
|
Bombik E, Pietrzkiewicz K, Bombik A. Analysis of the Fatty Acid Profile of the Tissues of Hunted Mallard Ducks ( Anas platyrhynchos L.) from Poland. Animals (Basel) 2022; 12:ani12182394. [PMID: 36139254 PMCID: PMC9494995 DOI: 10.3390/ani12182394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
The aim of the study was to analyse the fatty acid profile of selected tissues of mallard ducks (Anas platyrhynchos L.), in relation to where they were obtained and their sex, with regard to the human diet. The study was carried out on material obtained from mallard ducks from two study areas: the Siedlce hunting district and the Leszno hunting district. The research material was the breast and leg muscles of 28 mallards. The samples were frozen and stored at −20 °C. The fatty acid profiles in the biological samples were determined by selected ion recording (SIR). The results showed significantly (p < 0.05) lower average levels of saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs) and significantly higher (p < 0.05) average levels of polyunsaturated fatty acids (PUFAs), n-6 PUFAs, and n-3 PUFAs in the breast muscles of the mallards obtained in the Siedlce hunting district. This in conjunction with the higher (p < 0.05) hypocholesterolaemic/hypercholesterolaemic index (h/H) in the leg muscles and lower (p < 0.05) atherogenic and thrombogenic indices (AI and TI) in the leg and breast muscles of mallards in the Siedlce hunting district indicate the higher health-promoting value of the meat of ducks from this region. The average n-6/n-3 PUFA ratio in the breast muscles was significantly (p < 0.05) higher in mallards obtained in the Leszno hunting district. Males of the species had a significantly (p < 0.05) higher average n-6/n-3 PUFA ratio in the breast muscles than females. The PUFA/SFA ratio was significantly (p < 0.05) higher in the leg muscles of the female mallards than in the males.
Collapse
|
5
|
El-Bahr SM, Shousha S, Alfattah MA, Al-Sultan S, Khattab W, Sabeq II, Ahmed-Farid O, El-Garhy O, Albusadah KA, Alhojaily S, Shehab A. Enrichment of Broiler Chickens' Meat with Dietary Linseed Oil and Lysine Mixtures: Influence on Nutritional Value, Carcass Characteristics and Oxidative Stress Biomarkers. Foods 2021; 10:foods10030618. [PMID: 33799454 PMCID: PMC8000725 DOI: 10.3390/foods10030618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 12/20/2022] Open
Abstract
This study aimed to evaluate the effect of four combinations of dietary linseed oil and lysine mixtures on performance, fatty and amino acid profiles, oxidative stress biomarkers, cell energy and meat quality parameters of broiler chickens. One hundred and sixty broiler chicks were allocated into four groups. Birds of groups 1–4 were fed diets containing optimum lysine and 2% of linseed oil, optimum lysine and 4% of linseed oil, high lysine and 2% of linseed oil, and high lysine and 4% of linseed oil, respectively, for a period of 35 days. High linseed oil or lysine levels did not affect the performance of the tested birds, but the high level of dietary linseed oil decreased the concentrations of muscles’ saturated fatty acids (SFA). The highest values of ω-3 polyunsaturated fatty (ω-3 PUFA) and arachidonic acids with lowest levels of monounsaturated fatty (MUFA) were detected in the muscles of birds fed diets containing high linseed oils and/or lysine levels. High linseed oil or lysine levels provided the best essential amino acid profile and improved antioxidant components as well as cell energy, and tenderness and redness of the meat. Conclusively, high dietary lysine and linseed oil combinations improved the nutritional value, antioxidant status and cell energy of broiler chickens’ meat.
Collapse
Affiliation(s)
- Sabry M. El-Bahr
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (S.S.); (K.A.A.); (S.A.)
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria 21523, Egypt
- Correspondence: or
| | - Saad Shousha
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (S.S.); (K.A.A.); (S.A.)
- Department of Physiology, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt
| | | | - Saad Al-Sultan
- Department of Public Health, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Wasseem Khattab
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt; (W.K.); (A.S.)
| | - Islam I. Sabeq
- Department of Food Control and Hygiene, Faculty of Veterinary Medicine Benha University, Benha 13736, Egypt;
| | - Omar Ahmed-Farid
- Department of Physiology, National Organization for Drug Control and Research, Giza 12622, Egypt;
| | - Osama El-Garhy
- Department of Animal Production, Faculty of Agriculture, Benha University, Benha 13736, Egypt;
| | - Khalid A. Albusadah
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (S.S.); (K.A.A.); (S.A.)
| | - Sameer Alhojaily
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (S.S.); (K.A.A.); (S.A.)
| | - Ahmed Shehab
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt; (W.K.); (A.S.)
| |
Collapse
|
6
|
Iqbal Y, Cottrell JJ, Suleria HA, Dunshea FR. Gut Microbiota-Polyphenol Interactions in Chicken: A Review. Animals (Basel) 2020; 10:E1391. [PMID: 32796556 PMCID: PMC7460082 DOI: 10.3390/ani10081391] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/03/2020] [Accepted: 08/09/2020] [Indexed: 02/07/2023] Open
Abstract
The gastrointestinal tract of the chicken harbors very complex and diverse microbial communities including both beneficial and harmful bacteria. However, a dynamic balance is generally maintained in such a way that beneficial bacteria predominate over harmful ones. Environmental factors can negatively affect this balance, resulting in harmful effects on the gut, declining health, and productivity. This means modulating changes in the chicken gut microbiota is an effective strategy to improve gut health and productivity. One strategy is using modified diets to favor the growth of beneficial bacteria and a key candidate are polyphenols, which have strong antioxidant potential and established health benefits. The gut microbiota-polyphenol interactions are of vital importance in their effects on the gut microbiota modulation because it affects not only the composition of gut bacteria but also improves bioavailability of polyphenols through generation of more bioactive metabolites enhancing their health effects on morphology and composition of the gut microbiota. The object of this review is to improve the understanding of polyphenol interactions with the gut microbiota and highlights their potential role in modulation of the gut microbiota of chicken.
Collapse
Affiliation(s)
- Yasir Iqbal
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Y.I.); (J.J.C.); (H.A.R.S.)
| | - Jeremy J. Cottrell
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Y.I.); (J.J.C.); (H.A.R.S.)
| | - Hafiz A.R. Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Y.I.); (J.J.C.); (H.A.R.S.)
| | - Frank R. Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Y.I.); (J.J.C.); (H.A.R.S.)
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
7
|
Evaluation of Slaughter Parameters and Meat Quality of Rabbits Fed Diets with Silkworm Pupae and Mealworm Larvae Meals. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2019-0080] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
The aim of this study was to determine the effect of feeding rabbits with diets containing dried silkworm pupae and mealworm larvae meals on their slaughter value and meat quality. A total of 60 New Zealand White rabbits at 35 days of age were divided into 3 equivalent groups. Control group (C) and two experimental diets included either 4% silkworm pupae meal (diet A) or 4% mealworm larvae meal (diet B). The experiment lasted for 55 days and growth performance as well chemical and amino acid meat composition and the profile of fatty acids were evaluated during the study. The results showed that dietary supplementation of insect meals caused increases in final body weight and carcass meat content in rabbits from the experimental groups. The experimental diets had no effect on the sum of essential amino acids in the studied muscles, but created differences in the level of some amino acids: phenylalanine, lysine, tryptophan, threonine, isoleucine and methionine. The concentration of saturated (SFA) and monounsaturated fatty acids (MUFA) in the muscles was comparable in all the groups. In the tissues of rabbits fed the silkworm meal diet, PUFA-3 concentration increased and cholesterol level decreased. It is concluded that dried silkworm pupae and mealworm larvae meals can be used as feed material in rabbit diets at 4% inclusion level without any adverse effect on growth performance, as well as quality and dietetic value of rabbit meat.
Collapse
|
8
|
Fatty acid composition of liver and breast meat of quails fed diets containing black cumin (Nigella sativa L.) and/or coriander (Coriandrum sativum L.) seeds as unsaturated fatty acid sources. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Lillehoj H, Liu Y, Calsamiglia S, Fernandez-Miyakawa ME, Chi F, Cravens RL, Oh S, Gay CG. Phytochemicals as antibiotic alternatives to promote growth and enhance host health. Vet Res 2018; 49:76. [PMID: 30060764 PMCID: PMC6066919 DOI: 10.1186/s13567-018-0562-6] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/02/2018] [Indexed: 01/14/2023] Open
Abstract
There are heightened concerns globally on emerging drug-resistant superbugs and the lack of new antibiotics for treating human and animal diseases. For the agricultural industry, there is an urgent need to develop strategies to replace antibiotics for food-producing animals, especially poultry and livestock. The 2nd International Symposium on Alternatives to Antibiotics was held at the World Organization for Animal Health in Paris, France, December 12-15, 2016 to discuss recent scientific developments on strategic antibiotic-free management plans, to evaluate regional differences in policies regarding the reduction of antibiotics in animal agriculture and to develop antibiotic alternatives to combat the global increase in antibiotic resistance. More than 270 participants from academia, government research institutions, regulatory agencies, and private animal industries from >25 different countries came together to discuss recent research and promising novel technologies that could provide alternatives to antibiotics for use in animal health and production; assess challenges associated with their commercialization; and devise actionable strategies to facilitate the development of alternatives to antibiotic growth promoters (AGPs) without hampering animal production. The 3-day meeting consisted of four scientific sessions including vaccines, microbial products, phytochemicals, immune-related products, and innovative drugs, chemicals and enzymes, followed by the last session on regulation and funding. Each session was followed by an expert panel discussion that included industry representatives and session speakers. The session on phytochemicals included talks describing recent research achievements, with examples of successful agricultural use of various phytochemicals as antibiotic alternatives and their mode of action in major agricultural animals (poultry, swine and ruminants). Scientists from industry and academia and government research institutes shared their experience in developing and applying potential antibiotic-alternative phytochemicals commercially to reduce AGPs and to develop a sustainable animal production system in the absence of antibiotics.
Collapse
Affiliation(s)
- Hyun Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20705 USA
| | - Yanhong Liu
- University of California, Davis, CA 95616 USA
| | - Sergio Calsamiglia
- Animal Nutrition and Welfare Service, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Mariano E. Fernandez-Miyakawa
- Instituto de Patobiología, Centro Nacional de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Calle Las Cabañas y Los Reseros s/n, Casilla de Correo 25, Castelar, 1712 Buenos Aires, Argentina
| | - Fang Chi
- Amlan International, Chicago, IL 60611 USA
| | | | - Sungtaek Oh
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20705 USA
| | - Cyril G. Gay
- National Program Staff-Animal Health, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20705 USA
| |
Collapse
|
10
|
|
11
|
Kanakri K, Carragher J, Hughes R, Muhlhausler B, Gibson R. The Effect of Different Dietary Fats on the Fatty Acid Composition of Several Tissues in Broiler Chickens. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201700237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Khaled Kanakri
- FOODplus Research Centre School of Agriculture, Food and Wine The University of Adelaide Waite CampusUrrbraeSA 5064Australia
| | - John Carragher
- FOODplus Research Centre School of Agriculture, Food and Wine The University of Adelaide Waite CampusUrrbraeSA 5064Australia
| | - Robert Hughes
- South Australian Research and Development Institute (SARDI) Roseworthy CampusRoseworthySA 5371Australia
- School of Animal and Veterinary Sciences The University of Adelaide Roseworthy CampusRoseworthySA 5371Australia
| | - Beverly Muhlhausler
- FOODplus Research Centre School of Agriculture, Food and Wine The University of Adelaide Waite CampusUrrbraeSA 5064Australia
| | - Robert Gibson
- FOODplus Research Centre School of Agriculture, Food and Wine The University of Adelaide Waite CampusUrrbraeSA 5064Australia
| |
Collapse
|
12
|
Starčević K, Gavrilović A, Gottstein Ž, Mašek T. Influence of substitution of sunflower oil by different oils on the growth, survival rate and fatty acid composition of Jamaican field cricket ( Gryllus assimilis ). Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2017.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Mauric M, Starcevic K, Mencik S, Ostovic M, Kabalin AE. Influence of Meat Type, Sex and Storage Time on Fatty Acid Profile of Free Range Dalmatian Turkey. MACEDONIAN VETERINARY REVIEW 2016. [DOI: 10.1515/macvetrev-2016-0081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Dalmatian turkey is a slow growing breed kept in free range systems. It is a type of “old fashioned poultry” whose meat is present on the market and accepted by consumers. However, no information about its meat quality and fatty acid profile is available. The chemical composition of the meat was influenced by gender and meat type and these differences could be important from the consumer’s point of view. Fatty acid composition was characterized by the predominance of n6 fatty acids, especially C18:2n6 and a high n6/n3 ratio. Increased time of storage strongly reduced the long chain polyunsaturated fatty acid (LC PUFA) and increased atherogenicity and thrombogenicity indices (AI and TI) in thigh tissue. The content of beneficial n3 PUFA was influenced by meat type, with lower values of C18:3n3 and higher values of LC PUFA in the breast compared to the thighs. The potential intake of LC PUFA of comercial turkey in the human diet was lower in comparison to poultry fed with complete feed mixtures. An interesting fact was the higher DHA values in comparison with DPA values in breast tissue, which is characteristic of old poultry breeds. The Dalmatian turkey is a highly valued traditional product and an important archaic breed for gene preservation and biodiversity. Nevertheless, Dalmatian turkey meat could be even further improved by minimal dietary manipulation to become a product with additional health promoting effects.
Collapse
Affiliation(s)
- Maja Mauric
- Department of Animal Husbandry, Faculty of Veterinary Medicine , University of Zagreb , Zagreb , Croatia
| | - Kristina Starcevic
- Department of Animal Husbandry, Faculty of Veterinary Medicine , University of Zagreb , Zagreb , Croatia
| | - Sven Mencik
- Department of Animal Husbandry, Faculty of Veterinary Medicine , University of Zagreb , Zagreb , Croatia
| | - Mario Ostovic
- Department of Animal Behavior and Animal Welfare, Faculty of Veterinary Medicine , University of Zagreb , Zagreb , Croatia
| | - Anamaria Ekert Kabalin
- Department of Animal Husbandry, Faculty of Veterinary Medicine , University of Zagreb , Zagreb , Croatia
| |
Collapse
|
14
|
Hamano Y. Alteration of fatty acid profile and nucleotide-related substances in post-mortem breast meat of α-lipoic acid-fed broiler chickens. Br Poult Sci 2016; 57:501-14. [PMID: 27138100 DOI: 10.1080/00071668.2016.1184227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The present study was conducted to determine the effects of α-lipoic acid supplementation on post-mortem changes in the fatty acid profile and concentrations of nucleotide-related substances, especially those of a taste-active compound, inosine 5'-monophosphate, in chicken meat. Mixed-sex broiler chicks aged 14 d were divided into three groups of 16 birds each and were fed on diets supplemented with α-lipoic acid at levels of 0, 100 or 200 mg/kg for 4 weeks. Blood and breast muscle samples were taken at 42 d of age under the fed condition and then after fasting for 18 h. The breast muscle obtained from fasted chickens was subsequently refrigerated at 2°C for one and 3 d. α-Lipoic acid supplementation did not affect any plasma metabolite concentration independently of feeding condition, while a slight increase in plasma glucose concentration was shown with both administration levels of α-lipoic acid. In early post-mortem breast muscle under the fed condition, α-lipoic acid had no effect on concentrations of fatty acids or nucleotides of ATP, ADP, and AMP. In post-mortem breast tissues obtained from fasted chickens, total fatty acid concentrations were markedly increased by α-lipoic acid feeding at 200 mg/kg irrespective of length of refrigeration. This effect was dependent on stearic acid, oleic acid, linoleic acid and linolenic acid. However, among fatty acids, the only predominantly increased unsaturated fatty acid was oleic acid. Dietary supplementation with α-lipoic acid at 200 mg/kg increased the inosine 5'-monophosphate concentration in breast meat and, in contrast, reduced the subsequent catabolites, inosine and xanthine, regardless of the length of refrigeration. Therefore, the present study suggests that α-lipoic acid administration altered the fatty acid profile and improved meat quality by increasing taste-active substances in the post-mortem meat obtained from fasted chickens.
Collapse
Affiliation(s)
- Y Hamano
- a Laboratory of Animal Nutrition, Field Education and Science Centre, Faculty of Bioresource Sciences , Akita Prefectural University , Akita , Japan
| |
Collapse
|