1
|
Zhi K, Gong F, Chen L, Li Z, Li X, Mei H, Fu C, Zhao Y, Liu Z, He J. Effects of Sea-Buckthorn Flavonoids on Growth Performance, Serum Inflammation, Intestinal Barrier and Microbiota in LPS-Challenged Broilers. Animals (Basel) 2024; 14:2073. [PMID: 39061535 PMCID: PMC11274335 DOI: 10.3390/ani14142073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
The experiment investigated the effects of sea-buckthorn flavonoids (SF) on lipopolysaccharide (LPS)-challenged broilers. A total of 288 one-day-old male broilers were randomly assigned to 4 groups, with 6 replicates of 12 broilers each. The experiment lasted for 20 days. The diet included two levels of SF (0 or 1000 mg/kg) and broilers intraperitoneally injected with 500 μg/kg LPS on 16, 18, and 20 days, or an equal amount of saline. LPS challenge decreased final body weight, average daily gain, and average daily feed intake, increased feed-to-gain ratio, and elevated serum IL-1β, IL-2, TNF-α, D-LA, and endotoxin levels. Moreover, it resulted in a reduction in the IL-10 level. LPS impaired the intestinal morphology of the duodenum, jejunum, and ileum, down-regulated the mRNA relative expression of Occludin, ZO-1, and MUC-2 in the jejunum mucosa, up-regulated the mRNA relative expression of TLR4, MyD88, NF-κB, and IL-1β, and increased the relative abundance of Erysipelatoclostridium in broilers (p < 0.05). However, SF supplementation mitigated the decrease in growth performance, reduced serum IL-1β, IL-2, and D-LA levels, increased IL-10 levels, alleviated intestinal morphological damage, up-regulated mRNA expression of Occludin and ZO-1, down-regulated the mRNA expression of TLR4, NF-κB, and IL-lβ in jejunum mucosal (p < 0.05), and SF supplementation presented a tendency to decrease the relative abundance of proteobacteria (0.05 < p < 0.1). Collectively, incorporating SF can enhance the growth performance, alleviate serum inflammation, and improve the intestinal health of broilers, effectively mitigating the damage triggered by LPS-challenges.
Collapse
Affiliation(s)
- Kexin Zhi
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (K.Z.); (F.G.); (L.C.); (Z.L.); (X.L.); (H.M.); (C.F.); (Y.Z.)
| | - Fanwen Gong
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (K.Z.); (F.G.); (L.C.); (Z.L.); (X.L.); (H.M.); (C.F.); (Y.Z.)
| | - Lele Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (K.Z.); (F.G.); (L.C.); (Z.L.); (X.L.); (H.M.); (C.F.); (Y.Z.)
| | - Zezheng Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (K.Z.); (F.G.); (L.C.); (Z.L.); (X.L.); (H.M.); (C.F.); (Y.Z.)
| | - Xiang Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (K.Z.); (F.G.); (L.C.); (Z.L.); (X.L.); (H.M.); (C.F.); (Y.Z.)
| | - Huadi Mei
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (K.Z.); (F.G.); (L.C.); (Z.L.); (X.L.); (H.M.); (C.F.); (Y.Z.)
| | - Chenxing Fu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (K.Z.); (F.G.); (L.C.); (Z.L.); (X.L.); (H.M.); (C.F.); (Y.Z.)
| | - Yurong Zhao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (K.Z.); (F.G.); (L.C.); (Z.L.); (X.L.); (H.M.); (C.F.); (Y.Z.)
| | - Zhuying Liu
- College of Animal Science and Technology, Hunan Biological and Electromechanical Polytechnic, Changsha 410128, China
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (K.Z.); (F.G.); (L.C.); (Z.L.); (X.L.); (H.M.); (C.F.); (Y.Z.)
| |
Collapse
|
2
|
Hu W, Du L, Shao J, Qu Y, Zhang L, Zhang D, Cao L, Chen H, Bi S. Molecular and metabolic responses to immune stress in the jejunum of broiler chickens: transcriptomic and metabolomic analysis. Poult Sci 2024; 103:103621. [PMID: 38507829 PMCID: PMC10966091 DOI: 10.1016/j.psj.2024.103621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/17/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024] Open
Abstract
In the large poultry industry, where farmed chickens are fed at high density, the prevalence of pathogens and repeated vaccinations induce immune stress, which can significantly decrease the production performance and increase the mortality. This study was designed to shed light on the molecular mechanisms and metabolic pathways involved in immune stress through an in-depth analysis of transcriptomic and metabolomic changes in jejunum samples from the broilers. Two groups were established for the experiment: a control group and an LPS group. LPS group received an intraperitoneal injection of LPS solution at a dose of 250 μg per kg at 12, 14, 33, and 35 d of age, whereas the control group received a sterile saline injection. The severity of immune stress was assessed using the Disease Activity Index. A jejunal section was collected to measure the intestinal villus structure (villus length and crypt depth). RNA sequencing and metabolomics data analysis were conducted to reveal differentially expressed genes and metabolites. The results showed that the DAI index was increased and jejunal villus height/crypt depth was decreased in the LPS group. A total of 96 differentially expressed genes and 672 differentially accumulating metabolites were detected in the jejunum by LPS group compared to the control group. The comprehensive analysis of metabolomic and transcriptomic data showed that 23 pathways were enriched in the jejunum and that appetite, nutrient absorption, energy and substance metabolism disorders and ferroptosis play an important role in immune stress in broilers. Our findings provide a deeper understanding of the molecular and metabolic responses in broilers to LPS-induced immune stress, suggesting potential targets for therapeutic strategies to improve the production performance of broiler chickens.
Collapse
Affiliation(s)
- Weidong Hu
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Lin Du
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Jianjian Shao
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Yiwen Qu
- Bureau of Agricultural and Rural of Guanghan City, Guanghan, Sichuan, 618399, P. R. China
| | - Li Zhang
- Hanzhong Animal Disease Prevention and Control Center, Hanzhong, Shanxi, 723099, P. R. China
| | - Dezhi Zhang
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Liting Cao
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Hongwei Chen
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Shicheng Bi
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China; Institute of Traditional Chinese Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China.
| |
Collapse
|
3
|
Yang Y, Cao Y, Zhang J, Fan L, Huang Y, Tan TC, Ho LH. Artemisia argyi extract exerts antioxidant properties and extends the lifespan of Drosophila melanogaster. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3926-3935. [PMID: 38252625 DOI: 10.1002/jsfa.13273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/18/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024]
Abstract
BACKGROUND Chinese mugwort (Artemisia argyi) possesses extensive pharmacological activities associated with anti-tumour, antioxidative and anti-inflammatory effects. The present study aimed to investigate the antioxidant and anti-ageing effects of A. argyi extract (AAE) on the fruit fly (Drosophila melanogaster) ageing model by detecting antioxidant enzyme activities and the mRNA level of antioxidant genes. RESULTS AAE could significantly lengthen the mean lifespan, 50% survival days, and maximum lifespan of D. melanogaster, especially when the amount of AAE added reached 6.68 mg mL-1, the mean lifespan of both female and male flies increased by 23.74% and 22.30%, respectively, indicating the effective life extension effect of AAE. At the same time, AAE could improve the climbing ability and tolerance to hydrogen peroxide in D. melanogaster. In addition, the addition of AAE effectively increased the activities of copper-zinc-containing superoxide dismutase, manganese-containing superoxide dismutase and catalase in D. melanogaster and reduced the contents of malondialdehyde. Moreover, when reared with diets containing AAE, the expression of antioxidant-related genes SOD1, SOD2 and CAT was up-regulated in D. melanogaster and down-regulated for MTH genes. CONCLUSION The study indicates that AAE effectively enhances the antioxidant capacity of D. melanogaster and has potential applications as an antioxidant and anti-ageing agent in the nutraceutical industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuhua Yang
- College of Tea and Food Science, Wuyi University, Wuyishan, China
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Yuping Cao
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Jianming Zhang
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Li Fan
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Yan Huang
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Thuan-Chew Tan
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
- Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Lee-Hoon Ho
- Department of Food Industry, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut, Malaysia
| |
Collapse
|
4
|
Wang Q, Wang L, Li L, Sun M, Li P, Yu Y, Zhang Y, Xu Z, Gao P, Ma J, Liu X. Effects of dietary supplementation of fermented Artemisia argyi on growth performance, slaughter performance, and meat quality in broilers. Poult Sci 2024; 103:103545. [PMID: 38387294 PMCID: PMC10899031 DOI: 10.1016/j.psj.2024.103545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/28/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Artemisia argyi (AA) is promising as a potential feed additive. Microbial fermentation is beneficial to the degradation of cell walls and the better release of bioactive compounds of AA. However, there are few reports on the application of fermented AA as a feed additive for broilers. The present study intended to evaluate the application value of fermented AA as a feed additive for broilers by examining the effects of the dietary supplementation of Aspergillus niger-fermented AA and unfermented AA on growth performance, slaughter performance, and meat quality of brokers. A total of 360 newly hatched (1-day-old) broilers with similar body weight were randomly divided into the following 5 groups: basal diet group as control (C) group, basal diet +3% unfermented AA (E1) group, basal diet + 1% fermented AA (E2) group, basal diet + 3% fermented AA (E3) group, basal diet + 5% fermented AA (E4) group. Each group included 6 replicates with 12 broilers per replicate, and the feeding trail lasted for 48 d. Body weight and feed intake were recorded every 2 wk, and the feed gain ratio was calculated to assess growth performance. At 42 d, 6 broilers from each group were slaughtered, and the carcass traits were calculated. The results showed that compared with the control group, Aspergillus Niger could effectively destroy AA fiber, which contributed to better release of AA bioactive compounds. Moreover, dietary supplementation with AA could improve the growth performance of broilers (P < 0.05), and the effect of fermented AA was better than unfermented AA, especially 3% fermented AA. From 28 to 42 d, compared with the control group, the average daily gain of broilers in the group supplementation with 3% fermented AA was significantly increased (P < 0.05), and the feed-to-gain ratio was decreased (P < 0.05). At 42 d, the dressing percentage, half-eviscerated carcass percentage, eviscerated carcass percentage, and breast muscle percentage of broilers in the groups of 1, 3, and 5% fermented AA diets were significantly improved (P < 0.05), and the thigh muscle percentage of broilers in the group with 3% fermented AA diets was significantly improved (P < 0.05). Meanwhile, the meat quality of broilers in the group with fermented AA diets was also significantly improved. Birds in AA groups had higher a* value and lower shear force of breast muscle, especially the group supplementation with 3% fermented AA (P < 0.05). In conclusion, fermented AA has good application value as a potential feed additive for broilers, dietary supplementation of fermented AA can improve the production performance and meat quality of broiler chickens, of which 3% fermented AA is more effective.
Collapse
Affiliation(s)
- Qiuxia Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Li Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Lingwei Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Mengqiao Sun
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Peng Li
- College of Life Science, Xinxiang University, Xinxiang 453003, Henan, China
| | - Yan Yu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Yanhong Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Zhiyong Xu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Pei Gao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Jinyou Ma
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Xingyou Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China; College of Life Science, Xinxiang University, Xinxiang 453003, Henan, China.
| |
Collapse
|
5
|
El-Demerdash AS, Mohamady SN, Megahed HM, Ali NM. Evaluation of gene expression related to immunity, apoptosis, and gut integrity that underlies Artemisia's therapeutic effects in necrotic enteritis-challenged broilers. 3 Biotech 2023; 13:181. [PMID: 37193331 PMCID: PMC10182211 DOI: 10.1007/s13205-023-03560-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/15/2023] [Indexed: 05/18/2023] Open
Abstract
The experiment was designed to validate the effect of Artemisia annua and its novel commercial product (Navy Cox) on the control of necrotic enteritis (NE). A total of one hundred forty broiler chicks were randomly distributed into seven equal groups: G1, control negative; G2, infected with Eimeria (day 15) and C. perfringens (day 19); G3, treated with Navy Cox before challenge; G4, treated with Artemisia before challenge; G5, infected and then treated with Navy Cox; G6, infected and then treated with Artemisia; and G7, infected and treated with amoxicillin. Chicken response and immune organ indicants were recorded during the observation period (4 weeks). Whole blood and serum samples were collected for immunological evaluation, and tissue samples were collected for bacterial counts and estimation of mRNA expression of genes encoding apoptosis, tight junctions, and immunity. Chickens in the infected group revealed a significant decrease in RBCS, HB, PCV% total protein, Lysozyme, and nitric oxide activity in addition to leukocytosis, heterophilia, monocytosis, increase in cortisol, interleukins, and malondialdehyde. Treated groups displayed lower lesions, colony-forming units, and no mortality. Concurrently, a complete blood profile, antioxidants, and immune markers showed significant improvements. The mRNA expression levels of CASP, CLDN-1, OCLN, TJPI, MUC2, and cell-mediated immune response genes (p < 0.0001) were significantly alleviated in the treated groups compared with the challenged counterpart. This is the first-ever report on the efficacy valuation of Navy Cox compared to standard antibiotic treatment of clostridial NE. Navy Cox proved remarkable capability to minimize C. perfringens colonization in broiler intestines, modulation of mucus production, gut health integrity, immune organs, and immune response when used as a prophylactic agent in this form or naturally as Artemisia.
Collapse
Affiliation(s)
- Azza S. El-Demerdash
- Microbiology Department, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Zagazig, Egypt
| | - Sahar N. Mohamady
- Clinical Pathology Department, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Zagazig, Egypt
| | - Hend M. Megahed
- Biochemistry Department, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Zagazig, Egypt
| | - Naglaa M. Ali
- Poultry Disease Department, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Assuit, Egypt
| |
Collapse
|
6
|
Guo D, Yang Y, Wu Y, Liu Y, Cao L, Shi Y, Wan N, Wu Z. Chemical Composition Analysis and Discrimination of Essential Oils of Artemisia Argyi Folium from Different Germplasm Resources Based on Electronic Nose and GC/MS Combined with Chemometrics. Chem Biodivers 2023; 20:e202200991. [PMID: 36650717 DOI: 10.1002/cbdv.202200991] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/02/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
In this study, the electronic nose and GC/MS were used to analyze the chemical components of essential oils from different germplasm resources of Artemisia argyi Folium (A. argyi), in order to quickly identify essential oils of A. argyi from different germplasm resources and clarify the differences among different A. argyi samples. The essential oils of A. argyi were extracted by steam distillation. This article describes for the first time that electronic nose combined with chemometrics can distinguish the essential oils of A. argyi from different germplasm, which proves the reliability and potential of this technology. GC/MS was used to identify 134 volatile components from the essential oil of A. argyi. The main bioactive components were cineole, thujarone, artemisia ketone, β-caryophyllene, (-)-4-terpinol, 3,3,6-trimethyl-1,5-heptadien-4-ol, (-)-α-thujone, camphor, borneol. In addition, the results of principal component analysis (PCA) and hierarchical cluster analysis (HCA) showed that there were significant differences in the essential oils of A. argyi from different germplasm resources, terpenes, alcohols and ketones played an important role in identifying the essential oils of A. argyi from different germplasm resources. This indicates that electronic nose and GC/MS combined with chemometrics can be used as reliable techniques to identify different germplasm resources of A. argyi, and provide certain reference value for quality evaluation, selection of high-quality varieties and rational development of resources of A. argyi.
Collapse
Affiliation(s)
- Dongyun Guo
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
- Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine, Jiangxi Province, Nanchang, 330004, China
| | - Yiqin Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Yi Wu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Yang Liu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Lan Cao
- Research Center for Traditional Chinese Medicine Resourcing and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Yan Shi
- Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine, Jiangxi Province, Nanchang, 330004, China
| | - Na Wan
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| |
Collapse
|
7
|
Bi S, Shao J, Qu Y, Xu W, Li J, Zhang L, Shi W, Cao L. Serum metabolomics reveal pathways associated with protective effect of ginsenoside Rg3 on immune stress. Poult Sci 2022; 101:102187. [PMID: 36215740 PMCID: PMC9554815 DOI: 10.1016/j.psj.2022.102187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/03/2022] Open
Abstract
Our previous study has demonstrated that administration of ginsenoside Rg3 ameliorates immune stress by inhibiting inflammatory responses, reducing oxidative damage and upregulating mRNA expression of mTOR, SOD-1, and HO-1. However, the specific mechanism in relation to the protective effect of ginsenoside Rg3 on stressed broilers especially the metabolites alteration remains obscure. The present study aimed to investigate the underlined mechanism in relation to the pathogenesis and protective effect of ginsenoside Rg3 on stressed broilers using liquid chromatograph-mass spectrometry profiling. Eighteen broiler chicks were randomly allocated to 3 treatments: Control, Model and Rg3. Chickens in Rg3 group received intraperitoneally administered 1 mg/kg Rg3 2 h before LPS challenge. Then the broilers were intraperitoneally injection of 250 µg/kg LPS at the age of 12, 14, 33, and 35 d to induce immune stress. Control group was injected with an equivalent amount of sterile saline. At the end of the experiment, the serum was obtained for metabolomics analysis. The changes in serum metabolic profiles were investigated with the application of metabolomics approach. Distinct changes in metabolite patterns in serum were observed by orthogonal partial least square-discriminate analysis. In total, 35 metabolites were identified, among which 17 differential metabolites were found between Control and Model group, and 18 differential metabolites were identified between Model and Rg3 group. Metabolic pathway analysis revealed potential serum metabolites involved in oxidative stress and inflammation, degradation of lipid and protein in broiler chicks with immune stress. In addition, the protective effect of Rg3 on the stressed chicks may be largely mediated by BCAA metabolism, apoptosis and mTOR signaling pathway. These results suggested the potential biomarkers involved in pathogenesis and prevention of stress induced by Escherichia coli lipopolysaccharide.
Collapse
|
8
|
Bi S, Shao J, Qu Y, Hu W, Ma Y, Cao L. Hepatic transcriptomics and metabolomics indicated pathways associated with immune stress of broilers induced by lipopolysaccharide. Poult Sci 2022; 101:102199. [PMID: 36257073 PMCID: PMC9579410 DOI: 10.1016/j.psj.2022.102199] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/01/2022] [Accepted: 09/19/2022] [Indexed: 10/29/2022] Open
|
9
|
Zhang B, Zhong Q, Liu N, Song P, Zhu P, Zhang C, Sun Z. Dietary Glutamine Supplementation Alleviated Inflammation Responses and Improved Intestinal Mucosa Barrier of LPS-Challenged Broilers. Animals (Basel) 2022; 12:ani12131729. [PMID: 35804628 PMCID: PMC9265045 DOI: 10.3390/ani12131729] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary In commercial intense industry, birds have to undergo a series of physical, social and microbial stress. LPS, a structural substance of gram-negative bacterial membrane and an effective immune stimulator for human and animal immune system, can impair growth performance, elevate the production of inflammatory cytokines and destroy the morphology of broilers’ small intestine. Moreover, LPS challenge also can reduce the expression levels of tight junction proteins and ruin the integrity of mucosal barrier of broilers. However, glutamine is considered to be conditionally essential for gut homeostasis and barrier function and maybe a useful strategy to attenuate immunological stress and improve intestine function in response to stressful conditions. Our study showed that 1% Gln supplementation improved the growth performance, alleviated the inflammatory responses and ameliorated the intestinal permeability and the integrity of intestinal mucosa barrier of LPS-challenged broilers. Abstract The present study was conducted to investigate the effects of glutamine (Gln) supplementation on intestinal inflammatory reaction and mucosa barrier of broilers administrated with lipopolysaccharide (LPS) stimuli. A total of 120 1-d-old male broilers were randomly divided into four treatments in a 2 × 2 experimental arrangement, containing immune challenge (injected with LPS in a dose of 0 or 500 μg/kg of body weight) and dietary treatments (supplemented with 1.22% alanine or 1% Gln). The results showed that growth performance of broilers intra-abdominally injected with LPS was impaired, and Gln administration alleviated the adverse effects on growth performance induced by LPS challenge. Furthermore, Gln supplementation reduced the increased concentration of circulating tumor necrosis factor-α, interleukin-6 and interleukin-1β induced by LPS challenge. Meanwhile, D-lactic acid and diamine oxidase concentration in plasma were also decreased by Gln supplementation. In addition, the shorter villus height, deeper crypt depth and the lower ratio of villus height to crypt depth of duodenum, jejunum and ileum induced by LPS stimulation were reversed by Gln supplementation. Gln administration beneficially increased LPS-induced reduction in the expression of intestine tight junction proteins such as zonula occludens protein 1 (ZO-1), claudin-1 and occludin except for the ZO-1 in duodenum and occludin in ileum. Moreover, Gln supplementation downregulated the mRNA expression of toll-like receptor 4, focal adhesion kinase, myeloid differentiation factor 88 and IL-1R-associated kinase 4 in TLR4/FAK/MyD88 signaling pathway. Therefore, it can be concluded that Gln administration could attenuate LPS-induced inflammatory responses and improve intestinal barrier damage of LPS-challenged broilers.
Collapse
Affiliation(s)
- Bolin Zhang
- Department of Biology and Agriculture, Zunyi Normal College, Ping’an Avenue, Hong Huagang District, Zunyi 563006, China; (B.Z.); (N.L.); (P.S.); (P.Z.); (C.Z.)
| | - Qingzhen Zhong
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888, Xincheng Road, Jingyue District, Changchun 130118, China;
| | - Ning Liu
- Department of Biology and Agriculture, Zunyi Normal College, Ping’an Avenue, Hong Huagang District, Zunyi 563006, China; (B.Z.); (N.L.); (P.S.); (P.Z.); (C.Z.)
| | - Peiyong Song
- Department of Biology and Agriculture, Zunyi Normal College, Ping’an Avenue, Hong Huagang District, Zunyi 563006, China; (B.Z.); (N.L.); (P.S.); (P.Z.); (C.Z.)
| | - Peng Zhu
- Department of Biology and Agriculture, Zunyi Normal College, Ping’an Avenue, Hong Huagang District, Zunyi 563006, China; (B.Z.); (N.L.); (P.S.); (P.Z.); (C.Z.)
| | - Caichao Zhang
- Department of Biology and Agriculture, Zunyi Normal College, Ping’an Avenue, Hong Huagang District, Zunyi 563006, China; (B.Z.); (N.L.); (P.S.); (P.Z.); (C.Z.)
| | - Zewei Sun
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888, Xincheng Road, Jingyue District, Changchun 130118, China;
- Correspondence:
| |
Collapse
|
10
|
Niu X, Ding Y, Chen S, Gooneratne R, Ju X. Effect of Immune Stress on Growth Performance and Immune Functions of Livestock: Mechanisms and Prevention. Animals (Basel) 2022; 12:ani12070909. [PMID: 35405897 PMCID: PMC8996973 DOI: 10.3390/ani12070909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/19/2022] [Accepted: 03/26/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Immune stress is an important stressor in domestic animals that leads to decreased feed intake, slow growth, and reduced disease resistance of pigs and poultry. Especially in high-density animal feeding conditions, the risk factor of immune stress is extremely high, as they are easily harmed by pathogens, and frequent vaccinations are required to enhance the immunity function of the animals. This review mainly describes the causes, mechanisms of immune stress and its prevention and treatment measures. This provides a theoretical basis for further research and development of safe and efficient prevention and control measures for immune stress in animals. Abstract Immune stress markedly affects the immune function and growth performance of livestock, including poultry, resulting in financial loss to farmers. It can lead to decreased feed intake, reduced growth, and intestinal disorders. Studies have shown that pathogen-induced immune stress is mostly related to TLR4-related inflammatory signal pathway activation, excessive inflammatory cytokine release, oxidative stress, hormonal disorders, cell apoptosis, and intestinal microbial disorders. This paper reviews the occurrence of immune stress in livestock, its impact on immune function and growth performance, and strategies for immune stress prevention.
Collapse
Affiliation(s)
- Xueting Niu
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang 524088, China; (X.N.); (Y.D.); (S.C.)
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518018, China
| | - Yuexia Ding
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang 524088, China; (X.N.); (Y.D.); (S.C.)
| | - Shengwei Chen
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang 524088, China; (X.N.); (Y.D.); (S.C.)
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518018, China
| | - Ravi Gooneratne
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand;
| | - Xianghong Ju
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang 524088, China; (X.N.); (Y.D.); (S.C.)
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518018, China
- Correspondence:
| |
Collapse
|
11
|
Yang S, Zhang J, Jiang Y, Xu YQ, Jin X, Yan SM, Shi BL. Effects of Artemisia argyi flavonoids on growth performance and immune function in broilers challenged with lipopolysaccharide. Anim Biosci 2021; 34:1169-1180. [PMID: 33561921 PMCID: PMC8255877 DOI: 10.5713/ab.20.0656] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/16/2020] [Indexed: 11/27/2022] Open
Abstract
Objective This research aimed to study the effects of Artemisia argyi flavonoids (AAF) supplemented in diets on the growth performance and immune function of broiler chickens challenged with lipopolysaccharide (LPS). Methods A total of one hundred and ninety-two 1-d-old broiler chicks were assigned into 4 treatment groups, which were, respectively, fed a basal diet (control), fed a diet with 750 mg/kg AAF, fed a basal diet, and challenged with LPS, fed a diet with 750 mg/kg AAF, and challenged with LPS. Each treatment had six pens with 8 chicks per pen. On days 14, 16, 18, 20 (stress phase I) and 28, 30, 32, 34 (stress phase II), broilers were injected with LPS (500 μg/kg body weight) or an equivalent amount of saline. Results The results demonstrated that dietary AAF significantly improved the body weight (d 21) and alleviated the decrease of average daily gain in broilers challenged with LPS on d 21 and d 35 (p<0.05). Dietary AAF increased bursa fabricius index, and dramatically attenuated the elevation of spleen index caused by LPS on d 35 (p<0.05). Furthermore, serum interleukin-6 (IL-6) concentration decreased with AAF supplementation on d 21 (p<0.05). Diet treatment and LPS challenge exhibited a significant interaction for the concentration of IL-1β (d 21) and IL-6 (d 35) in serum (p<0.05). Additionally, AAF supplementation mitigated the increase of IL-1β, IL-6 in liver and spleen induced by LPS on d 21 and 35 (p<0.05). This study also showed that AAF supplementation significantly reduced the expression of IL-1β (d 21) and nuclear transcription factor kappa-B p65 (d 21 and 35) in liver (p<0.05), and dietary AAF and LPS treatment exhibited significant interaction for the gene expression of IL-6 (d 21), toll like receptor 4 (d 35) and myeloid differentiation factor 88 (d 35) in spleen (p<0.05). Conclusion In conclusion, AAF could be used as a potential natural immunomodulator to improve growth performance and alleviate immune stress in broilers challenged with LPS.
Collapse
Affiliation(s)
- Shuo Yang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jing Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yang Jiang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yuan Qing Xu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiao Jin
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Su Mei Yan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Bin Lin Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
12
|
Shi L, Xu Y, Mao C, Wang Z, Guo S, Jin X, Yan S, Shi B. Effects of heat stress on antioxidant status and immune function and expression of related genes in lambs. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2020; 64:2093-2104. [PMID: 32833081 DOI: 10.1007/s00484-020-02000-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 07/18/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
The study was conducted to evaluate the effects of heat stress on antioxidant status, immune response, and related gene expression of lambs. Eighteen male lambs were randomly allocated into three treatment groups that were as follows: indoor temperature control group furnished with an air-conditioner (ITC), indoor temperature non-control group suffered intermittent and varying degrees of heat stress (ITNC), outdoor temperature non-control group in the external natural environment (OTNC). ITNC group presented a more severe and prolonged exposure to thermal stress than the other two groups. The trial lasted 28 days. Blood samples were collected on days 14 and 28 to analyze total superoxide dismutase (T-SOD), catalase (CAT), glutathione peroxidase (GPx) activities, malondialdehyde (MDA) concentrations, total antioxidant capacity (T-AOC), interleukin-1 (IL-1), interleukin-2 (IL-2), tumor necrosis factor-alpha (TNF-α), immunoglobulin A (IgA), immunoglobulin G (IgG), and immunoglobulin M (IgM) concentrations and gene expressions of SOD1, SOD2, GPx, CAT, nuclear factor erythroid 2-related factor 2 (Nrf2), IL-1β, IL-2, and TNF-α. Results showed that on day 14 an elevated temperature reduced (p < 0.05) the level of GPx, T-SOD, T-AOC, and IgG, whereas significantly increased (p < 0.05) CAT, MDA, IgA, and TNF-α levels. Gene expressions of SOD1 and GPx were down-regulated (p < 0.05). On day 28, ITNC group significantly decreased (p < 0.05) CAT, GPx, T-SOD, T-AOC, IgG, and IL-2 levels and increased (p < 0.05) MDA, IL-1, and TNF-α levels, accompanying by the reducing or increasing (p < 0.05) of their relative gene expression apart from CAT and IL-1β gene (p > 0.10). In addition, in ITNC and OTNC groups, the level of CAT, T-SOD, T-AOC, IgG, IgM, and IL-2 and the expression of CAT, SOD2, and IL-2 reduced (p < 0.05), whereas IL-1 and TNF-α levels and IL-1β expression increased (p < 0.05) on day 28 compared with day 14. In ITC group, the level of IgA, IL-1, and TNF-α and the expression of IL-1β and TNF-α increased (p < 0.05), while the content of IgG and IgM reduced (p < 0.05) on day 28 compared with day 14. These results indicated that heat stress negatively affected the antioxidant status and immune response of lambs, and the negative effects of heat stress are not only related to the stress duration but also associated with the stress severity.
Collapse
Affiliation(s)
- Lulu Shi
- Department of Animal Production, College of Animal Science, Inner Mongolia Agricultural University, Huhhot, 010018, China
| | - Yuanqing Xu
- Department of Animal Production, College of Animal Science, Inner Mongolia Agricultural University, Huhhot, 010018, China
| | - Chenyu Mao
- Department of Animal Production, College of Animal Science, Inner Mongolia Agricultural University, Huhhot, 010018, China
| | - Zheqi Wang
- Department of Animal Production, College of Animal Science, Inner Mongolia Agricultural University, Huhhot, 010018, China
| | - Shiwei Guo
- Department of Animal Production, College of Animal Science, Inner Mongolia Agricultural University, Huhhot, 010018, China
| | - Xiao Jin
- Department of Animal Production, College of Animal Science, Inner Mongolia Agricultural University, Huhhot, 010018, China
| | - Sumei Yan
- Department of Animal Production, College of Animal Science, Inner Mongolia Agricultural University, Huhhot, 010018, China
| | - Binlin Shi
- Department of Animal Production, College of Animal Science, Inner Mongolia Agricultural University, Huhhot, 010018, China.
| |
Collapse
|
13
|
Tao X, Sun Y, Men X, Xu Z. A compound plant extract and its antibacterial and antioxidant properties in vitro and in vivo. 3 Biotech 2020; 10:532. [PMID: 33214979 PMCID: PMC7666253 DOI: 10.1007/s13205-020-02529-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022] Open
Abstract
The present study was conducted to prepare a compound plant extract as a candidate animal feed additive. Firstly, Evodia rutaecarpa (ER), Schisandra sphenanthera (SS), Punica granatum (PG) and Artemisia argyi (AA) were screened out from 17 plants as materials of candidate compound plant extracts by measuring the antibacterial rate on Escherichia coli and Salmonella paratyphoid, and the scavenging capability on 2,2 diphenyl-1-picrylhydrazine radical in vitro. Secondly, proportions of the four materials were optimized with an L9 (43) orthogonal experiment. By range analysis of experimental results, two compound extracts (named as F1 and F2) with the strongest antibacterial and antioxidant functions were obtained. The ratio of ER: SS: PG: AA is 9:9:1:3 in F1 and 9:9:9:3 in F2, respectively. Finally, the effects of F1 and F2 on security and efficacy in vivo were evaluated. In healthy mice, F1 had no significant effects (p > 0.05) on all blood parameters and viscera indices, and at 1000 mg/kg bw dose significantly increased (p < 0.05) the average daily gain (ADG). F2 decreased (p < 0.05) white blood cell count at 3000 mg/kg bw and increased (p < 0.05) red blood cell count at 333 mg/kg bw. In immunosuppressed mice, both F1 and F2 improved ADG (p < 0.05) and the feed intake to gain ratio (p < 0.01), and increased the activities of hepatic superoxide dismutase (p < 0.05), catalase (p < 0.05) and total antioxygen capacity (p < 0.05), and the content of malonaldehyde (p < 0.01). In mice challenged with Escherichia coli, the antidiarrhea and reducing mortality effects of F1 were equivalent to the antibiotic. F2 failed to protect the experimental mice. These results suggested F1, a compound plant extract, show a great potential as a substitute for antibiotics in animal feed.
Collapse
Affiliation(s)
- Xin Tao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 Zhejiang People’s Republic of China
| | - Yuqing Sun
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 Zhejiang People’s Republic of China
| | - Xiaoming Men
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 Zhejiang People’s Republic of China
| | - Ziwei Xu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 Zhejiang People’s Republic of China
| |
Collapse
|
14
|
Zhang P, Sun D, Shi B, Faucitano L, Guo X, Li T, Xu Y, Yan S. Dietary supplementation with Artemisia argyi extract on inflammatory mediators and antioxidant capacity in broilers challenged with lipopolysaccharide. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1816506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Pengfei Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Center Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Dengsheng Sun
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Binlin Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Luigi Faucitano
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Canada
| | - Xiaoyu Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Tiyu Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yuanqing Xu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Sumei Yan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
15
|
Niu Y, He J, Zhao Y, Gan Z, Shen M, Zhang L, Wang T. Dietary enzymatically treated Artemisia annua L. supplementation improved growth performance and intestinal antioxidant capacity of weaned piglets. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.103937] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Xing YY, Xu YQ, Jin X, Shi LL, Guo SW, Yan SM, Shi BL. Optimization extraction and characterization of Artemisia ordosica polysaccharide and its beneficial effects on antioxidant function and gut microbiota in rats. RSC Adv 2020; 10:26151-26164. [PMID: 35519751 PMCID: PMC9055353 DOI: 10.1039/d0ra05063f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/03/2020] [Indexed: 12/27/2022] Open
Abstract
In this study, a novel polysaccharide was isolated from Artemisia ordosica by water-extraction-ethanol-precipitation method. The optimal extraction conditions of Artemisia ordosica polysaccharide (AOP) were determined by single factor investigation and response surface methodology optimization, and were shown as follows: a liquid–solid ratio of 15.4 : 1 mL g−1, extraction time of 4.3 h, extraction temperature of 60 °C. Under the optimal conditions, the extraction yield and the sugar content of the AOP were 5.56% and 52.65%. Gel permeation chromatography coupled to multi-angle laser light scattering, a refractive index detection system and ion-exchange chromatography were used to determine the characterization of AOP. These results indicated that AOP, with a molecular weight of 2.1 kDa (62.6%) and 1.5 kDa (37.4%), had narrow polydispersity and rod conformations, and was composed of arabinose, galactose, glucose, xylose, mannose, galacturonic acid and glucuronic acid with molar ratio of 6.87 : 10.67 : 54.13 : 2.49 : 18.37 : 4.83 : 2.64 : 2.64. In addition, AOP exerted antioxidant ability in vitro and in vivo (rats). Moreover, AOP significantly modulated the composition of cecal microbiota population. Therefore, AOP is expected to be a functional ingredient for health improvement through improving antioxidant ability and modulating gut health. Artemisia ordosica polysaccharide is expected to be functional ingredient for health improvement through improving antioxidant ability and modulating gut health.![]()
Collapse
Affiliation(s)
- Y. Y. Xing
- College of Animal Science
- Inner Mongolia Agricultural University
- Hohhot 010018
- China
| | - Y. Q. Xu
- College of Animal Science
- Inner Mongolia Agricultural University
- Hohhot 010018
- China
| | - X. Jin
- College of Animal Science
- Inner Mongolia Agricultural University
- Hohhot 010018
- China
| | - L. L. Shi
- College of Animal Science
- Inner Mongolia Agricultural University
- Hohhot 010018
- China
| | - S. W. Guo
- College of Animal Science
- Inner Mongolia Agricultural University
- Hohhot 010018
- China
| | - S. M. Yan
- College of Animal Science
- Inner Mongolia Agricultural University
- Hohhot 010018
- China
| | - B. L. Shi
- College of Animal Science
- Inner Mongolia Agricultural University
- Hohhot 010018
- China
| |
Collapse
|
17
|
Xing Y, Wu Y, Mao C, Sun D, Guo S, Xu Y, Jin X, Yan S, Shi B. Water extract of Artemisia ordosica enhances antioxidant capability and immune response without affecting growth performance in weanling piglets. J Anim Physiol Anim Nutr (Berl) 2019; 103:1848-1856. [PMID: 31410913 DOI: 10.1111/jpn.13171] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/15/2019] [Accepted: 07/06/2019] [Indexed: 01/05/2023]
Abstract
The present experiment was conducted to investigate the effects of water extract of Artemisia ordosica (WEAO) on growth performance, antioxidant capability and immune response in weanling piglets. Seventy-two 28-day-old weanling piglets were randomly allocated into four treatments with six replicate pens per treatment and three piglets per pen (n = 18). These four treatment diets were formulated by adding 0, 250, 500 and 750 mg/kg WEAO to the basal diet. The experiment lasted for 28 days. Body weight and feed intake were measured. Blood samples were collected to determine immune and antioxidative parameters. The experimental results showed that WEAO supplementation improved the apparent nutrient digestibility of piglets in a linear or quadratic dose-dependent manner. In addition, dietary WEAO quadratically increased serum concentrations of cytokines interleukin (IL)-1, IL-4, tumour necrosis factor (TNF)-α, soluble surface antigen CD8 (sCD8), immunoglobulins (Ig)-A and linearly increased serum concentrations of IL-2, IL-6, IgG, IgM. Furthermore, dietary WEAO linearly or quadratically decreased serum concentrations of malondialdehyde but quadratically increased activities of antioxidant enzymes and total antioxidative capacity. These results suggested that WEAO may prove useful as a natural phytogenic feed additive with antioxidative potential and could be incorporated into diets of piglets.
Collapse
Affiliation(s)
- Yuanyuan Xing
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yingzhao Wu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Chenyu Mao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Dengsheng Sun
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Shiwei Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yuanqing Xu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiao Jin
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Sumei Yan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Binlin Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
18
|
Yang L, Liu G, Liang X, Wang M, Zhu X, Luo Y, Shang Y, Yang JQ, Zhou P, Gu XL. Effects of berberine on the growth performance, antioxidative capacity and immune response to lipopolysaccharide challenge in broilers. Anim Sci J 2019; 90:1229-1238. [PMID: 31264347 DOI: 10.1111/asj.13255] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/10/2019] [Accepted: 05/29/2019] [Indexed: 12/18/2022]
Abstract
This study evaluated the effects of berberine on growth performance, immunity, haematological parameters, antioxidant capacity, and the expression of immune response-related genes in lipopolysaccharide (LPS)-challenged broilers. We assigned 120 one-day-old male broilers (Ross 308) to two treatment groups; each group included two subgroups, each of which included six replicates of five birds per replicate. The experiment used a 2 × 2 factorial arrangement with berberine treatment (0 or 60 mg/kg dietary) and challenge status [injection of saline (9 g/L w/v) or LPS (1.5 mg/kg body weight)] as the main factors. On days 14, 16, 18 and 20, broilers were intraperitoneally injected with LPS or physiological saline. Blood and liver samples were collected on day 21. Dietary berberine supplementation significantly alleviated the compromised average daily gain and average daily feed intake (p < 0.05) caused by LPS. The LPS challenge led to increased lymphocyte and white blood cell (WBC) counts, malondialdehyde (serum and liver) content, and immunoglobulin G and M, tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) expression (p < 0.05) and significantly reduced serum total superoxide dismutase (T-SOD) activity (p < 0.05). Dietary berberine significantly mitigated the LPS-induced decreases in the mRNA expression of nuclear factor-kappa B (NF-κB), TNF-α, IL-1β, inducible nitrite synthase and cyclooxygenase-2 (p < 0.05) in the liver. In conclusion, berberine supplementation has a positive effect on LPS challenge, which may be related to the increase in antioxidant enzyme activity and inhibition of both NF-κB signalling and the expression of inflammatory mediators.
Collapse
Affiliation(s)
- Li Yang
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Gang Liu
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Xiaorui Liang
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Mengmeng Wang
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Xiaoqing Zhu
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Yan Luo
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Yunxia Shang
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Jing-Quan Yang
- Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Ping Zhou
- Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Xin-Li Gu
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| |
Collapse
|
19
|
Yang L, Liu G, Lian K, Qiao Y, Zhang B, Zhu X, Luo Y, Shang Y, Gu XL. Dietary leonurine hydrochloride supplementation attenuates lipopolysaccharide challenge-induced intestinal inflammation and barrier dysfunction by inhibiting the NF-κB/MAPK signaling pathway in broilers. J Anim Sci 2019; 97:1679-1692. [PMID: 30789669 DOI: 10.1093/jas/skz078] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/20/2019] [Indexed: 12/20/2022] Open
Abstract
This study was performed to evaluate the beneficial effects of dietary leonurine hydrochloride (LH) supplementation on intestinal morphology and barrier integrity and further illuminate its underlying antioxidant and immunomodulatory mechanisms in lipopolysaccharide (LPS)-treated broilers. A total of 120 1-d-old male broilers (Ross 308) were assigned to 4 treatment groups with 6 replicates of 5 birds per cage. The experiment was designed in a 2 × 2 factorial arrangement with LH (0 or 120 mg/kg) and LPS (injection of saline or 1.5 mg/kg body weight) as treatments. On days 14, 16, 18, and 20 of the trial, broilers were intraperitoneally injected with LPS or physiological saline. Compared with the control group, LPS-challenged broilers showed impaired growth performance (P < 0.05) from day 15 to day 21 of the trial, increased serum diamine oxidase (DAO) and D-lactic acid (D-LA) levels coupled with reduced glutathione (GSH) content and total superoxide dismutase (T-SOD) activity (duodenal and jejunal mucosa), reduced malondialdehyde (MDA) content (duodenal, jejunal, and ileal mucosa), and compromised morphological structure of the duodenum and jejunum. Additionally, LPS challenge increased (P < 0.05) the mRNA expression of proinflammatory cytokine genes and reduced tight junction (TJ) protein expression in the jejunum. However, dietary LH prevented LPS-induced reductions in average daily gain (ADG) and average daily feed intake (ADFI) in broilers. It also alleviated LPS challenge-induced increases in serum DAO levels, MDA content (duodenal and jejunal mucosa), and jejunal crypt depth (P < 0.05) but reduced villus height, GSH content (jejunal mucosa), and T-SOD activity (duodenal and jejunal mucosa) (P < 0.05). Additionally, LH supplementation significantly downregulated the mRNA expression of nuclear factor (NF)-κB, cyclooxygenase-2 (COX-2), and proinflammatory cytokines (TNF-α, IL-1β, and IL-6) and upregulated the mRNA expression of zonula occludens-1 (ZO-1) and Occludin in the jejunal mucosa induced by LPS (P < 0.05). On the other hand, LH administration prevented LPS-induced activation of the p38, extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs) and attenuated IkB alpha (IκBα) phosphorylation and nuclear translocation of NF-κB (p65) in the jejunal mucosa. In conclusion, dietary LH supplementation attenuates intestinal mucosal disruption mainly by accelerating the expression of TJ proteins and inhibiting activation of the NF-κB/MAPK signaling pathway.
Collapse
Affiliation(s)
- Li Yang
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Gang Liu
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Kexun Lian
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Yanjie Qiao
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Baojun Zhang
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Xiaoqing Zhu
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Yan Luo
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Yunxia Shang
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Xin-Li Gu
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| |
Collapse
|
20
|
Liu L, Zuo W, Li F. Dietary addition of Artemisia argyi reduces diarrhea and modulates the gut immune function without affecting growth performances of rabbits after weaning1. J Anim Sci 2019; 97:1693-1700. [PMID: 30726960 DOI: 10.1093/jas/skz047] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 01/11/2019] [Accepted: 02/01/2019] [Indexed: 12/26/2022] Open
Abstract
The present study was conducted to investigate the effect of Artemisia argyi on the production performance and intestinal barrier of rabbits. Weaned Hyla rabbits (30 d, n = 160) of similar body weight were divided into 4 groups (40 rabbits per treatment), and they were fed a control diet or fed an experimental diet supplemented with 3%, 6%, or 9% A. argyi. The results showed that the dietary supplementation with A. argyi did not affect the rabbits' food intake and body weight gain regardless of the inclusion level but decreased the diarrhea rate and diarrhea index (P < 0.05). Dietary addition of A. argyi increased the small intestine length and villus height/crypt depth, regardless of the inclusion level (P < 0.05). Compared with the control, the A. argyi supplementation increased the gene expression of zonula occludens 1 (ZO-1) and claudin 1 in all segments of the small intestine and regardless of the level of A. argyi (P < 0.05). In the duodenum, a dietary supplementation with 6% and 9% A. argyi increased the immunoglobulins A (IgA) content (P < 0.05). In the jejunum, the A. argyi supplementation decreased interleukin 2 (IL2) and IL6 content regardless of the inclusion level (P < 0.05). In the ileum, a 3% A. argyi addition decreased IL2 content, whereas a 6% A. argyi addition decreased IL6 content (P < 0.05). Furthermore, 6%-9% A. argyi supplementation increased the IgA content in the ileum (P < 0.05). In conclusion, dietary addition of A. argyi reduces diarrhea and modulates the gut immune function without affecting growth performances of rabbits.
Collapse
Affiliation(s)
- Lei Liu
- Department of Animal Science, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Wenshan Zuo
- Department of Animal Science, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Fuchang Li
- Department of Animal Science, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, P. R. China
| |
Collapse
|
21
|
Yang L, Liu G, Zhu X, Luo Y, Shang Y, Gu XL. The anti-inflammatory and antioxidant effects of leonurine hydrochloride after lipopolysaccharide challenge in broiler chicks. Poult Sci 2019; 98:1648-1657. [DOI: 10.3382/ps/pey532] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/30/2018] [Indexed: 11/20/2022] Open
|
22
|
Song X, Wen X, He J, Zhao H, Li S, Wang M. Phytochemical components and biological activities of Artemisia argyi. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.11.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
23
|
Li R, Song Z, Zhao J, Huo D, Fan Z, Hou DX, He X. Dietary L-theanine alleviated lipopolysaccharide-induced immunological stress in yellow-feathered broilers. ACTA ACUST UNITED AC 2018; 4:265-272. [PMID: 30175254 PMCID: PMC6116832 DOI: 10.1016/j.aninu.2018.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/30/2018] [Accepted: 05/07/2018] [Indexed: 02/06/2023]
Abstract
L-theanine, a natural nonprotein amino acid with a high biological activity, is reported to exert anti-stress properties. An experiment with a 3 × 2 factorial arrangement was conducted to investigate the effects of dietary L-theanine on growth performance and immune function in lipopolysaccharide (LPS)-challenged broilers. A total of 432 one-day-old male yellow-feathered broilers were randomly assigned to 3 dietary treatments (control, antibiotic and L-theanine diets) with 2 subgroups of each (6 replicate cages; 12 birds/cage). Birds from each subgroup of the 3 dietary treatments were intra-abdominally injected with the same amount of LPS or saline at 24, 25, 26 d of age. Both dietary L-theanine and antibiotic improved (P < 0.05) the growth performance of birds before LPS injection (d 1 to 21). The effect of dietary L-theanine was better (P < 0.05) than that of antibiotic. Lipopolysaccharide decreased feed intake (FI) and body weight gain (BWG) from d 22 to 28 (P < 0.05), BWG and feed to gain ratio (F:G) from d 29 to 56 (P < 0.05), increased mortality in different growth periods (P < 0.05), elevated the levels of serum cortisol, α1-acid glycoprotein (α1-AGP), interleukin-6 (IL-6) on d 24 and 25 (P < 0.05), reduced immune organ indexes and contents of jejunal mucosal secretory immunoglobulin A (sIgA) on d 28 (P < 0.05). The decreased FI and BWG, as well as increased F:G and mortality in LPS-challenged birds, were alleviated by dietary L-theanine or antibiotic from d 29 to 56 and from d 1 to 56. Dietary L-theanine mitigated the elevated serum α1-AGP level on d 25, serum IL-6 concentration on d 24 and 26, and the decreased jejunal mucosal sIgA content on d 28 of the LPS-challenged birds. The results indicated that L-theanine had potential to alleviate LPS-induced immune stress in broilers.
Collapse
Affiliation(s)
- Rui Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zehe Song
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jianfei Zhao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Dongxiao Huo
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zhiyong Fan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - De-Xing Hou
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.,Department of Food Science and Biotechnology, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Xi He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| |
Collapse
|
24
|
Shi XS, Wang DJ, Li XM, Li HL, Meng LH, Li X, Pi Y, Zhou XW, Wang BG. Antimicrobial polyketides from Trichoderma koningiopsis QA-3, an endophytic fungus obtained from the medicinal plant Artemisia argyi. RSC Adv 2017. [DOI: 10.1039/c7ra11122c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Five new and two known antimicrobial polyketides were identified from endophytic Trichoderma koningiopsis QA-3.
Collapse
Affiliation(s)
- Xiao-Shan Shi
- Key Laboratory of Experimental Marine Biology
- Institute of Oceanology
- Chinese Academy of Sciences
- Laboratory of Marine Biology and Biotechnology
- Qingdao National Laboratory for Marine Science and Technology
| | - Dun-Jia Wang
- College of Chemistry and Chemical Engineering
- Hubei Normal University
- Huangshi 435002
- P. R. China
| | - Xiao-Ming Li
- Key Laboratory of Experimental Marine Biology
- Institute of Oceanology
- Chinese Academy of Sciences
- Laboratory of Marine Biology and Biotechnology
- Qingdao National Laboratory for Marine Science and Technology
| | - Hong-Lei Li
- Key Laboratory of Experimental Marine Biology
- Institute of Oceanology
- Chinese Academy of Sciences
- Laboratory of Marine Biology and Biotechnology
- Qingdao National Laboratory for Marine Science and Technology
| | - Ling-Hong Meng
- Key Laboratory of Experimental Marine Biology
- Institute of Oceanology
- Chinese Academy of Sciences
- Laboratory of Marine Biology and Biotechnology
- Qingdao National Laboratory for Marine Science and Technology
| | - Xin Li
- Key Laboratory of Experimental Marine Biology
- Institute of Oceanology
- Chinese Academy of Sciences
- Laboratory of Marine Biology and Biotechnology
- Qingdao National Laboratory for Marine Science and Technology
| | - Yan Pi
- College of Chemistry and Chemical Engineering
- Hubei Normal University
- Huangshi 435002
- P. R. China
| | - Xing-Wang Zhou
- College of Chemistry and Chemical Engineering
- Hubei Normal University
- Huangshi 435002
- P. R. China
| | - Bin-Gui Wang
- Key Laboratory of Experimental Marine Biology
- Institute of Oceanology
- Chinese Academy of Sciences
- Laboratory of Marine Biology and Biotechnology
- Qingdao National Laboratory for Marine Science and Technology
| |
Collapse
|