1
|
Díaz-Tapia P, Rodríguez-Buján I, Maggs CA, Verbruggen H. Phylogenomic analysis of pseudocryptic diversity reveals the new genus Deltalsia (Rhodomelaceae, Rhodophyta). JOURNAL OF PHYCOLOGY 2023; 59:264-276. [PMID: 36504198 DOI: 10.1111/jpy.13311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Molecular analyses, in combination with morphological studies, provide invaluable tools for delineating red algal taxa. However, molecular datasets are incomplete and taxonomic revisions are often required once additional species or populations are sequenced. The small red alga Conferva parasitica was described from the British Isles in 1762 and then reported from other parts of Europe. Conferva parasitica was traditionally included in the genus Pterosiphonia (type species P. cloiophylla in Schmitz and Falkenberg 1897), based on its morphological characters, and later transferred to Symphyocladia and finally to Symphyocladiella using molecular data from an Iberian specimen. However, although morphological differences have been observed between specimens of Symphyocladiella parasitica from northern and southern Europe they have yet to be investigated in a phylogenetic context. In this study, we collected specimens from both regions, studied their morphology and analyzed rbcL and cox1 DNA sequences. We determined the phylogenetic position of a British specimen using a phylogenomic approach based on mitochondrial and plastid genomes. Northern and southern European populations attributed to S. parasitica represent different species. Symphyocladiella arecina sp. nov. is proposed for specimens from southern Europe, but British specimens were resolved as a distant sister lineage to the morphologically distinctive Amplisiphonia, so we propose the new genus Deltalsia for this species. Our study highlights the relevance of using materials collected close to the type localities for taxonomic reassessments, and showcases the utility of genome-based phylogenies for resolving classification issues in the red algae.
Collapse
Affiliation(s)
- Pilar Díaz-Tapia
- Coastal Biology Research Group, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), University of A Coruña, 15071, A Coruña, Spain
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de A Coruña, Paseo Marítimo Alcalde Francisco Vázquez, 10, 15001, A Coruña, Spain
| | - Iván Rodríguez-Buján
- Coastal Biology Research Group, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), University of A Coruña, 15071, A Coruña, Spain
| | - Christine A Maggs
- Queen's University Marine Laboratory, Portaferry, Newtownards, BT22 1PF, UK
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
2
|
Evans JR, Vis ML. Relative expression analysis of light-harvesting genes in the freshwater alga Lympha mucosa (Batrachospermales, Rhodophyta). JOURNAL OF PHYCOLOGY 2020; 56:540-548. [PMID: 31930498 PMCID: PMC9290634 DOI: 10.1111/jpy.12967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Members of the freshwater red algal order Batrachospermales are often described as shade-adapted. Nevertheless, recent ecophysiological studies have demonstrated species-level differences in acclimation to a range of irradiances. Lympha mucosa occurs in open and shaded portions of temperate streams and is abundant during summer months, suggesting it tolerates high and low irradiances. Specimens of L. mucosa were collected from open (sun-acclimated) or shaded (shade-acclimated) sites and exposed to low (<20 μmol photons · m-2 · s-1 ) or high (220 μmol photon · m-2 · s-1 ) light for 72 h to examine mechanisms of photoacclimation at the transcriptional level. High-throughput sequence data were used to design specific primers for genes involved with light harvesting and these were quantified with qPCR. The greatest significant difference in transcript abundances was observed in the psaA gene (Photosystem I P700 apoprotein), and site-type had an effect on these responses. Shade-acclimated thalli were 22-fold down-regulated at high light, whereas sun-acclimated thalli were only 5-fold down-regulated. Another gene involved with Photosystem I (petF ferredoxin) was down-regulated at high light, but only individuals from the shaded site were significantly different (4-fold). In thalli from both sites, cpeA (Phycoerythrin alpha chain) was down-regulated at high light. Although not statistically significant, patterns consistent with previous physiological and transcriptomic studies were uncovered, namely the inverse response of transcriptional activity in genes that encode phycobiliproteins. In support of previous ecophysiological studies of freshwater red algae, these data indicate significant transcriptional changes involving Photosystem I and phycobiliprotein synthesis are required to tolerate and grow at various irradiances.
Collapse
Affiliation(s)
- Joshua R. Evans
- Department of Environmental and Plant BiologyOhio UniversityAthensOhio45701USA
| | - Morgan L. Vis
- Department of Environmental and Plant BiologyOhio UniversityAthensOhio45701USA
| |
Collapse
|
3
|
Morphological evolution and classification of the red algal order Ceramiales inferred using plastid phylogenomics. Mol Phylogenet Evol 2019; 137:76-85. [PMID: 31029748 DOI: 10.1016/j.ympev.2019.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 11/21/2022]
Abstract
The order Ceramiales contains about one third of red algal diversity and it was classically classified into four families according to morphology. The first phylogenies based on one or two molecular markers were poorly supported and failed to resolve these families as monophyletic. Nine families are currently recognized, but relationships within and among them are poorly understood. We produced a well-resolved phylogeny for the Ceramiales using plastid genomes for 80 (28 newly sequenced) representative species of the major lineages. Three of the previously recognized families were resolved as independent monophyletic lineages: Ceramiaceae, Wrangeliaceae and Rhodomelaceae. By contrast, our results indicated that the other six families require reclassification. We propose the new order Inkyuleeales, a new circumscription of the Callithamniaceae to include the Spyridiaceae, and a new concept of the Delesseriaceae that includes the Sarcomeniaceae and the Dasyaceae. We also investigated the evolution of the thallus structure, which has been important in the classical delineation of families. The ancestor of the Ceramiales was a monosiphonous filament that evolved into more complex morphologies several times independently during the evolutionary history of this hyperdiverse lineage.
Collapse
|
4
|
Salomaki ED, Lane CE. Molecular phylogenetics supports a clade of red algal parasites retaining native plastids: taxonomy and terminology revised. JOURNAL OF PHYCOLOGY 2019; 55:279-288. [PMID: 30537065 DOI: 10.1111/jpy.12823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
Parasitism is a life strategy that has repeatedly evolved within the Florideophyceae. Historically, the terms adelphoparasite and alloparasite have been used to distinguish parasites based on the relative phylogenetic relationship of host and parasite. However, analyses using molecular phylogenetics indicate that nearly all red algal parasites infect within their taxonomic family, and a range of relationships exist between host and parasite. To date, all investigated adelphoparasites have lost their plastid, and instead, incorporate a host-derived plastid when packaging spores. In contrast, a highly reduced plastid lacking photosynthesis genes was sequenced from the alloparasite Choreocolax polysiphoniae. Here we present the complete Harveyella mirabilis plastid genome, which has also lost genes involved in photosynthesis, and a partial plastid genome from Leachiella pacifica. The H. mirabilis plastid shares more synteny with free-living red algal plastids than that of C. polysiphoniae. Phylogenetic analysis demonstrates that C. polysiphoniae, H. mirabilis, and L. pacifica form a robustly supported clade of parasites, which retain their own plastid genomes, within the Rhodomelaceae. We therefore transfer all three genera from the exclusively parasitic family, Choreocolacaceae, to the Rhodomelaceae. Additionally, we recommend applying the terms archaeplastic parasites (formerly alloparasites), and neoplastic parasites (formerly adelphoparasites) to distinguish red algal parasites using a biological framework rather than taxonomic affiliation with their hosts.
Collapse
Affiliation(s)
- Eric D Salomaki
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, 02879, USA
| | - Christopher E Lane
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, 02879, USA
| |
Collapse
|
5
|
Cremen MCM, Leliaert F, Marcelino VR, Verbruggen H. Large Diversity of Nonstandard Genes and Dynamic Evolution of Chloroplast Genomes in Siphonous Green Algae (Bryopsidales, Chlorophyta). Genome Biol Evol 2018; 10:1048-1061. [PMID: 29635329 PMCID: PMC5888179 DOI: 10.1093/gbe/evy063] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2018] [Indexed: 12/15/2022] Open
Abstract
Chloroplast genomes have undergone tremendous alterations through the evolutionary history of the green algae (Chloroplastida). This study focuses on the evolution of chloroplast genomes in the siphonous green algae (order Bryopsidales). We present five new chloroplast genomes, which along with existing sequences, yield a data set representing all but one families of the order. Using comparative phylogenetic methods, we investigated the evolutionary dynamics of genomic features in the order. Our results show extensive variation in chloroplast genome architecture and intron content. Variation in genome size is accounted for by the amount of intergenic space and freestanding open reading frames that do not show significant homology to standard plastid genes. We show the diversity of these nonstandard genes based on their conserved protein domains, which are often associated with mobile functions (reverse transcriptase/intron maturase, integrases, phage- or plasmid-DNA primases, transposases, integrases, ligases). Investigation of the introns showed proliferation of group II introns in the early evolution of the order and their subsequent loss in the core Halimedineae, possibly through RT-mediated intron loss.
Collapse
Affiliation(s)
| | - Frederik Leliaert
- Botanic Garden Meise, 1860 Meise, Belgium.,Department of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium
| | - Vanessa R Marcelino
- School of BioSciences, University of Melbourne, Parkville, Australia.,Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, and Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, New South Wales, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Parkville, Australia
| |
Collapse
|
6
|
Cremen MCM, Leliaert F, West J, Lam DW, Shimada S, Lopez-Bautista JM, Verbruggen H. Reassessment of the classification of Bryopsidales (Chlorophyta) based on chloroplast phylogenomic analyses. Mol Phylogenet Evol 2018; 130:397-405. [PMID: 30227214 DOI: 10.1016/j.ympev.2018.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/04/2018] [Accepted: 09/10/2018] [Indexed: 01/12/2023]
Abstract
The Bryopsidales is a morphologically diverse group of mainly marine green macroalgae characterized by a siphonous structure. The order is composed of three suborders - Ostreobineae, Bryopsidineae, and Halimedineae. While previous studies improved the higher-level classification of the order, the taxonomic placement of some genera in Bryopsidineae (Pseudobryopsis and Lambia) as well as the relationships between the families of Halimedineae remains uncertain. In this study, we re-assess the phylogeny of the order with datasets derived from chloroplast genomes, drastically increasing the taxon sampling by sequencing 32 new chloroplast genomes. The phylogenies presented here provided good support for the major lineages (suborders and most families) in Bryopsidales. In Bryopsidineae, Pseudobryopsis hainanensis was inferred as a distinct lineage from the three established families allowing us to establish the family Pseudobryopsidaceae. The Antarctic species Lambia antarctica was shown to be an early-branching lineage in the family Bryopsidaceae. In Halimedineae, we revealed several inconsistent phylogenetic positions of macroscopic taxa, and several entirely new lineages of microscopic species. A new classification scheme is proposed, which includes the merger of the families Pseudocodiaceae, Rhipiliaceae and Udoteaceae into a more broadly circumscribed Halimedaceae, and the establishment of tribes for the different lineages found therein. In addition, the deep-water genus Johnson-sea-linkia, currently placed in Rhipiliopsis, was reinstated based on our phylogeny.
Collapse
Affiliation(s)
- Ma Chiela M Cremen
- School of BioSciences, University of Melbourne, Parkville, 3010 Victoria, Australia.
| | - Frederik Leliaert
- Botanic Garden Meise, 1860 Meise, Belgium; Department of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium
| | - John West
- School of BioSciences, University of Melbourne, Parkville, 3010 Victoria, Australia
| | - Daryl W Lam
- Department of Biological Sciences, The University of Alabama, 35487 AL, USA
| | - Satoshi Shimada
- Faculty of Core Research, Natural Science Division, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo 112-8610, Japan
| | | | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Parkville, 3010 Victoria, Australia
| |
Collapse
|
7
|
Paiano MO, Del Cortona A, Costa JF, Liu SL, Verbruggen H, De Clerck O, Necchi O. Organization of plastid genomes in the freshwater red algal order Batrachospermales (Rhodophyta). JOURNAL OF PHYCOLOGY 2018; 54:25-33. [PMID: 29077982 DOI: 10.1111/jpy.12602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/14/2017] [Indexed: 06/07/2023]
Abstract
Little is known about genome organization in members of the order Batrachospermales, and the infra-ordinal relationship remains unresolved. Plastid (cp) genomes of seven members of the freshwater red algal order Batrachospermales were sequenced, with the following aims: (i) to describe the characteristics of cp genomes and compare these with other red algal groups; (ii) to infer the phylogenetic relationships among these members to better understand the infra-ordinal classification. Cp genomes of Batrachospermales are large, with several cases of gene loss, they are gene-dense (high gene content for the genome size and short intergenic regions) and have highly conserved gene order. Phylogenetic analyses based on concatenated nucleotide genome data roughly supports the current taxonomic system for the order. Comparative analyses confirm data for members of the class Florideophyceae that cp genomes in Batrachospermales is highly conserved, with little variation in gene composition. However, relevant new features were revealed in our study: genome sizes in members of Batrachospermales are close to the lowest values reported for Florideophyceae; differences in cp genome size within the order are large in comparison with other orders (Ceramiales, Gelidiales, Gracilariales, Hildenbrandiales, and Nemaliales); and members of Batrachospermales have the lowest number of protein-coding genes among the Florideophyceae. In terms of gene loss, apcF, which encodes the allophycocyanin beta subunit, is absent in all sequenced taxa of Batrachospermales. We reinforce that the interordinal relationships between the freshwater orders Batrachospermales and Thoreales within the Nemaliophycidae is not well resolved due to limited taxon sampling.
Collapse
Affiliation(s)
- Monica Orlandi Paiano
- Zoology and Botany Department, São Paulo State University, São José do Rio Preto, 15054-000, Brazil
| | - Andrea Del Cortona
- Phycology Research Group, Ghent University, Krijgslaan 281-S8, 9000, Ghent, Belgium
| | - Joana F Costa
- School of Biosciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Shao-Lun Liu
- Department of Life Science, Tunghai University, Taichung, 40704, Taiwan
| | - Heroen Verbruggen
- School of Biosciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Olivier De Clerck
- Phycology Research Group, Ghent University, Krijgslaan 281-S8, 9000, Ghent, Belgium
| | - Orlando Necchi
- Zoology and Botany Department, São Paulo State University, São José do Rio Preto, 15054-000, Brazil
| |
Collapse
|
8
|
Jackson C, Knoll AH, Chan CX, Verbruggen H. Plastid phylogenomics with broad taxon sampling further elucidates the distinct evolutionary origins and timing of secondary green plastids. Sci Rep 2018; 8:1523. [PMID: 29367699 PMCID: PMC5784168 DOI: 10.1038/s41598-017-18805-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/15/2017] [Indexed: 11/08/2022] Open
Abstract
Secondary plastids derived from green algae occur in chlorarachniophytes, photosynthetic euglenophytes, and the dinoflagellate genus Lepidodinium. Recent advances in understanding the origin of these plastids have been made, but analyses suffer from relatively sparse taxon sampling within the green algal groups to which they are related. In this study we aim to derive new insights into the identity of the plastid donors, and when in geological time the independent endosymbiosis events occurred. We use newly sequenced green algal chloroplast genomes from carefully chosen lineages potentially related to chlorarachniophyte and Lepidodinium plastids, combined with recently published chloroplast genomes, to present taxon-rich phylogenetic analyses to further pinpoint plastid origins. We integrate phylogenies with fossil information and relaxed molecular clock analyses. Our results indicate that the chlorarachniophyte plastid may originate from a precusor of siphonous green algae or a closely related lineage, whereas the Lepidodinium plastid originated from a pedinophyte. The euglenophyte plastid putatively originated from a lineage of prasinophytes within the order Pyramimonadales. Our molecular clock analyses narrow in on the likely timing of the secondary endosymbiosis events, suggesting that the event leading to Lepidodinium likely occurred more recently than those leading to the chlorarachniophyte and photosynthetic euglenophyte lineages.
Collapse
Affiliation(s)
- Christopher Jackson
- School of Biosciences, University of Melbourne, Melbourne, Victoria, 3010, Australia.
| | - Andrew H Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138, USA
| | - Cheong Xin Chan
- Institute for Molecular Bioscience, and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Heroen Verbruggen
- School of Biosciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| |
Collapse
|
9
|
Díaz-Tapia P, Maggs CA, West JA, Verbruggen H. Analysis of chloroplast genomes and a supermatrix inform reclassification of the Rhodomelaceae (Rhodophyta). JOURNAL OF PHYCOLOGY 2017; 53:920-937. [PMID: 28561261 DOI: 10.1111/jpy.12553] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
With over a thousand species, the Rhodomelaceae is the most species-rich family of red algae. While its genera have been assigned to 14 tribes, the high-level classification of the family has never been evaluated with a molecular phylogeny. Here, we reassess its classification by integrating genome-scale phylogenetic analysis with observations of the morphological characters of clades. In order to resolve relationships among the main lineages of the family we constructed a phylogeny with 55 chloroplast genomes (52 newly determined). The majority of branches were resolved with full bootstrap support. We then added 266 rbcL, 125 18S rRNA gene and 143 cox1 sequences to construct a comprehensive phylogeny containing nearly half of all known species in the family (407 species in 89 genera). These analyses suggest the same subdivision into higher-level lineages, but included many branches with moderate or poor support. The circumscription for nine of the 13 previously described tribes was supported, but the Lophothalieae, Polysiphonieae, Pterosiphonieae and Herposiphonieae required revision, and five new tribes and one resurrected tribe were segregated from them. Rhizoid anatomy is highlighted as a key diagnostic character for the morphological delineation of several lineages. This work provides the most extensive phylogenetic analysis of the Rhodomelaceae to date and successfully resolves the relationships among major clades of the family. Our data show that organellar genomes obtained through high-throughput sequencing produce well-resolved phylogenies of difficult groups, and their more general application in algal systematics will likely permit deciphering questions about classification at many taxonomic levels.
Collapse
Affiliation(s)
- Pilar Díaz-Tapia
- Coastal Biology Research Group, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), University of A Coruña, 15071, A Coruña, Spain
- School of BioSciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
- Faculty of Science and Technology, Bournemouth University, Talbot Campus, Poole, Dorset, BH12 5BB, UK
| | - Christine A Maggs
- Faculty of Science and Technology, Bournemouth University, Talbot Campus, Poole, Dorset, BH12 5BB, UK
| | - John A West
- School of BioSciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| |
Collapse
|
10
|
Verbruggen H, Marcelino VR, Guiry MD, Cremen MCM, Jackson CJ. Phylogenetic position of the coral symbiont Ostreobium (Ulvophyceae) inferred from chloroplast genome data. JOURNAL OF PHYCOLOGY 2017; 53:790-803. [PMID: 28394415 DOI: 10.1111/jpy.12540] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/13/2016] [Indexed: 05/29/2023]
Abstract
The green algal genus Ostreobium is an important symbiont of corals, playing roles in reef decalcification and providing photosynthates to the coral during bleaching events. A chloroplast genome of a cultured strain of Ostreobium was available, but low taxon sampling and Ostreobium's early-branching nature left doubt about its phylogenetic position. Here, we generate and describe chloroplast genomes from four Ostreobium strains as well as Avrainvillea mazei and Neomeris sp., strategically sampled early-branching lineages in the Bryopsidales and Dasycladales respectively. At 80,584 bp, the chloroplast genome of Ostreobium sp. HV05042 is the most compact yet found in the Ulvophyceae. The Avrainvillea chloroplast genome is ~94 kbp and contains introns in infA and cysT that have nearly complete sequence identity except for an open reading frame (ORF) in infA that is not present in cysT. In line with other bryopsidalean species, it also contains regions with possibly bacteria-derived ORFs. The Neomeris data did not assemble into a canonical circular chloroplast genome but a large number of contigs containing fragments of chloroplast genes and showing evidence of long introns and intergenic regions, and the Neomeris chloroplast genome size was estimated to exceed 1.87 Mb. Chloroplast phylogenomics and 18S nrDNA data showed strong support for the Ostreobium lineage being sister to the remaining Bryopsidales. There were differences in branch support when outgroups were varied, but the overall support for the placement of Ostreobium was strong. These results permitted us to validate two suborders and introduce a third, the Ostreobineae.
Collapse
Affiliation(s)
- Heroen Verbruggen
- School of BioSciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Vanessa R Marcelino
- School of BioSciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Michael D Guiry
- AlgaeBase, Ryan Institute, National University of Ireland, Galway, H91 TK33, Ireland
| | - Ma Chiela M Cremen
- School of BioSciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Christopher J Jackson
- School of BioSciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| |
Collapse
|
11
|
Muñoz-Gómez SA, Mejía-Franco FG, Durnin K, Colp M, Grisdale CJ, Archibald JM, Slamovits CH. The New Red Algal Subphylum Proteorhodophytina Comprises the Largest and Most Divergent Plastid Genomes Known. Curr Biol 2017; 27:1677-1684.e4. [DOI: 10.1016/j.cub.2017.04.054] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 12/25/2022]
|
12
|
Hughey JR, Hommersand MH, Gabrielson PW, Miller KA, Fuller T. Analysis of the complete plastomes of three species of Membranoptera (Ceramiales, Rhodophyta) from Pacific North America. JOURNAL OF PHYCOLOGY 2017; 53:32-43. [PMID: 27690326 DOI: 10.1111/jpy.12472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 08/12/2016] [Indexed: 06/06/2023]
Abstract
Next generation sequence data were generated and used to assemble the complete plastomes of the holotype of Membranoptera weeksiae, the neotype (designated here) of M. tenuis, and a specimen examined by Kylin in making the new combination M. platyphylla. The three plastomes were similar in gene content and length and showed high gene synteny to Calliarthron, Grateloupia, Sporolithon, and Vertebrata. Sequence variation in the plastome coding regions were 0.89% between M. weeksiae and M. tenuis, 5.14% between M. weeksiae and M. platyphylla, and 5.18% between M. tenuis and M. platyphylla. We were unable to decipher the complete mitogenomes of the three species due to low coverage and structural problems; however, we assembled and analyzed, the cytochrome oxidase I, II, and III loci and found that M. weeksiae and M. tenuis differed in sequence by 1.3%, M. weeksiae and M. platyphylla by 8.4%, and M. tenuis and M. platyphylla by 8.1%. Evaluation of standard marker genes indicated that sequences from the rbcL, RuBisCO spacer, and CO1 genes closely approximated the pair-wise genetic distances observed between the plastomes of the three species of Membranoptera. A phylogenetic tree based on rbcL sequences showed that M. tenuis and M. weeksiae were sister taxa. Short rbcL sequences were obtained from type specimens of M. dimorpha, M. multiramosa, and M. edentata and confirmed their conspecificity with M. platyphylla. The data support the recognition of three species of Membranoptera occurring south of Alaska: M. platyphylla, M. tenuis, and M. weeksiae.
Collapse
Affiliation(s)
- Jeffery R Hughey
- Division of Mathematics, Science, and Engineering, Hartnell College, 411 Central Ave., Salinas, California, 93901, USA
| | - Max H Hommersand
- Department of Biology, University of North Carolina at Chapel Hill, CB# 3280, Coker Hall, Chapel Hill, North Carolina, 27599-3280, USA
| | - Paul W Gabrielson
- Herbarium and Department of Biology, University of North Carolina at Chapel Hill, CB# 3280, Coker Hall, Chapel Hill, North Carolina, 27599-3280, USA
| | - Kathy Ann Miller
- Herbarium, University of California at Berkeley, 1001 Valley Life Sciences Building 2465, Berkeley, California, 94720-2465, USA
| | - Timothy Fuller
- Division of Mathematics, Science, and Engineering, Hartnell College, 411 Central Ave., Salinas, California, 93901, USA
| |
Collapse
|
13
|
Ng PK, Lin SM, Lim PE, Liu LC, Chen CM, Pai TW. Complete chloroplast genome of Gracilaria firma (Gracilariaceae, Rhodophyta), with discussion on the use of chloroplast phylogenomics in the subclass Rhodymeniophycidae. BMC Genomics 2017; 18:40. [PMID: 28061748 PMCID: PMC5217408 DOI: 10.1186/s12864-016-3453-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/22/2016] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The chloroplast genome of Gracilaria firma was sequenced in view of its role as an economically important marine crop with wide industrial applications. To date, there are only 15 chloroplast genomes published for the Florideophyceae. Apart from presenting the complete chloroplast genome of G. firma, this study also assessed the utility of genome-scale data to address the phylogenetic relationships within the subclass Rhodymeniophycidae. The synteny and genome structure of the chloroplast genomes across the taxa of Eurhodophytina was also examined. RESULTS The chloroplast genome of Gracilaria firma maps as a circular molecule of 187,001 bp and contains 252 genes, which are distributed on both strands and consist of 35 RNA genes (3 rRNAs, 30 tRNAs, tmRNA and a ribonuclease P RNA component) and 217 protein-coding genes, including the unidentified open reading frames. The chloroplast genome of G. firma is by far the largest reported for Gracilariaceae, featuring a unique intergenic region of about 7000 bp with discontinuous vestiges of red algal plasmid DNA sequences interspersed between the nblA and cpeB genes. This chloroplast genome shows similar gene content and order to other Florideophycean taxa. Phylogenomic analyses based on the concatenated amino acid sequences of 146 protein-coding genes confirmed the monophyly of the classes Bangiophyceae and Florideophyceae with full nodal support. Relationships within the subclass Rhodymeniophycidae in Florideophyceae received moderate to strong nodal support, and the monotypic family of Gracilariales were resolved with maximum support. CONCLUSIONS Chloroplast genomes hold substantial information that can be tapped for resolving the phylogenetic relationships of difficult regions in the Rhodymeniophycidae, which are perceived to have experienced rapid radiation and thus received low nodal support, as exemplified in this study. The present study shows that chloroplast genome of G. firma could serve as a key link to the full resolution of Gracilaria sensu lato complex and recognition of Hydropuntia as a genus distinct from Gracilaria sensu stricto.
Collapse
Affiliation(s)
- Poh-Kheng Ng
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, 20244 Taiwan
| | - Showe-Mei Lin
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, 20244 Taiwan
| | - Phaik-Eem Lim
- Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur, 50603 Malaysia
| | - Li-Chia Liu
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, 20244 Taiwan
| | - Chien-Ming Chen
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, 20244 Taiwan
| | - Tun-Wen Pai
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, 20244 Taiwan
| |
Collapse
|
14
|
F Costa J, Lin SM, Macaya EC, Fernández-García C, Verbruggen H. Chloroplast genomes as a tool to resolve red algal phylogenies: a case study in the Nemaliales. BMC Evol Biol 2016; 16:205. [PMID: 27724867 PMCID: PMC5057469 DOI: 10.1186/s12862-016-0772-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/28/2016] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Obtaining strongly supported phylogenies that permit confident taxonomic and evolutionary interpretations has been a challenge in algal biology. High-throughput sequencing has improved the capacity to generate data and yields more informative datasets. We sequenced and analysed the chloroplast genomes of 22 species of the order Nemaliales as a case study in the use of phylogenomics as an approach to achieve well-supported phylogenies of red algae. RESULTS Chloroplast genomes of the order Nemaliales are highly conserved, gene-dense and completely syntenic with very few cases of gene loss. Our ML estimation based on 195 genes recovered a completely supported phylogeny, permitting re-classification of the order at various taxonomic levels. Six families are recognised and the placement of several previously contradictory clades is resolved. Two new sub-orders are described, Galaxaurineae and Nemaliineae, based on the early-branching nature and monophyly of the groups, and presence or absence of a pericarp. Analyses of subsets of the data showed that >90 % bootstrap support can be achieved with datasets as small as 2500 nt and that fast and medium evolving genes perform much better when it comes to resolving phylogenetic relationships. CONCLUSIONS In this study we show that phylogenomics is an efficient and effective approach to investigate phylogenetic relationships. The six currently circumscribed Nemaliales families are clustered into two evolutionary lineages with strong statistical support based on chloroplast phylogenomic analyses. The conserved nature of red algal chloroplast genomes is a convenient and accessible source of data to resolve their ancient relationships.
Collapse
Affiliation(s)
- Joana F Costa
- School of BioSciences, University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Showe-Mei Lin
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Erasmo C Macaya
- Departamento de Oceanografıa, Universidad de Concepción, Casilla, 160-C, Chile
- Millennium Nucleus Ecology and Sustainable Management of Oceanic Island (ESMOI), Coquimbo, Chile
| | - Cindy Fernández-García
- Escuela de Biología, Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Universidad de Costa Rica, San Pedro, San José, 11501-2060, Costa Rica
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
15
|
Wetherbee R, Verbruggen H. Kraftionema allantoideum, a new genus and family of Ulotrichales (Chlorophyta) adapted for survival in high intertidal pools. JOURNAL OF PHYCOLOGY 2016; 52:704-715. [PMID: 27403596 DOI: 10.1111/jpy.12447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/28/2016] [Indexed: 06/06/2023]
Abstract
The marine, sand-dwelling green alga Kraftionema allantoideum gen. et sp. nov. is described from clonal cultures established from samples collected in coastal, high intertidal pools from south eastern Australia. The species forms microscopic, uniseriate, unbranched, 6-8 μm wide filaments surrounded by a gelatinous capsule of varying thickness. Filaments are twisted, knotted, and variable in length from 4 to 50 cells in field samples but straighter and much longer in culture, up to 1.5 mm in length. Cell division occurs in several planes, resulting in daughter cells of varying shape, from square to rectangular to triangular, giving rise to gnarled filaments. Mature cells become allantoid, elongate with rounded ends, before dividing one time to form bicells comprised of two domed cells. Adjacent bicells separate from one another and mature filaments appeared as a string of loosely arranged sausages. A massive, single, banded chloroplast covered 3/4 of the wall circumference, and contained a single large pyrenoid encased in a starch envelope that measures 1.5-2.5 μm. Filaments were not adhesive nor did they produce specialized adhesive cells or structures. Reproduction was by fragmentation with all cells capable of producing a new filament. No motile or reproductive cells were observed. Filaments in culture grew equally well in freshwater or marine media, as well as at high salinity, and cells quickly recovered from desiccation. Phylogenetic analysis based on the nuclear-encoded small subunit ribosomal RNA (18S) shows the early branching nature of the Kraftionema lineage among Ulotrichales, warranting its recognition as a family (Kraftionemaceae).
Collapse
Affiliation(s)
- Richard Wetherbee
- School of BioSciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| |
Collapse
|
16
|
West JA, Zuccarello GC, de Goër SL, Stavrias LA, Verbruggen H. Rhodenigma contortum, an obscure new genus and species of Rhodogorgonales (Rhodophyta) from Western Australia. JOURNAL OF PHYCOLOGY 2016; 52:397-403. [PMID: 27273532 DOI: 10.1111/jpy.12402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/19/2016] [Indexed: 06/06/2023]
Abstract
An unknown microscopic, branched filamentous red alga was isolated into culture from coral fragments collected in Coral Bay, Western Australia. It grew well unattached or attached to glass with no reproduction other than fragmentation of filaments. Cells of some branch tips became slightly contorted and digitated, possibly as a substrate-contact-response seen at filament tips of various algae. Attached multicellular compact disks on glass had a very different cellular configuration and size than the free filaments. In culture the filaments did not grow on or in coral fragments. Molecular phylogenies based on four markers (rbcL, cox1, 18S, 28S) clearly showed it belongs to the order Rhodogorgonales, as a sister clade of Renouxia. Based on these results, the alga is described as the new genus and species Rhodenigma contortum in the Rhodogorgonaceae. It had no morphological similarity to either of the other genera in Rhodogorgonaceae and illustrates the unknown diversity in cryptic habitats such as tropical coral rubble.
Collapse
Affiliation(s)
- John A West
- School of Biosciences 2, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Giuseppe C Zuccarello
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand
| | | | - Lambros A Stavrias
- School of Biosciences 2, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Heroen Verbruggen
- School of Biosciences 2, University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|