1
|
Lin WC, Hoe BC, Li X, Lian D, Zeng X. Glucose Metabolism-Modifying Natural Materials for Potential Feed Additive Development. Pharmaceutics 2024; 16:1208. [PMID: 39339244 PMCID: PMC11435105 DOI: 10.3390/pharmaceutics16091208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/20/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Glucose, a primary energy source derived from animals' feed ration, is crucial for their growth, production performance, and health. However, challenges such as metabolic stress, oxidative stress, inflammation, and gut microbiota disruption during animal production practices can potentially impair animal glucose metabolism pathways. Phytochemicals, probiotics, prebiotics, and trace minerals are known to change the molecular pathway of insulin-dependent glucose metabolism and improve glucose uptake in rodent and cell models. These compounds, commonly used as animal feed additives, have been well studied for their ability to promote various aspects of growth and health. However, their specific effects on glucose uptake modulation have not been thoroughly explored. This article focuses on glucose metabolism is on discovering alternative non-pharmacological treatments for diabetes in humans, which could have significant implications for developing feed additives that enhance animal performance by promoting insulin-dependent glucose metabolism. This article also aims to provide information about natural materials that impact glucose uptake and to explore their potential use as non-antibiotic feed additives to promote animal health and production. Further exploration of this topic and the materials involved could provide a basis for new product development and innovation in animal nutrition.
Collapse
Affiliation(s)
- Wei-Chih Lin
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- Kemin (China) Technologies Co., Ltd., Zhuhai 519040, China
| | - Boon-Chin Hoe
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- Kemin (China) Technologies Co., Ltd., Zhuhai 519040, China
| | - Xianming Li
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Daizheng Lian
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Xiaowei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
2
|
Ellett MD, Rhoads RP, Hanigan MD, Corl BA, Perez-Hernandez G, Parsons CLM, Baumgard LH, Daniels KM. Relationships between gastrointestinal permeability, heat stress, and milk production in lactating dairy cows. J Dairy Sci 2024; 107:5190-5203. [PMID: 38428497 DOI: 10.3168/jds.2023-24043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/02/2024] [Indexed: 03/03/2024]
Abstract
Heat stress (HS) is a global issue that decreases farm profits and compromises animal welfare. To distinguish between the direct and indirect effects of HS, 16 multiparous Holstein cows approximately 100 DIM were assigned to one of 2 treatments: pair fed to match HS cow intake, housed in thermoneutral conditions (PFTN, n = 8) or cyclical HS (n = 8). All cows were subjected to 2 experimental periods. Period 1 consisted of a 4 d thermoneutral period with ad libitum intake. During period 2 (P2), the HS cows were housed in cyclical HS conditions with a temperature-humidity index (THI) ranging from 76 to 80 and the PFTN cows were exposed to a constant THI of 64 for 4 d. Dry matter intake of the PFTN cows was intake matched to the HS cows. Milk yield, milk composition, rectal temperature, and respiration rate were recorded twice daily, blood was collected daily via a jugular catheter, and cows were fed twice daily. On d 3 of each period, Cr-EDTA and sucralose were orally administered and recovered via 24 h total urine collection to assess gastrointestinal permeability. All data were analyzed using the GLIMMIX procedure in SAS. The daily data collected in P1 was averaged and used as a covariate if deemed significant in the model. Heat stress decreased voluntary feed intake by 35% and increased rectal temperature and respiration rate (38.4°C vs. 39.4°C and 40 vs. 71 respirations/min, respectively). Heat stress reduced DMI by 35%, which accounted for 66% of the decrease in milk yield. The yields, and not concentrations, of milk protein, fat, and other solids were lower in the HS cows on d 4 of P2. Milk urea nitrogen was higher and plasma urea nitrogen tended to be higher on d 3 and d 4 of HS. Glucose was 7% lower in the HS cows and insulin was 71% higher in the HS cows than the PFTN cows on d 4 of P2. No difference in lipopolysaccharide-binding protein was observed. Heat stress cows produced 7 L/d more urine than PFTN cows. No differences were detected in the urine concentration or percentage of the oral dose recovered for Cr-EDTA or sucralose. In conclusion, HS was responsible for 34% of the reduction of milk yield. The elevated MUN and the tendency for elevated plasma urea nitrogen indicate a whole-body shift in nitrogen metabolism. No differences in gastrointestinal permeability or lipopolysaccharide-binding protein were observed. These results indicate that, under the conditions of this experiment, activation of the immune system by gut-derived lipopolysaccharide was not responsible for the decreased milk yield observed during HS.
Collapse
Affiliation(s)
- M D Ellett
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - R P Rhoads
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - M D Hanigan
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - B A Corl
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - G Perez-Hernandez
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - C L M Parsons
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - K M Daniels
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061.
| |
Collapse
|
3
|
Qiao K, Jiang R, Contreras GA, Xie L, Pascottini OB, Opsomer G, Dong Q. The Complex Interplay of Insulin Resistance and Metabolic Inflammation in Transition Dairy Cows. Animals (Basel) 2024; 14:832. [PMID: 38539930 PMCID: PMC10967290 DOI: 10.3390/ani14060832] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 11/11/2024] Open
Abstract
During the transition period, dairy cows exhibit heightened energy requirements to sustain fetal growth and lactogenesis. The mammary gland and the growing fetus increase their demand for glucose, leading to the mobilization of lipids to support the function of tissues that can use fatty acids as energy substrates. These physiological adaptations lead to negative energy balance, metabolic inflammation, and transient insulin resistance (IR), processes that are part of the normal homeorhetic adaptations related to parturition and subsequent lactation. Insulin resistance is characterized by a reduced biological response of insulin-sensitive tissues to normal physiological concentrations of insulin. Metabolic inflammation is characterized by a chronic, low-level inflammatory state that is strongly associated with metabolic disorders. The relationship between IR and metabolic inflammation in transitioning cows is intricate and mutually influential. On one hand, IR may play a role in the initiation of metabolic inflammation by promoting lipolysis in adipose tissue and increasing the release of free fatty acids. Metabolic inflammation, conversely, triggers inflammatory signaling pathways by pro-inflammatory cytokines, thereby leading to impaired insulin signaling. The interaction of these factors results in a harmful cycle in which IR and metabolic inflammation mutually reinforce each other. This article offers a comprehensive review of recent advancements in the research on IR, metabolic inflammation, and their intricate interrelationship. The text delves into multiple facets of physiological regulation, pathogenesis, and their consequent impacts.
Collapse
Affiliation(s)
- Kaixi Qiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (K.Q.); (R.J.)
| | - Renjiao Jiang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (K.Q.); (R.J.)
| | - Genaro Andres Contreras
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA;
| | - Lei Xie
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (L.X.); (O.B.P.); (G.O.)
| | - Osvaldo Bogado Pascottini
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (L.X.); (O.B.P.); (G.O.)
| | - Geert Opsomer
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (L.X.); (O.B.P.); (G.O.)
| | - Qiang Dong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (K.Q.); (R.J.)
| |
Collapse
|
4
|
Rodriguez Z, Picasso-Risso C, Gaire TN, Nakagawa K, Noyes N, Cramer G, Caixeta L. Evaluating variations in metabolic profiles during the dry period related to the time of hyperketonemia onset in dairy cows. PLoS One 2023; 18:e0289165. [PMID: 37561770 PMCID: PMC10414630 DOI: 10.1371/journal.pone.0289165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 07/12/2023] [Indexed: 08/12/2023] Open
Abstract
Hyperketonemia (HYK) in early lactation can have a different impact on health and productivity depending on the timing of HYK onset. While specific metabolites measured during the dry period may serve as biomarkers of HYK, the correlations between metabolites represent a challenge for the use of metabolic profiles dataset, and little has been explored on HYK. This exploratory cohort study aimed a) to characterize the correlations among metabolites measured during the late dry period in dairy cows, and b) to identify biomarkers in the late dry period associated with the onset of HYK at the first (wk1) and second (wk2) week of lactation. Individual blood samples from 440 Holstein dairy cows were collected at 21 ± 3 days before expected parturition. From each sample, 36 different metabolites were measured in serum and plasma. Hyperketonemia was diagnosed in wk1 and wk2 of lactation based on the blood concentration of beta-hydroxybutyrate (BHB > 1.2 mmol/L). Principal component analysis (PCA) was performed to reduce metabolites to a smaller number of uncorrelated components. Multivariable logistic regression models were applied to assess the associations between principal components (PC) and HYK at wk1 only (HYK+ wk1), wk2 only (HYK+ wk2), or both weeks (HYK+ wk1-2). The incidence of HYK was 16.2% in the first week, 13.0% in the second week, and 21.2% within the first two weeks of lactation. The results of PCA highlighted 10 PCs from which two were associated with HYK+ wk1 as compared with cows without HYK during the first two weeks of lactation (non-HYK); the PC a2 led by bilirubin and non-esterified fatty acids (OR = 1.29; 95%CI: 1.02-1.68), and the PC a5 led by alkaline phosphatase (ALP) and gamma-glutamyl transferase (GGT) (OR = 2.77; 95%CI: 1.61-4.97). There was no evidence of an association between any PC and HYK+ wk2 (vs. non-HYK cows). Cows with elevated PC a5 (led by ALP and GGT) in the dry period were 3.18 times more likely to be HYK+ wk1 than HYK+ wk2 (OR: 3.18, 95%CI: 1.34-8.73; P = 0.013). Overall, the main hypothesis generated by our exploratory study suggests that cows with biomarkers of liver dysfunction (ALP, GGT, bilirubin) assessed by PCA at 3 weeks before calving are more likely to develop HYK during the first week of lactation compared to the second week. In addition, results suggest that cows with HYK in both of the first two weeks of lactation had an overall metabolic disbalance during the onset of the late dry period, which based on PCs, encompass biomarkers related to glucogenic and ketogenic metabolic pathways as well as liver dysfunction and fatty liver. Further research is needed to determine the underlying mechanisms associated with the different adaptations between cows that develop HYK during the first and second week of lactation.
Collapse
Affiliation(s)
- Zelmar Rodriguez
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States of America
| | - Catalina Picasso-Risso
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Tara N. Gaire
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Minneapolis, MN, United States of America
| | | | - Noelle Noyes
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Minneapolis, MN, United States of America
| | - Gerard Cramer
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Minneapolis, MN, United States of America
| | - Luciano Caixeta
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
5
|
Zhang MQ, Heirbaut S, Jing XP, Stefańska B, Vandaele L, De Neve N, Fievez V. Transition cow clusters with distinctive antioxidant ability and their relation to performance and metabolic status in early lactation. J Dairy Sci 2023; 106:5723-5739. [PMID: 37331874 DOI: 10.3168/jds.2022-22865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/17/2023] [Indexed: 06/20/2023]
Abstract
Metabolic and oxidative stress have been characterized as risk factors during the transition period from pregnancy to lactation. Although mutual relations between both types of stress have been suggested, they rarely have been studied concomitantly. For this, a total of 99 individual transition dairy cows (117 cases, 18 cows sampled during 2 consecutive lactations) were included in this experiment. Blood samples were taken at -7, 3, 6, 9, and 21 d relative to calving and concentrations of metabolic parameters (glucose, β-hydroxybutyric acid (BHBA), nonesterified fatty acids, insulin, insulin-like growth factor 1, and fructosamine) were determined. In the blood samples of d 21, biochemical profiles related to liver function and parameters related to oxidative status were determined. First, cases were allocated to 2 different BHBA groups (ketotic vs. nonketotic, N:n = 20:33) consisting of animals with an average postpartum BHBA concentration and at least 2 out of 4 postpartum sampling points exceeding 1.2 mmol/L or remaining below 0.8 mmol/L, respectively. Second, oxidative parameters [proportion of oxidized glutathione to total glutathione in red blood cells (%)], activity of glutathione peroxidase, and of superoxide dismutase, concentrations of malondialdehyde and oxygen radical absorbance capacity were used to perform a fuzzy C-means clustering. From this, 2 groups were obtained [i.e., lower antioxidant ability (LAA80%, n = 31) and higher antioxidant ability (HAA80%, n = 19)], with 80% referring to the cutoff value for cluster membership. Increased concentrations of malondialdehyde, decreased superoxide dismutase activity, and impaired oxygen radical absorbance capacity were observed in the ketotic group compared with the nonketotic group, and inversely, the LAA80% group showed increased concentrations of BHBA. In addition, the concentration of aspartate transaminase was higher in the LAA80% group compared with the HAA80% group. Both the ketotic and LAA80% groups showed lower dry matter intake. However, a lower milk yield was observed in the LAA80% group but not in the ketotic group. Only 1 out of 19 (5.3%) and 3 out of 31 (9.7%) cases from the HAA80% and LAA80% clusters belong to the ketotic and nonketotic group, respectively. These findings suggested that dairy cows vary in oxidative status at the beginning of the lactation, and fuzzy C-means clustering allows to classify observations with distinctive oxidative status. Dairy cows with higher antioxidant capacity in early lactation rarely develop ketosis.
Collapse
Affiliation(s)
- M Q Zhang
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Gent, Belgium
| | - S Heirbaut
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Gent, Belgium
| | - X P Jing
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Gent, Belgium; State Key Laboratory of Grassland and Agro-Ecosystems, International Centre for Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - B Stefańska
- Department of Grassland and Natural Landscape Sciences, Poznań University of Life Sciences, 60-632 Poznań, Poland
| | - L Vandaele
- Animal Sciences Unit, ILVO, 9090 Melle, Belgium
| | - N De Neve
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Gent, Belgium
| | - V Fievez
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Gent, Belgium.
| |
Collapse
|
6
|
Malledevarahalli Chandrappa S, Pascottini OB, Opsomer G, Meineri G, Martino NA, Banchi P, Vincenti L, Ricci A. Circulating and endometrial cell oxidative stress in dairy cows diagnosed with metritis. Theriogenology 2023; 198:217-223. [PMID: 36610371 DOI: 10.1016/j.theriogenology.2022.12.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023]
Abstract
Dairy cows diagnosed with metritis may experience a greater degree of oxidative stress (OS) and a deficit in the antioxidative capacity compared to healthy cows. We aimed to assess circulating OS markers and endometrial cell mitochondrial function, intracellular reactive oxygen species (ROS) production, and mean endometrial nuclear cell area in postpartum cows diagnosed with metritis or as healthy. From an initial pool of 121 Holstein cows, we retrospectively selected 34 cows and balanced for metritis (n = 17) or healthy (n = 17). Metritis was defined as an enlarged uterus with red-brown watery or thick off-white purulent discharge occurring within 21 days postpartum. Cows with no signs of clinical disease (including dystocia or retained placenta) were referred to as healthy. Blood samples for serum reactive oxygen metabolites (d-ROM), antioxidants (OXY), and oxidative status index (OSI) tests, evaluated via photometric determination of plasma thiols, were performed at 7, 14, 21, 28, and 35 days postpartum. Furthermore, from the initial pool, a random subset of 5 cows diagnosed with metritis and 6 diagnosed as healthy we collected (at the same time points as for the blood samples) endometrial cytology samples using the cytobrush technique. From the uterine samples, we evaluated the endometrial cell mitochondrial function, intracellular ROS levels, and the endometrial cell nuclear area using MitoTracker Orange, dichlorodihydrofluorescein diacetate, and Hoechst 33258, respectively. Mixed linear regression models, accounting for repeated measurements, were fitted to assess the effect of metritis versus healthy on circulating and endometrial cell OS parameters and endometrial cell size. The effect of days postpartum and its interaction with uterine health status were forced into each model. Serum concentrations of d-ROMs and OSI were greater in metritis at 7, 14, and 35 days postpartum than in healthy cows. Interestingly, the mean endometrial cell nuclear area was lower in metritis than healthy cows at 14 and 21 days postpartum. We found no differences between metritis and healthy for endometrial cell mitochondrial function and intracellular ROS production. In conclusion, cows diagnosed with metritis experienced greater systemic OS levels than healthy cows, but their OS was not higher in the uterine milieu.
Collapse
Affiliation(s)
- Sanjana Malledevarahalli Chandrappa
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco, Italy; Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.
| | - Osvaldo Bogado Pascottini
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium; Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610, Wilrijk, Belgium
| | - Geert Opsomer
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Giorgia Meineri
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco, Italy
| | - Nicola Antonio Martino
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Valenzano, Bari, Italy
| | - Penelope Banchi
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco, Italy; Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Leila Vincenti
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco, Italy
| | - Alessandro Ricci
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco, Italy
| |
Collapse
|
7
|
Feed intake, milk production and metabolism of Holstein, Gyr and Girolando-F1 heifers with high body condition score during the transition period. Res Vet Sci 2022; 152:127-133. [DOI: 10.1016/j.rvsc.2022.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/12/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022]
|
8
|
Fang Z, Gao W, Jiang Q, Loor JJ, Zhao C, Du X, Zhang M, Song Y, Wang Z, Liu G, Li X, Lei L. Targeting IRE1α and PERK in the endoplasmic reticulum stress pathway attenuates fatty acid-induced insulin resistance in bovine hepatocytes. J Dairy Sci 2022; 105:6895-6908. [PMID: 35840398 DOI: 10.3168/jds.2021-21754] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/14/2022] [Indexed: 11/19/2022]
Abstract
Endoplasmic reticulum (ER) stress can be induced by various stimuli and triggers the unfolded protein response to activate intracellular signaling pathways that are mediated by 3 ER-resident sensors: inositol requiring protein-1α (IRE1α), PKR-like ER kinase (PERK), and activating transcription factor-6 (ATF6). In nonruminants, ER stress plays a critical role in hepatic insulin resistance. However, whether ER stress plays a role in nonesterified fatty acid (NEFA)-induced hepatic insulin resistance in dairy cows is still unknown. Experiments were conducted using primary bovine hepatocytes isolated from 5 healthy calves (body weight: 30-40 kg; 1 d old). First, hepatocytes were treated with NEFA (1.2 mM) for 0.5, 1, 2, 3, 5, 7, 9, or 12 h. Treatment with NEFA elevated abundance of phosphorylated IRE1α and PERK, and cleavage of ATF6, along with the ER stress-associated genes XBP1, ATF4, and DNAJC3, resulting in both linear and quadratic effects. Furthermore, ER Tracker red staining and transmission electron microscopy results indicated that ER was dilated and degranulated in response to NEFA treatment, suggesting that ER stress was induced by NEFA treatment in bovine hepatocytes. Second, to assess the effect of ER stress on NEFA-induced insulin resistance, hepatocytes were treated with different concentrations of NEFA (0, 0.6, 1.2, or 2.4 mM) for 5 h with or without tauroursodeoxycholic acid (TUDCA, a canonical inhibitor of ER stress). Here, NEFA induced insulin resistance by increasing the abundance of insulin receptor substrate-1 (IRS1) phosphorylation at the inhibitory residue Ser 307 (S307) and decreasing the abundance of phosphorylated protein kinase B (AKT) and glycogen synthase kinase-3β (GSK3β) in a dose-dependent manner. This was accompanied by upregulation of an abundance of gluconeogenic genes [phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6-Pase)]. These detrimental effects of NEFA on insulin signaling could be reversed with TUDCA treatment, indicating a mechanistic link between ER stress and NEFA-induced insulin resistance. In a third experiment, pGPU6/GFP/Neo vectors containing short hairpin RNA targeting IRE1α were used to silence IRE1α transcription, and GSK2656157 (PERK phosphorylation inhibitor) and 4-(2-aminoethyl) benzenesulfonyl fluoride (AEBSF; an inhibitor of ATF6) were used to block PERK and ATF6 branches, respectively. Notably, the silencing of the IRE1α branch improved NEFA-induced insulin resistance by decreasing phosphorylation of IRS1 (S307) and increasing phosphorylation of AKT and GSK3β, and reducing PEPCK and G6-Pase mRNA abundance, which was likely dependent on IRE1α kinase activity. Similarly, blockage of the PERK branch increased phosphorylation of AKT and GSK3β, and reduced PEPCK and G6-Pase mRNA abundance, but had no effect on phosphorylation of IRS1 (S307). However, results showed that inhibition of the ATF6 branch had no effects on phosphorylation of IRS1, AKT, and GSK3β, and instead found increasing PEPCK and G6-Pase mRNA abundance. Taken together, data in the present study found that impeding IRE1α and PERK signaling might aid in relieving hepatic insulin resistance. However, the more detailed mechanisms of how IRE1α and PERK signaling contribute to hepatic insulin resistance in dairy cows remain to be determined.
Collapse
Affiliation(s)
- Zhiyuan Fang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Wenwen Gao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Qianming Jiang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Chenchen Zhao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Xiliang Du
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Min Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Yuxiang Song
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Zhe Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Guowen Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Xinwei Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Lin Lei
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China.
| |
Collapse
|
9
|
Metabolomics Reveals the Effects of High Dietary Energy Density on the Metabolism of Transition Angus Cows. Animals (Basel) 2022; 12:ani12091147. [PMID: 35565573 PMCID: PMC9105006 DOI: 10.3390/ani12091147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The increase in the metabolic demand and the dramatically decreased feed intake of cows around parturition often cause a negative energy balance status in cows, which can cause metabolic disorders. Before parturition, dry matter intake of cows starts to decline, and this decline is practically unavoidable. Therefore, increasing the energy density of the diet is extremely important. We used untargeted metabolomics to reveal the effect of high dietary energy density on body metabolism and explore whether it can alleviate negative energy balance. Our research shows that feeding a high-energy diet could significantly improve antioxidant capacity, maintain phosphatidylcholine homeostasis and reduce the negative energy balance of cows by regulating lipid mobilization, muscle mobilization, and protein turnover. Abstract The diet energy level plays a vital role in the energy balance of transition cows. We investigated the effects of high dietary energy density on body metabolism. Twenty multiparous Angus cows were randomly assigned to two treatment groups (10 cows/treatment), one receiving a high-energy (HE) diet (NEm = 1.67 Mcal/kg of DM) and the other administered a control (CON) diet (NEm = 1.53 Mcal/kg of DM). The results indicated that feeding a high-energy diet resulted in higher plasma glucose concentration and lower concentrations of plasma NEFA and BHBA on d 14 relative to calving in the HE-fed cows compared to the CON-fed ones. The postpartum plasma levels of T-AOC were lower in cows that received the CON diet than in cows in the HE group, while the concentration of malondialdehyde (MDA) showed an opposite trend. Among the 51 significantly different metabolites, the concentrations of most identified fatty acids decreased in HE cows. The concentrations of inosine, glutamine, and citric acid were higher in HE-fed cows than in CON-fed cows. Enrichment analysis revealed that linoleic acid metabolism, valine, leucine as well as isoleucine biosynthesis, and glycerophospholipid metabolism were significantly enriched in the two groups.
Collapse
|
10
|
Ghavipanje N, Fathi Nasri MH, Farhangfar SH, Ghiasi SE, Vargas-Bello-Pérez E. Pre- and Post-partum Berberine Supplementation in Dairy Goats as a Novel Strategy to Mitigate Oxidative Stress and Inflammation. Front Vet Sci 2021; 8:743455. [PMID: 34722705 PMCID: PMC8552069 DOI: 10.3389/fvets.2021.743455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
As in dairy cattle, goats during the transition period face risk factors, in particular negative energy balance (NEB), inflammation, and impairment of the antioxidant response. The current study determined the effects of pre- and post-partum berberine (BBR) supplementation on antioxidant status and inflammation response during the transition period in dairy goats. Twenty-four primiparous Saanen goats were randomly divided into four groups: control (CON, without BBR) and supplemented with 1 g/day BBR (BBR1), 2 g/day BBR (BBR2), or 4 g/day BBR (BBR4). The blood samples were collected weekly from 21 days pre-partum to 21 days post-partum. Compared with CON, supplementation with either BBR2 or BBR4 decreased (P ≤ 0.05) the levels of plasma non-esterified fatty acids (NEFA) at kidding and thereafter an increased (P ≤ 0.05) the plasma levels of glucose and insulin. Following BBR ingestion, blood antioxidant status elevated throughout the transition period, so that total antioxidant capacity (TAC), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase activity were increased (P ≤ 0.05) and plasma malondialdehyde (MDA) was decreased (P ≤ 0.05). Likewise, paraoxonase (PON) was reduced (P ≤ 0.05) in goats fed BBR2 and BBR4. The levels of haptoglobin, ceruloplasmin, and bilirubin were reduced (P ≤ 0.05) by BBR2 and BBR4 immediately before kidding and thereafter. The results demonstrated that supplementation of either 2 or 4 g/day BBR enhanced antioxidant capacity and immune function of transition goats and improved post-partum performance showing its beneficial effect to mitigate oxidative stress and inflammation during the transition period in dairy goats.
Collapse
Affiliation(s)
- Navid Ghavipanje
- Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
| | | | | | - Seyyed Ehsan Ghiasi
- Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
| | - Einar Vargas-Bello-Pérez
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
11
|
Lei L, Gao W, Loor JJ, Aboragah A, Fang Z, Du X, Zhang M, Song Y, Liu G, Li X. Reducing hepatic endoplasmic reticulum stress ameliorates the impairment in insulin signaling induced by high levels of β-hydroxybutyrate in bovine hepatocytes. J Dairy Sci 2021; 104:12845-12858. [PMID: 34538494 DOI: 10.3168/jds.2021-20611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/01/2021] [Indexed: 11/19/2022]
Abstract
Ketotic dairy cows exhibit a state of negative energy balance (NEB) characterized by elevated circulating levels of β-hydroxybutyrate (BHB) and fatty acids. Impaired hepatic insulin signaling in dairy cows occurs frequently during the transition into lactation, but its role on liver function during this period is not well known. In nonruminants, endoplasmic reticulum (ER) stress is a causal factor contributing to impaired insulin signaling in the liver. Thus, the aim of this study was to investigate the status of hepatic insulin and ER stress signaling and whether ER stress contributes to impaired insulin signaling in dairy cows with ketosis. Healthy (control cows, n = 10, BHB ≤0.6 mM) and ketotic (ketotic cows, n = 10, BHB ≥1.2 mM) cows at 3 to 10 d in milk were selected for liver biopsy and blood sampling before feeding. In vitro experiments were conducted with isolated hepatocytes from 5 healthy calves (1 d old, fasted female, 30-40 kg of body weight). Treatments included BHB (0, 0.9, 1.8, 3.6 mM), tauroursodeoxycholic acid (TUDCA, a canonical inhibitor of ER stress), and different incubation times (0.5, 1, 2, 3, 5, 7, 9, or 12 h). Ketotic cows had lower daily milk yield (median: 29.50 vs. 23.00 kg), higher plasma nonesterified fatty acid (NEFA) (median: 0.33 vs. 1.17 mM), BHB (median: 0.43 vs. 3.22 mM), aspartate aminotransferase (median: 70.58 vs. 155.70 U/L), alanine aminotransferase (median: 18.31 vs. 37.90 U/L), lower plasma glucose (median: 4.32 vs. 2.37 mg/dL), and revised quantitative insulin sensitivity check index (median: 0.39 vs. 0.37) compared with healthy cows. Increased abundance of phosphorylated insulin receptor substrate-1 (IRS1) and decreased abundance of phosphorylated protein kinase B (AKT) and glycogen synthase kinase-3β (GSK3β) in ketotic cows indicated a state of insulin resistance. In addition, abundance of phosphorylated protein kinase RNA-like ER kinase (PERK) and inositol requiring protein-1α (IRE1α), and cleavage of activating transcription factor-6 (ATF6) were greater in the liver of ketotic cows. In vitro, at the early stages of incubation, treatment with BHB upregulated abundance of phosphorylated of IRE1α, PERK, and the cleavage of ATF6, as well as several unfolded protein response genes [X-box-binding protein-1 (XBP1), 78 kDa glucose-regulated protein (GRP78), and C/EBP homologous protein (CHOP)]. Furthermore, in response to increasing doses of BHB, the phosphorylation level of PERK, IRE1α, and the cleavage of ATF6, and the abundance of XBP1, GRP78, and CHOP increased. In addition, BHB treatment increased phosphorylation of IRS1 and decreased phosphorylation of AKT and GSK3β, and upregulated abundance of gluconeogenic genes (phosphoenolpyruvate carboxykinase and glucose-6-phosphatase). Importantly, these changes were reversed by inhibiting ER stress with TUDCA treatment. Overall, the present study indicated that reversing ER stress during ketosis might help alleviate hepatic insulin resistance. Targeting ER stress may represent a potential therapeutic target for controlling the negative aspects of ketosis on liver function.
Collapse
Affiliation(s)
- Lin Lei
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Wenwen Gao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Ahmad Aboragah
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Zhiyuan Fang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Xiliang Du
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Min Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Yuxiang Song
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Guowen Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Xinwei Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China.
| |
Collapse
|
12
|
An Exploration of the Effects of an Early Postpartum Intravenous Infusion with Carnosic Acid on Physiological Responses of Transition Dairy Cows. Antioxidants (Basel) 2021; 10:antiox10091478. [PMID: 34573111 PMCID: PMC8466393 DOI: 10.3390/antiox10091478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 01/18/2023] Open
Abstract
The objective of the present study was to evaluate the effects of an antioxidant and anti-inflammatory compound found in rosemary plants (Salvia rosmarinus) named carnosic acid during the transition period of dairy cows. From day 1 to 3 after calving, 16 multiparous Holstein cows received a daily intravenous infusion of either 500 mL of saline (NaCl 0.9%; Saline; n = 8) or carnosic acid at a rate of 0.3 mg/kg of BW supplied in 500 mL of saline (CA; n = 8). Blood samples were taken at –7, 2, 5, 7, 14, and 21 d relative to parturition, then analyzed for metabolites related to energy metabolism, muscle mass catabolism, liver function, inflammation, and oxidative stress. CA infusion tended to improve milk performance; however, DMI was unaffected by treatment. At 2 d relative to parturition, CA cows had lower blood concentrations of haptoglobin, paraoxonase, FRAP, and NO2– than saline cows. After treatment infusions, haptoglobin remained lower in CA cows than saline at 5 d relative to parturition. Our results demonstrate that carnosic acid promoted positive responses on inflammation and oxidative stress biomarkers and may promote beneficial effects on lactation performance in peripartal dairy cows.
Collapse
|
13
|
Elolimy AA, Liang Y, Lopes MG, Loor JJ. Antioxidant networks and the microbiome as components of efficiency in dairy cattle. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Methionine and Arginine Supply Alters Abundance of Amino Acid, Insulin Signaling, and Glutathione Metabolism-Related Proteins in Bovine Subcutaneous Adipose Explants Challenged with N-Acetyl-d-sphingosine. Animals (Basel) 2021; 11:ani11072114. [PMID: 34359242 PMCID: PMC8300206 DOI: 10.3390/ani11072114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 01/03/2023] Open
Abstract
The objective was to perform a proof-of-principle study to evaluate the effects of methionine (Met) and arginine (Arg) supply on protein abundance of amino acid, insulin signaling, and glutathione metabolism-related proteins in subcutaneous adipose tissue (SAT) explants under ceramide (Ce) challenge. SAT from four lactating Holstein cows was incubated with one of the following media: ideal profile of amino acid as the control (IPAA; Lys:Met 2.9:1, Lys:Arg 2:1), increased Met (incMet; Lys:Met 2.5:1), increased Arg (incArg; Lys:Arg 1:1), or incMet plus incArg (Lys:Met 2.5:1 Lys:Arg 1:1) with or without 100 μM exogenous cell-permeable Ce (N-Acetyl-d-sphingosine). Ceramide stimulation downregulated the overall abundance of phosphorylated (p) protein kinase B (AKT), p-mechanistic target of rapamycin (mTOR), and p-eukaryotic elongation factor 2 (eEF2). Without Ce stimulation, increased Met, Arg, or Met + Arg resulted in lower p-mTOR. Compared with control SAT stimulated with Ce, increased Met, Arg, or Met + Arg resulted in greater activation of mTOR (p-mTOR/total mTOR) and AKT (p-AKT/total AKT), with a more pronounced response due to Arg. The greatest protein abundance of glutathione S-transferase Mu 1 (GSTM1) was detected in response to increased Met supply during Ce stimulation. Ceramide stimulation decreased the overall protein abundance of the Na-coupled neutral amino acid transporter SLC38A1 and branched-chain alpha-ketoacid dehydrogenase kinase (BCKDK). However, compared with controls, increased Met or Arg supply attenuated the downregulation of BCKDK induced by Ce. Circulating ceramides might affect amino acid, insulin signaling, and glutathione metabolism in dairy cow adipose tissue. Further in vivo studies are needed to confirm the role of rumen-protected amino acids in regulating bovine adipose function.
Collapse
|
15
|
Angeli E, Barcarolo D, Durante L, Santiago G, Matiller V, Rey F, Ortega HH, Hein GJ. Effect of precalving body condition score on insulin signaling and hepatic inflammatory state in grazing dairy cattle. Domest Anim Endocrinol 2021; 76:106621. [PMID: 33714908 DOI: 10.1016/j.domaniend.2021.106621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 12/16/2020] [Accepted: 02/09/2021] [Indexed: 02/08/2023]
Abstract
During postpartum, high-production dairy cows show a temporary period of insulin resistance, during which glucose uptake by peripheral tissues is reduced to prioritize milk production. However, this can further increase their negative energy balance by compromising liver function, especially in cows with excessive body condition score (BCS) and a pro-inflammatory state. Based on this, the aim of this study was to evaluate the hepatic expression of proteins of the insulin signaling pathway (PI3K) and of the cytokines TNFα, IL-6 and NF-κB, as well as the plasma concentrations of non-esterified fatty acids (NEFA), beta-hydroxybutyrate, glucose, triglycerides (TAG), insulin and insulin-like growth factor-1, insulin sensitivity indexes, and the hepatic content of TAG during the transition period in cows with different BCS. Sixteen Holstein cows were selected 14 days before the expecting calving date and classified into 2 groups: low BCS (LBCS) ≤ 3.25 (n = 9) and high BCS (HBCS) ≥ 3.5 (n = 7). Blood and liver samples were obtained 14 (±3) days before the expected calving date and 4 (±3), 14 (±3) and 28 (±3) days after calving. The concentration of NEFA was higher in the HBCS group than in the LBCS group. Glucose concentration showed an interaction effect, with a greater concentration on day 28 in HBCS. Insulin concentration showed no changes. While the pAkt/total Akt ratio was lower in the HBCS group, the TNFα protein expression was higher only on day 4 postcalving in the HBCS group. In agreement with these results, the insulin sensitivity indexes RQUICKI and RQUICKIBHBA were lower in the HCBS group. The results suggest an insulin resistance and a pro-inflammatory state in the liver of cows with HBCS.
Collapse
Affiliation(s)
- E Angeli
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - D Barcarolo
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina
| | - L Durante
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - G Santiago
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina
| | - V Matiller
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - F Rey
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - H H Ortega
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - G J Hein
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina; Centro Universitario Gálvez, Universidad Nacional del Litoral (UNL), Gálvez, Santa Fe, Argentina.
| |
Collapse
|
16
|
Surrogate Indexes of Insulin Resistance in Dairy Goats: Transitional Variation in Subclinical Hyperketonemia. Vet Sci 2021; 8:vetsci8060102. [PMID: 34204107 PMCID: PMC8227330 DOI: 10.3390/vetsci8060102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/30/2021] [Accepted: 06/03/2021] [Indexed: 01/29/2023] Open
Abstract
Background: Dairy goats are highly susceptible to subclinical hyperketonemia (SCHK) during the transition period. This study aimed to compare the variation in metabolic parameters and surrogate indexes of insulin resistance (sIR) between goats with SCHK and clinically healthy (HEAL) goats during the transition period. Methods: Twenty Guanzhong dairy goats were assorted to HEAL (n = 10) and SCHK (n = 10) groups according to the blood β-hydroxybutyrate (BHBA) concentrations. The blood samples were taken from the jugular vein of each goat at −3, −2, −1, 0 (partum), +1, +2, and +3 weeks relative to kidding to analyses GLU and INS. The sIR was calculated from blood metabolic parameters. Results: Compared with the HEAL goats, the insulin concentrations were significantly higher in SCHK goats during the first three weeks postpartum. The QUICKI, revised QUICKI (RQUICKI), and RQUICKIBHBA were significantly lower in goats with SCHK at 1 week postpartum, while the homeostasis model assessment-IR (HOMA-IR) was significantly higher. Conclusion: Goats with SCHK made more efforts through elevated insulin levels at early lactation than HEAL goats, thereby maintaining the normal glucose concentrations.
Collapse
|
17
|
Takahashi T, Mori A, Oda H, Murayama I, Kouno M, Sako T. Comparison of cholesterol levels among lipoprotein fractions separated by anion-exchange high-performance liquid chromatography in periparturient Holstein-Friesian dairy cows. J Vet Med Sci 2020; 83:260-266. [PMID: 33281143 PMCID: PMC7972898 DOI: 10.1292/jvms.20-0361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Changes in lipoprotein profiles occur in dairy cows during the periparturient period and
in cows with transition cow disease. Here, the lipoprotein profiles of Holstein–Friesian
dairy cows during the periparturient period were obtained by anion-exchange,
high-performance liquid chromatography to evaluate the usefulness of lipoprotein profile
evaluation during the periparturient period and in cows with fatty liver and milk fever.
Lipoprotein levels (including total and high- (HDL-C) and low-density lipoprotein (LDL-C)
cholesterol) in 10 healthy cows were low 4 weeks prepartum, with the lowest values at
calving or within 1 week of calving; the values increased at 8 weeks postpartum. The
lipoprotein levels were measured in 16 cows diagnosed with fatty liver (n=10) or milk
fever (n=6) and compared to 10 healthy dairy cows. A significant difference was observed
in HDL-C between healthy cows (at calving and 1 week postpartum), and the fatty liver and
milk fever cows. Cows with fatty liver and milk fever had a lower mean HDL-C than the 10
healthy dairy cows at calving and 1 week postpartum. HDL-C might be a good indicator of
energy balance for differentiating healthy cows from those with transition cow
disease.
Collapse
Affiliation(s)
- Tomoya Takahashi
- School of Veterinary Nursing & Technology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino, Tokyo 180-8602, Japan.,Kenhoku Veterinary Clinical Center, Miyagi Prefectural Agricultural Mutual Aid Association, 1-3-1 Nakae, Sanuma, Hasamacho, Tome, Miyagi 987-0511, Japan
| | - Akihiro Mori
- School of Veterinary Nursing & Technology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino, Tokyo 180-8602, Japan
| | - Hitomi Oda
- School of Veterinary Nursing & Technology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino, Tokyo 180-8602, Japan
| | - Isao Murayama
- Kennan Veterinary Clinical Center, Miyagi Prefectural Agricultural Mutual Aid Association, 10 Sakuraokamae, Hukuokahukaya, Shiroishi, Miyagi 989-0731, Japan
| | - Mitsuhiko Kouno
- Kennan Veterinary Clinical Center, Miyagi Prefectural Agricultural Mutual Aid Association, 10 Sakuraokamae, Hukuokahukaya, Shiroishi, Miyagi 989-0731, Japan
| | - Toshinori Sako
- Kenhoku Veterinary Clinical Center, Miyagi Prefectural Agricultural Mutual Aid Association, 1-3-1 Nakae, Sanuma, Hasamacho, Tome, Miyagi 987-0511, Japan
| |
Collapse
|
18
|
Wang H, Niu W, Wu F, Qiu X, Yu Z, He Y, Li H, Su H, Cao B. Effects of dietary energy on antioxidant capacity, glucose-lipid metabolism and meat fatty acid profile of Holstein bulls at different ages. J Anim Physiol Anim Nutr (Berl) 2020; 105:199-209. [PMID: 33006191 DOI: 10.1111/jpn.13457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/15/2020] [Accepted: 09/03/2020] [Indexed: 01/01/2023]
Abstract
This experiment was conducted to investigate the effects of dietary energy on antioxidant capacity, liver glucose-lipid-related gene expressions and meat fatty acid of Holstein bulls. Thirty-six Holstein bulls (age, 17.0 ± 0.49 months; body weight, 493.3 ± 39.7 kg) were randomly allocated to three dietary treatments. The metabolizable energy of diets was 10.12, 10.90 and 11.68 MJ/kg. Bulls in each dietary treatment were sampled at the age of 20, 23 or 26 months. Results showed that serum glutathione peroxidase and superoxide dismutase decreased with the increasing age. Dietary energy and age had interaction effects on the expressions of fatty acid synthase, peroxisome proliferator-activated receptor alpha, acyl coenzyme A oxidase 1 and carnitine palmitoyl-transferase 1 alpha. Besides, the increase of age and dietary energy increased the expression of liver phosphoenolpyruvate carboxykinase 1. The expressions of liver glucose-6-phosphatase, tumour necrosis factor alpha and sterol regulatory element binding protein 1 increased with the increasing age. The increase of age and dietary energy increased the proportions of C18:1cis-9, C18:2n-6trans and monounsaturated fatty acid. In summary, the increase of age and dietary energy enhanced the intensity of metabolic changes and inflammatory responses. Dietary energy and age affected the expressions of liver lipid metabolism-related genes, further affected meat fatty acid composition of Holstein bulls.
Collapse
Affiliation(s)
- Haibo Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, China
| | - Wenjing Niu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Fei Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xinjun Qiu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhantao Yu
- Department of Animal Science, University of Tennessee, Knoxville, TN, USA
| | - Yang He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hang Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Huawei Su
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Binghai Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
19
|
Ran M, Cha C, Xu Y, Zhang H, Yang Z, Li Z, Wang S. Traditional Chinese herbal medicine complex supplementation improves reproductive performance, serum biochemical parameters, and anti-oxidative capacity in periparturient dairy cows. Anim Biotechnol 2020; 33:647-656. [PMID: 32930627 DOI: 10.1080/10495398.2020.1819823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This study was conducted to investigate the effects of a traditional Chinese herbal medicine complex (TCHMC) on the productive performance of periparturient dairy cows. Eighteen non-lactating pregnant Holstein dairy cows with similar body conditions with 1 to 2 parity were randomly divided into three groups (n = 6), receiving a basal diet with 0 (CON group), 200 (T-200 group), and 300 (T-300 group) g TCHMC per day from 14 to 9 days prepartum. The results demonstrated that TCHMC treatments decreased the days of gestation, calving to first service, and calving to first visible estrus. Compared with CON at specific time points, TCHMC treatments increased the concentrations of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and estradiol (E2), whereas progesterone (P4) and E2 concentrations decreased. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and creatine kinase (CK) concentrations were downregulated, whereas that of globulin (GLB) and immunoglobulin G (IgG) were upregulated by TCHMC treatments around the time of calving. Compared with CON and T-200 treatments, the T-300 treatment increased the serum concentrations of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT) and total antioxidant capacity (T-AOC) and decreased the malondialdehyde (MDA) concentration from 7 d prepartum to 21 d postpartum when. In addition, although TCHMC treatment had no effect on average birth weight, heart rate, respiratory rate, and body temperature of calves, the T-300 treatment increased serum albumin (ALB) and IgG concentrations in calves from 3 to 14 days postpartum. The addition of TCHMC used in the present study could serve as a potential effective strategy to improve the health and productive performance of periparturient dairy cows, and the optimal dose should be set at 300 g per day.
Collapse
Affiliation(s)
- Maoliang Ran
- College of Veterinary Medicine and College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha, China
| | - Cheng Cha
- College of Veterinary Medicine and College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Youtao Xu
- College of Veterinary Medicine and College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Hongliang Zhang
- College of Veterinary Medicine and College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zecao Yang
- College of Veterinary Medicine and College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zhicai Li
- Hunan Deren Husbandry Company Ltd, Changsha, China
| | - Shuilian Wang
- College of Veterinary Medicine and College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Engineering Technology Research Center of Veterinary Drugs, Changsha, China
| |
Collapse
|
20
|
Habel J, Sundrum A. Mismatch of Glucose Allocation between Different Life Functions in the Transition Period of Dairy Cows. Animals (Basel) 2020; 10:E1028. [PMID: 32545739 PMCID: PMC7341265 DOI: 10.3390/ani10061028] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/04/2023] Open
Abstract
Immune cell functions such as phagocytosis and synthesis of immunometabolites, as well as immune cell survival, proliferation and differentiation, largely depend on an adequate availability of glucose by immune cells. During inflammation, the glucose demands of the immune system may increase to amounts similar to those required for high milk yields. Similar metabolic pathways are involved in the adaptation to both lactation and inflammation, including changes in the somatotropic axis and glucocorticoid response, as well as adipokine and cytokine release. They affect (i) cell growth, proliferation and activation, which determines the metabolic activity and thus the glucose demand of the respective cells; (ii) the overall availability of glucose through intake, mobilization and gluconeogenesis; and (iii) glucose uptake and utilization by different tissues. Metabolic adaptation to inflammation and milk synthesis is interconnected. An increased demand of one life function has an impact on the supply and utilization of glucose by competing life functions, including glucose receptor expression, blood flow and oxidation characteristics. In cows with high genetic merits for milk production, changes in the somatotropic axis affecting carbohydrate and lipid metabolism as well as immune functions are profound. The ability to cut down milk synthesis during periods when whole-body demand exceeds the supply is limited. Excessive mobilization and allocation of glucose to the mammary gland are likely to contribute considerably to peripartal immune dysfunction.
Collapse
Affiliation(s)
- Jonas Habel
- Department of Animal Nutrition and Animal Health, Faculty of Organic Agricultural Sciences, University of Kassel, Nordbahnhofstr. 1a, 37213 Witzenhausen, Germany;
| | | |
Collapse
|
21
|
Abuelo A. Symposium review: Late-gestation maternal factors affecting the health and development of dairy calves. J Dairy Sci 2020; 103:3882-3893. [PMID: 32037167 DOI: 10.3168/jds.2019-17278] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022]
Abstract
Efficient production of heifers is fundamental to the productivity and sustainability of dairy farms. However, high preweaning morbidity and mortality rates are frequently reported worldwide, imposing substantial welfare and economic implications. A major contributing factor to disease susceptibility in the neonatal stage is the inability of calves to mount an effective immune response. Appreciation is now greater that exposure in utero to several stresses (nutritional, social, metabolic, and so on) during the last stages of pregnancy have downstream carryover effects in calves' health, growth, and development. Suboptimal intrauterine conditions during critical periods of development lead to changes in tissue structure and function that may have long-term consequences on the offspring's physiology and disease susceptibility. Indeed, preweaning metabolic function and growth are associated with future milk production. Thus, late-gestation carryover effects span into the lactating stage of the heifers. Nevertheless, researchers have been studying how to minimize these effects. This review will discuss the effects of maternal stress during late gestation on the offspring's growth, productivity, metabolism, and health. In addition, strategies focusing on maternal interventions that improve neonatal health will be discussed. A better understanding of the intrauterine conditions affecting calf health and growth may facilitate the design of management practices that could improve neonatal development and future cow productivity.
Collapse
Affiliation(s)
- Angel Abuelo
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 736 Wilson Rd., East Lansing 48824.
| |
Collapse
|
22
|
Ma Y, Zhao L, Coleman D, Gao M, Loor J. Tea polyphenols protect bovine mammary epithelial cells from hydrogen peroxide-induced oxidative damage in vitro by activating NFE2L2/HMOX1 pathways. J Dairy Sci 2019; 102:1658-1670. [DOI: 10.3168/jds.2018-15047] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/25/2018] [Indexed: 12/31/2022]
|
23
|
Abuelo A, Hernández J, Benedito JL, Castillo C. Redox Biology in Transition Periods of Dairy Cattle: Role in the Health of Periparturient and Neonatal Animals. Antioxidants (Basel) 2019; 8:antiox8010020. [PMID: 30642108 PMCID: PMC6356809 DOI: 10.3390/antiox8010020] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 12/31/2018] [Accepted: 01/09/2019] [Indexed: 02/07/2023] Open
Abstract
Dairy cows undergo various transition periods throughout their productive life, which are associated with periods of increased metabolic and infectious disease susceptibility. Redox balance plays a key role in ensuring a satisfactory transition. Nevertheless, oxidative stress (OS), a consequence of redox imbalance, has been associated with an increased risk of disease in these animals. In the productive cycle of dairy cows, the periparturient and neonatal periods are times of increased OS and disease susceptibility. This article reviews the relationship of redox status and OS with diseases of cows and calves, and how supplementation with antioxidants can be used to prevent OS in these animals.
Collapse
Affiliation(s)
- Angel Abuelo
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA.
| | - Joaquín Hernández
- Departamento de Patoloxía Animal, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo 27002, Spain.
| | - José L Benedito
- Departamento de Patoloxía Animal, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo 27002, Spain.
| | - Cristina Castillo
- Departamento de Patoloxía Animal, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo 27002, Spain.
| |
Collapse
|
24
|
Gong J, Xiao M. Effect of Organic Selenium Supplementation on Selenium Status, Oxidative Stress, and Antioxidant Status in Selenium-Adequate Dairy Cows During the Periparturient Period. Biol Trace Elem Res 2018; 186:430-440. [PMID: 29594692 DOI: 10.1007/s12011-018-1323-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/22/2018] [Indexed: 10/17/2022]
Abstract
The periparturient period represents a stressful time for dairy cows as they transition from late gestation to early lactation. Oxidation stress occurs during this period owing to the increased metabolic activity. Antioxidants supplementation slightly above the suggested requirements may be beneficial in relieving this kind of stress. The objective of this study was to determine whether supplementing selenium (Se) yeast to diets with adequate Se concentrations affects Se status, oxidative stress, and antioxidant status in dairy cows during the periparturient period. Twenty multiparous Holstein cows were randomly divided into two groups with ten replicates in each group. During the last 4 weeks before calving, cows were fed Se-yeast at 0 (control) or 0.3 mg Se/kg dry matter (Se-yeast supplementation), in addition to Na selenite at 0.3 mg Se/kg dry matter in their rations. The concentrations of Se, reactive oxygen species (ROS), hydrogen peroxide (H2O2), hydroxyl radical, malonaldehyde (MDA), α-tocopherol and glutathione (GSH), the activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase (CAT), and the total antioxidant capacity (T-AOC) in plasma or erythrocyte of dairy cows were measured at 21 and 7 days prepartum, and at 7 and 21 days postpartum. Cows fed Se-yeast supplement during the last 4 weeks of gestation had higher plasma Se and lower MDA concentrations at 7 days prepartum, and at 7 and 21 days postpartum, and had higher whole blood Se and lower plasma ROS and H2O2 concentrations at 7 and 21 days postpartum compared with control cows. Se-yeast supplementation increased plasma and erythrocyte GSH-Px activities and erythrocyte GSH concentration at 7 days postpartum as compared to Se-adequate control cows. Compared with control cows, the enhanced SOD and CAT activities, increased α-tocopherol and GSH concentrations, and improved T-AOC in plasma at 7 and 21 days postpartum in Se-yeast-supplemented cows were also observed in this study. The results indicate that feeding Se-adequate cows a Se-yeast supplement during late gestation increases plasma Se status, improves antioxidant function, and relieves effectively oxidative stress occurred in early lactation.
Collapse
Affiliation(s)
- Jian Gong
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot, 010022, China.
| | - Min Xiao
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot, 010022, China
| |
Collapse
|
25
|
Safari M, Ghasemi E, Alikhani M, Ansari-Mahyari S. Supplementation effects of pomegranate by-products on oxidative status, metabolic profile, and performance in transition dairy cows. J Dairy Sci 2018; 101:11297-11309. [DOI: 10.3168/jds.2018-14506] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 06/12/2018] [Indexed: 01/01/2023]
|
26
|
The contribution of hormone sensitive lipase to adipose tissue lipolysis and its regulation by insulin in periparturient dairy cows. Sci Rep 2018; 8:13378. [PMID: 30190510 PMCID: PMC6127149 DOI: 10.1038/s41598-018-31582-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/22/2018] [Indexed: 01/26/2023] Open
Abstract
Hormone sensitive lipase (HSL) activation is part of the metabolic adaptations to the negative energy balance common to the mammalian periparturient period. This study determined HSL contribution to adipose tissue (AT) lipolysis and how insulin regulates its activity in periparturient dairy cows. Subcutaneous AT (SCAT) samples were collected at 11 d prepartum (dry) and 11 (fresh) and 24 d (lactation) postpartum. Basal and stimulated lipolysis (ISO) responses were determined using explant cultures. HSL contribution to lipolysis was assessed using an HSL inhibitor (CAY). Basal lipolysis was higher in SCAT at dry compared with fresh. CAY inhibited basal lipolysis negligibly at dry, but at fresh and lactation it reduced basal lipolysis by 36.1 ± 4.51% and 43.1 ± 4.83%, respectively. Insulin inhibited lipolysis more pronouncedly in dry compared to fresh. Results demonstrate that HSL contribution to basal lipolysis is negligible prepartum. However, HSL is a major driver of SCAT lipolytic responses postpartum. Lower basal lipolysis postpartum suggests that reduced lipogenesis is an important contributor to fatty acid release from SCAT. Loss of adipocyte sensitivity to the antilipolytic action of insulin develops in the early lactation period and supports a state of insulin resistance in AT of cows during the first month postpartum.
Collapse
|
27
|
Weikard R, Kuehn C. Different mitochondrial DNA copy number in liver and mammary gland of lactating cows with divergent genetic background for milk production. Mol Biol Rep 2018; 45:1209-1218. [PMID: 30051250 DOI: 10.1007/s11033-018-4273-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/18/2018] [Indexed: 01/05/2023]
Abstract
Adequate metabolic adaptation of key tissues playing an essential role for bioenergetic homeostasis and lactogenesis is critical in cows to adapt to changes in energy requirements and physiological processes during the lactation period. Mitochondria are recognized as central to meet energy needs and maintaining of metabolic homeostasis because mitochondrial DNA (mtDNA) is template for several polypeptides of the respiratory chain complexes essential for ATP generation. The quantity of mtDNA in a cell has been widely used as a surrogate marker for the capacity of cells for energy generation. In our study we analyzed the mtDNA copy number and the mRNA expression of important nuclear encoded genes controlling mitochondrial biogenesis in liver and mammary gland. We compared cows with a nuclear genome dairy × beef crossbred make-up to purebred German Holstein dairy cows. The study revealed tissue-specific variations of mtDNA copy number and expression levels of nuclear genes involved in mitochondrial biogenesis when comparing lactating cows with different genetic predisposition regarding milk performance. This may reflect nuclear genome-determined genetic differences between the cow groups in coping with metabolic demands and physiological changes during lactation. The results indicate that mitochondrial biogenesis processes in the liver and mammary gland appear to be impaired in high lactating dairy cows, which consequently, would point to a disturbed energy adaptation. The results provide a basis to further elucidate the adaptive and regulatory modulation of the mitochondrial biogenesis in response to lactation-associated metabolic challenges in lactating cows.
Collapse
Affiliation(s)
- Rosemarie Weikard
- Institute Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Christa Kuehn
- Institute Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany.
| |
Collapse
|
28
|
Organic Feed: A Bottleneck for the Development of the Livestock Sector and Its Transition to Sustainability? SUSTAINABILITY 2018. [DOI: 10.3390/su10072393] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
29
|
Chronic Effects of Fusarium Mycotoxins in Rations with or without Increased Concentrate Proportion on the Insulin Sensitivity in Lactating Dairy Cows. Toxins (Basel) 2018; 10:toxins10050188. [PMID: 29738450 PMCID: PMC5983244 DOI: 10.3390/toxins10050188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/24/2018] [Accepted: 05/02/2018] [Indexed: 12/27/2022] Open
Abstract
The objective of this study was to investigate the effect of long-term exposure to a Fusarium toxin deoxynivalenol (DON, 5 mg/kg DM) on the energy metabolism in lactating cows fed diets with different amounts of concentrate. In Period 1 27 German Holstein cows were assigned to two groups and fed a control or mycotoxin-contaminated diet with 50% concentrate for 11 weeks. In Period 2 each group was further divided and fed either a diet containing 30% or 60% concentrate for 16 weeks. Blood samples were collected in week 0, 4, 8, 15, 21, and 27 for calculation of the Revised Quantitative Insulin Sensitivity Check Index and biopsy samples of skeletal muscle and the liver in w 0, 15, and 27 for analysis by real-time RT-qPCR. The DON-fed groups presented lower insulin sensitivities than controls at week 27. Concomitantly, muscular mRNA expression of insulin receptors and hepatic mRNA expression of glucose transporter 2 and key enzymes for gluconeogenesis and fatty acid metabolism were lower in DON-fed cows compared to the control. The study revealed no consistent evidence that DON effects were modified by dietary concentrate levels. In conclusion, long-term dietary DON intake appears to have mild effects on energy metabolism in lactating dairy cows.
Collapse
|
30
|
Youssef MA, El-Ashker MR, Younis MS. Effect of prepartum supplementation with niacin, choline and cod liver oil on postpartum insulin sensitivity and the redox status in cows with subclinical ketosis. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an16842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
There have been limited field trials exploring the potential ameliorative effect of B-complex vitamin or antioxidant therapy in cows with prolonged insulin resistance (IR). The purpose of this study was to explore the effect of prepartum supplementation of niacin, choline and cod liver oil on metabolic status, indices of insulin sensitivity (IS) as well as markers of oxidative stress in cows with subclinical ketosis (SCK). For this purpose, 24 apparently healthy cows at ~3 weeks before the expected time of calving were studied. Based on their serum concentration of non-esterified fatty acid (NEFA) and β-hydroxybutyrate (BHBA), the studied cows were classified as having SCK (n = 20) or normal (n = 4). The diseased cows were then randomly allocated into four equal-sized groups and received the following feed supplements for subsequent 6 weeks: rumen-protected niacin, (RPN – group; n = 5); rumen-protected choline (RPC – group; n = 5); and cod liver oil (CLO-group; n = 5); or remained without treatment (SCK – group; n = 5). Serum samples were collected from all animals (n = 24) in two occasions i.e. before and after treatment to quantify concentrations of BHBA, NEFA, glucose, insulin, cortisol, and triglyceride, malondialdehyde and superoxide dismutase. Indices of IS were also calculated. The findings of this study suggest benefits of prepartum supplementation to cattle with SCK, particularly RPC which demonstrated great effect on BHBA, triglyceride, and very low-density lipoprotein; but it showed a minimal effect on IS. On the other side, RPN and CLO exhibited a marked effect on serum cortisol and potentiated IS with minimal effect on BHBA. All dietary supplements had nearly equal effect on NEFA, glucose, insulin, and markers of oxidative stress. The information provided in this study could support the advancement of the future investigations in animal welfare and production.
Collapse
|
31
|
Alves-Nores V, Castillo C, Hernandez J, Abuelo A. Comparison of surrogate indices for insulin sensitivity with parameters of the intravenous glucose tolerance test in early lactation dairy cattle. Domest Anim Endocrinol 2017; 61:48-53. [PMID: 28689101 DOI: 10.1016/j.domaniend.2017.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/05/2017] [Accepted: 06/07/2017] [Indexed: 11/27/2022]
Abstract
The aim of this study was to investigate the correlation between different surrogate indices and parameters of the intravenous glucose tolerance test (IVGTT) in dairy cows at the start of their lactation. Ten dairy cows underwent IVGTT on Days 3 to 7 after calving. Areas under the curve during the 90 min after infusion, peak and nadir concentrations, elimination rates, and times to reach half-maximal and basal concentrations for glucose, insulin, nonesterified fatty acids, and β-hydroxybutyrate were calculated. Surrogate indices were computed using the average of the IVGTT basal samples, and their correlation with the IVGTT parameters studied through the Spearman's rank test. No statistically significant or strong correlation coefficients (P > 0.05; |ρ| < 0.50) were observed between the insulin sensitivity measures derived from the IVGTT and any of the surrogate indices. Therefore, these results support that the assessment of insulin sensitivity in early lactation cattle cannot rely on the calculation of surrogate indices in just a blood sample, and the more laborious tests (ie, hyperinsulinemic euglycemic clamp test or IVGTT) should be employed to predict the sensitivity of the peripheral tissues to insulin accurately.
Collapse
Affiliation(s)
- V Alves-Nores
- Department of Animal Pathology, Faculty of Veterinary Science, Universidade de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain; Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), Albert Pugsley Place, Wagga Wagga, NSW 2650, Australia
| | - C Castillo
- Department of Animal Pathology, Faculty of Veterinary Science, Universidade de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain
| | - J Hernandez
- Department of Animal Pathology, Faculty of Veterinary Science, Universidade de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain
| | - A Abuelo
- Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), Albert Pugsley Place, Wagga Wagga, NSW 2650, Australia; School of Animal and Veterinary Sciences, Faculty of Science, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW 2678, Australia.
| |
Collapse
|
32
|
Yadav BK, Singh SK, Nakade UP, Singh VK, Sharma A, Srivastava M, Yadav B, Singh Y, Sirohi R, Garg SK. Ameliorative Potential of Prepartal Trace Mineral and Vitamin Supplementation on Parturition-Induced Redox Balance and Myeloperoxidase Activity of Periparturient Sahiwal Cows. Biol Trace Elem Res 2017; 177:72-79. [PMID: 27752919 DOI: 10.1007/s12011-016-0864-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/04/2016] [Indexed: 02/07/2023]
Abstract
Twelve apparently healthy multiparous parturient Sahiwal cows were allocated into two groups having six cows in each one. Six cows were supplemented with antioxidant mixture (mixture containing Cu, Mn, Cr, Zn, and vitamins A and D3) daily from 21 days before parturition till the day relative to calving. Whereas, remaining non-supplemented six cows were kept as the control group. Blood samples were obtained five times: at enrolment (21 days pre-partum), and again at days 0, +7, +14, and +21 relative to calving. In the non-supplemented control group, serum total antioxidant capacity (TAC) was significantly lower at days 0, +7, and +14 as compared to their own day -21 values. Likewise, significantly lower myeloperoxidase (MPO) activities were also exhibited by these cows at days 0 and +7. Conversely, serum malondialdehyde (MDA) and protein carbonyl (PC) levels were significantly higher in these cows at days 0, +7, +14, and +21. However, significant alterations in TAC content among the studied sampling days were not recorded in antioxidants supplemented group. Moreover, TAC content and MPO activities of supplemented group were significantly higher at days 0, +7, and +14 when compared with that of the non-supplemented control group. However, MDA and PC contents of supplemented group were significantly lower at days 0, +7, +14, and +21 as compared to that of the non-supplemented control group. In conclusion, periparturient Sahiwal cows experience substantial oxidative and immunological dents which can be potentially ameliorated by prepartal trace mineral and vitamin supplementation.
Collapse
Affiliation(s)
- Brajesh K Yadav
- Department of Veterinary Medicine, College of Veterinary Science and Animal Husbandry, DUVASU, Mathura, U.P, 281 001, India
| | - Shanker K Singh
- Department of Veterinary Medicine, College of Veterinary Science and Animal Husbandry, DUVASU, Mathura, U.P, 281 001, India.
| | - Udayraj P Nakade
- Department of Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, DUVASU, Mathura, U.P, 281 001, India
| | - Vivek K Singh
- Department of Veterinary Medicine, College of Veterinary Science and Animal Husbandry, DUVASU, Mathura, U.P, 281 001, India
| | - Abhishek Sharma
- Department of Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, DUVASU, Mathura, U.P, 281 001, India
| | - Mukesh Srivastava
- Department of Veterinary Medicine, College of Veterinary Science and Animal Husbandry, DUVASU, Mathura, U.P, 281 001, India
| | - Brijesh Yadav
- Departmet of Physiology, College of Veterinary Science and Animal Husbandry, DUVASU, Mathura, U.P, 281 001, India
| | - Yajuvendra Singh
- Department of Livestock Production and Management, College of Veterinary Science and Animal Husbandry, DUVASU, Mathura, U.P, 281 001, India
| | - Rajneesh Sirohi
- Department of Livestock Production and Management, College of Veterinary Science and Animal Husbandry, DUVASU, Mathura, U.P, 281 001, India
| | - Satish K Garg
- Department of Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, DUVASU, Mathura, U.P, 281 001, India
| |
Collapse
|
33
|
Pantelić M, Jovanović LJ, Prodanović R, Vujanac I, Đurić M, Ćulafić T, Vranješ-Đurić S, Korićanac G, Kirovski D. The impact of the chromium supplementation on insulin signalling pathway in different tissues and milk yield in dairy cows. J Anim Physiol Anim Nutr (Berl) 2017; 102:41-55. [DOI: 10.1111/jpn.12655] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/07/2016] [Indexed: 12/15/2022]
Affiliation(s)
- M. Pantelić
- Laboratory for Molecular Biology and Endocrinology; Vinča Institute of Nuclear Sciences; University of Belgrade; Belgrade Serbia
| | - L. J. Jovanović
- Department for Physiology and Biochemistry; Faculty of Veterinary Medicine; University of Belgrade; Belgrade Serbia
| | - R. Prodanović
- Department for Ruminants and Swine Diseases; Faculty of Veterinary Medicine; University of Belgrade; Belgrade Serbia
| | - I. Vujanac
- Department for Ruminants and Swine Diseases; Faculty of Veterinary Medicine; University of Belgrade; Belgrade Serbia
| | - M. Đurić
- Department for Reproduction, Fertility and Artificial Insemination; Faculty of Veterinary Medicine; University of Belgrade; Belgrade Serbia
| | - T. Ćulafić
- Laboratory for Molecular Biology and Endocrinology; Vinča Institute of Nuclear Sciences; University of Belgrade; Belgrade Serbia
| | - S. Vranješ-Đurić
- Laboratory for Radioisotopes; Vinča Institute of Nuclear Sciences; University of Belgrade; Belgrade Serbia
| | - G. Korićanac
- Laboratory for Molecular Biology and Endocrinology; Vinča Institute of Nuclear Sciences; University of Belgrade; Belgrade Serbia
| | - D. Kirovski
- Department for Physiology and Biochemistry; Faculty of Veterinary Medicine; University of Belgrade; Belgrade Serbia
| |
Collapse
|
34
|
Significance of insulin resistance and oxidative stress in dairy cattle with subclinical ketosis during the transition period. Trop Anim Health Prod 2016; 49:239-244. [PMID: 27975191 DOI: 10.1007/s11250-016-1211-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/08/2016] [Indexed: 10/20/2022]
Abstract
Health problems occurring during the transition period in dairy cattle are of utmost importance as they can decrease the animal's reproductive performance and favor the development of various metabolic diseases with resultant significant reproductive disorders. Among the commonly reported metabolic diseases occurring during that time, hyperketonemia is the most prevalent and could provoke a significant economic impact. The failing of a dairy cow to transit optimally between pregnancy and lactation is economically very relevant and should be considered. Until now, the role of insulin resistance (IR) in the etiology of subclinical ketosis (SCK) in dairy cattle is not clearly understood. This review aims to shed some light on the role of IR and oxidative stress in dairy cows with SCK during the transition period. The data presented in this review demonstrates that dairy cows could be vulnerable to the development of negative energy balance during transition. Moreover, the transitional cows could succumb to both IR and oxidative stress; however, the exact role of IR in cows with SCK needs further investigations. It is imperative to elaborate a suitable nutritional strategy to facilitate an easy transit of cows through this critical period and to minimize health problems and improve productivity during lactation.
Collapse
|
35
|
Abuelo A, Hernandez J, Alves-Nores V, Benedito JL, Castillo C. Association of Serum Concentration of Different Trace Elements with Biomarkers of Systemic Oxidant Status in Dairy Cattle. Biol Trace Elem Res 2016; 174:319-324. [PMID: 27113768 DOI: 10.1007/s12011-016-0713-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/18/2016] [Indexed: 10/21/2022]
Abstract
There has been some recent criticism about the reliability of the assays commonly used to measure oxidant status in cattle, because some recent publications suggested that the concentration of different trace elements influences the results of these assays. The aim of this study was to test the correlation in 502 bovine serum samples between the concentration of several trace elements (Br, Co, Cr, Cu, Fe, I, Mn, Mo, Ni, Se, Sr, V and Zn) and markers of oxidant status (reactive oxygen species (ROS) and total serum antioxidant capacity (SAC)). The Oxidative Stress index (OSi) was also calculated as ROS/SAC. Some significant correlations were found, although weak (|ρ| < 0.50). Therefore, the relationships observed might be attributed to the different pro- and antioxidant effect of the different elements rather than to the assays detecting these elements instead of the oxidised molecules or total antioxidant potential, respectively. The OSi was poorly correlated (|ρ| ≤ 0.36) with the concentration of the studied trace elements, and therefore, its use is recommended to assess shifts in the systemic redox balance.
Collapse
Affiliation(s)
- Angel Abuelo
- Graham Centre for Agricultural Innovation, School of Animal and Veterinary Sciences, Charles Sturt University and NSW Department of Primary Industries, Wagga Wagga, NSW, 2678, Australia.
- Departamento de Patología Animal, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002, Lugo, Spain.
| | - Joaquín Hernandez
- Departamento de Patología Animal, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Víctor Alves-Nores
- Graham Centre for Agricultural Innovation, School of Animal and Veterinary Sciences, Charles Sturt University and NSW Department of Primary Industries, Wagga Wagga, NSW, 2678, Australia
- Departamento de Patología Animal, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - José L Benedito
- Departamento de Patología Animal, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Cristina Castillo
- Departamento de Patología Animal, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| |
Collapse
|
36
|
The effect of subclinical ketosis on indices of insulin sensitivity and selected metabolic variables in transition dairy cattle. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s00580-016-2377-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
37
|
Abuelo A, Alves-Nores V, Hernandez J, Muiño R, Benedito JL, Castillo C. Effect of Parenteral Antioxidant Supplementation During the Dry Period on Postpartum Glucose Tolerance in Dairy Cows. J Vet Intern Med 2016; 30:892-8. [PMID: 26971714 PMCID: PMC4913581 DOI: 10.1111/jvim.13922] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/10/2016] [Accepted: 02/18/2016] [Indexed: 12/20/2022] Open
Abstract
Background Exacerbated postparturient insulin resistance (IR) has been associated with several pathologic conditions in dairy cattle. Oxidative stress (OS) plays a causative role in IR in humans, and an association, but not direct relationship, between OS and IR recently has been reported in transition dairy cattle. Hypothesis Supplementation with antioxidants shortly before calving improves glucose tolerance after parturition in dairy cattle. Animals Ten late‐pregnant Holstein cows entering their 2nd to 5th lactation. Methods Randomized placebo‐controlled trial: 15 ± 2 days before expected calving, the treatment group received an injection of DL‐alpha‐tocopheryl acetate at a dosage of 6 mg/kg body weight (BW) and 0.06 mg/kg BW of sodium selenite, and the control group was injected with isotonic saline. During the first week after calving, both groups underwent glucose tolerance testing (0.25 g glucose/kg BW). Commercial assays were used to quantify the concentrations of glucose, insulin, nonesterified fatty acids (NEFA), beta‐hydroxybutyrate, and markers of redox status in blood. Data were analyzed using the Mann–Whitney U‐test (α = 0.05). Results Supplemented cows showed a lower risk for OS, as reflected by a lower OS index (P = .036), different areas under the curve for the concentrations of glucose (P < .01), insulin (P = .043), and NEFA (P = .041), more rapid elimination rates (P = .080, <.01 and .047 respectively), and shorter half‐lives (P = .040, <.01 and .032) of these metabolites. Conclusions and Clinical Importance Supplementation with antioxidants before calving resulted in greater insulin sensitivity after calving, thereby suggesting the role of OS in the development of IR in cattle and the potential benefits of antioxidant supplementation in minimizing the consequences of negative energy balance.
Collapse
Affiliation(s)
- A Abuelo
- Department of Animal Pathology, College of Veterinary Medicine, Universidade de Santiago de Compostela, Lugo, Spain.,Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), School of Animal and Veterinary Sciences, Wagga Wagga, NSW, Australia
| | - V Alves-Nores
- Department of Animal Pathology, College of Veterinary Medicine, Universidade de Santiago de Compostela, Lugo, Spain.,Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), School of Animal and Veterinary Sciences, Wagga Wagga, NSW, Australia
| | - J Hernandez
- Department of Animal Pathology, College of Veterinary Medicine, Universidade de Santiago de Compostela, Lugo, Spain
| | - R Muiño
- Centro Veterinario de Meira, Meira, Spain
| | - J L Benedito
- Department of Animal Pathology, College of Veterinary Medicine, Universidade de Santiago de Compostela, Lugo, Spain
| | - C Castillo
- Department of Animal Pathology, College of Veterinary Medicine, Universidade de Santiago de Compostela, Lugo, Spain
| |
Collapse
|