1
|
Zhang X, Chen J, Xu Z, Liu H. Metabarcoding reveals high species diversity of Chaetoceros, Pseudo-nitzschia, and Thalassiosira in Hong Kong coastal waters, a typical subtropical region. MARINE POLLUTION BULLETIN 2025; 212:117549. [PMID: 39827618 DOI: 10.1016/j.marpolbul.2025.117549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Chaetoceros, Pseudo-nitzschia, and Thalassiosira are ecologically important genera which formed blooms frequently in Hong Kong coastal waters in past decades. However, species identification based on microscopic observation for diatoms in these genera is difficult. In this study, we investigated species diversity of Chaetoceros, Pseudo-nitzschia, and Thalassiosira in Hong Kong coastal waters using metabarcoding approach. Based on the analysis of SSU rRNA gene (Small subunit of ribosome), LSU rRNA gene (Large subunit of ribosome), and ITS region (Internal transcribed spacer), ITS region was the best gene marker for Pseudo-nitzschia while LSU rRNA gene was better to reveal the species diversity of Chaetoceros and Thalassiosira than other two gene markers. We detected seventeen, thirteen, and seventeen species of Chaetoceros, Pseudo-nitzschia, and Thalassiosira, respectively, in Hong Kong coastal waters. Twelve Chaetoceros species, six Pseudo-nitzschia species, and five Thalassiosira species were recorded for the first time in this study. Taking consideration of previous studies together, there are at least 31, 22 and 38 species of Chaetoceros, Pseudo-nitzschia, and Thalassiosira in Hong Kong coastal waters. In addition, according to previous studies and local records, multiple species of three genera were capable to form blooms and ten Pseudo-nitzschia species were potentially toxic. The bloom-forming species C. tenuissimus, P. micropora, P. cuspidata, and T. lundiana as well as non-bloom forming species T. tenera were the main dominant species. The remarkably high abundance of Pseudo-nitzschia in summer was potentially mainly contributed by the P. cuspidata, which is capable to produce domoic acid locally.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jiawei Chen
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhimeng Xu
- Haide College, Ocean University of China, Qingdao, China.
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China; Hong Kong Branch of Southern Marine Science & Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China; State Key Laboratory of Marine Pollution, Hong Kong, China.
| |
Collapse
|
2
|
Bonačić T, Arapov J, Bušelić I, Lepen Pleić I, Milić Roje B, Tomašević T, Bužančić M, Mladinić M, Casabianca S, Penna A, Skejić S, Ninčević Gladan Ž. Advancing the Taxonomy of the Diatom Pseudo-nitzschia Through an Integrative Study Conducted in the Central and Southeastern Adriatic Sea. PLANTS (BASEL, SWITZERLAND) 2025; 14:245. [PMID: 39861598 PMCID: PMC11768262 DOI: 10.3390/plants14020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
The marine diatom genus Pseudo-nitzschia comprises cosmopolitan phytoplankton species commonly present in the Adriatic Sea. Species within the genus Pseudo-nitzschia have been of significant concern because they produce domoic acid (DA), which can cause amnesic shellfish poisoning (ASP). In this study, we identified Pseudo-nitzschia species along the Central and Southeastern Adriatic Sea, where monthly sampling carried out from February 2022 to February 2024 allowed for comprehensive species documentation. Pseudo-nitzschia species cell cultures isolated from the study areas were morphologically and molecularly analysed. Morphological analyses were performed using a scanning electron microscope (FE-SEM/STEM), while molecular analyses were conducted, targeting the ITS1-5.8S-ITS2, LSU, and rbcL regions, to confirm species identity. This integrative approach led to the identification of eight species: Pseudo-nitzschia allochrona, Pseudo-nitzschia calliantha, Pseudo-nitzschia delicatissima, Pseudo-nitzschia fraudulenta, Pseudo-nitzschia mannii, Pseudo-nitzschia multistriata, Pseudo-nitzschia pseudodelicatissima, and Pseudo-nitzschia subfraudulenta. Our findings underscore the value of a combined approach for reliable species identification and contribute to the development of genetic sequence databases that support the advancement of next-generation methods such as metabarcoding. This research emphasises the importance of combined morphological and molecular methods for the differentiation of the cryptic and pseudo-cryptic Pseudo-nitzschia species.
Collapse
Affiliation(s)
- Tina Bonačić
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21000 Split, Croatia; (J.A.); (I.B.); (I.L.P.); (B.M.R.); (T.T.); (M.B.); (S.S.); (Ž.N.G.)
- Doctoral Study of Biophysics, Faculty of Science, University of Split, Ruđera Boškovića 37, 21000 Split, Croatia
| | - Jasna Arapov
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21000 Split, Croatia; (J.A.); (I.B.); (I.L.P.); (B.M.R.); (T.T.); (M.B.); (S.S.); (Ž.N.G.)
| | - Ivana Bušelić
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21000 Split, Croatia; (J.A.); (I.B.); (I.L.P.); (B.M.R.); (T.T.); (M.B.); (S.S.); (Ž.N.G.)
| | - Ivana Lepen Pleić
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21000 Split, Croatia; (J.A.); (I.B.); (I.L.P.); (B.M.R.); (T.T.); (M.B.); (S.S.); (Ž.N.G.)
| | - Blanka Milić Roje
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21000 Split, Croatia; (J.A.); (I.B.); (I.L.P.); (B.M.R.); (T.T.); (M.B.); (S.S.); (Ž.N.G.)
| | - Tina Tomašević
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21000 Split, Croatia; (J.A.); (I.B.); (I.L.P.); (B.M.R.); (T.T.); (M.B.); (S.S.); (Ž.N.G.)
- Doctoral Study of Biophysics, Faculty of Science, University of Split, Ruđera Boškovića 37, 21000 Split, Croatia
| | - Mia Bužančić
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21000 Split, Croatia; (J.A.); (I.B.); (I.L.P.); (B.M.R.); (T.T.); (M.B.); (S.S.); (Ž.N.G.)
| | - Marija Mladinić
- Department of Biology, Faculty of Science, University of Zagreb, Ravnice 48, 10000 Zagreb, Croatia;
| | - Silvia Casabianca
- Department of Biomolecular Sciences, Campus E. Mattei, University of Urbino, Via Ca’ le Suore 2/4, 61029 Urbino, Italy; (S.C.); (A.P.)
- CoNISMa National Inter-University Consortium for Marine Sciences, 00196 Rome, Italy
| | - Antonella Penna
- Department of Biomolecular Sciences, Campus E. Mattei, University of Urbino, Via Ca’ le Suore 2/4, 61029 Urbino, Italy; (S.C.); (A.P.)
- CoNISMa National Inter-University Consortium for Marine Sciences, 00196 Rome, Italy
| | - Sanda Skejić
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21000 Split, Croatia; (J.A.); (I.B.); (I.L.P.); (B.M.R.); (T.T.); (M.B.); (S.S.); (Ž.N.G.)
| | - Živana Ninčević Gladan
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21000 Split, Croatia; (J.A.); (I.B.); (I.L.P.); (B.M.R.); (T.T.); (M.B.); (S.S.); (Ž.N.G.)
| |
Collapse
|
3
|
Tan SN, Kotaki Y, Teng ST, Lim HC, Gao C, Lundholm N, Wolf M, Gu H, Lim PT, Leaw CP. Intraspecific genetic diversity with unrestricted gene flow in the domoic acid-producing diatom Nitzschia navis-varingica (Bacillariophyceae) from the Western Pacific. HARMFUL ALGAE 2025; 141:102769. [PMID: 39645396 DOI: 10.1016/j.hal.2024.102769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/15/2024] [Accepted: 11/23/2024] [Indexed: 12/09/2024]
Abstract
The benthic pennate diatom Nitzschia navis-varingica, known for producing domoic acid (DA) and its isomers, is widely distributed in the Western Pacific (WP) region. To investigate the genetic differentiation and gene flow patterns among the populations in the WP, the genetic diversity of 354 strains of N. navis-varingica was analysed using two nuclear-encoded rDNA loci: the large subunit rDNA (LSU rDNA) and the internal transcribed spacer 2 (ITS2). Frustule morphology of each strain was examined by TEM. The LSU rDNA phylogeny revealed a monophyletic lineage encompassing all strains, with sequence divergences of <0.9 %. Phylogenetic and population genetic analyses of ITS2 identified eight distinct clades (designated as Groups A to H) with moderate to high genetic heterogeneity (0.5-19.7 %). The low genetic differentiations between the geographically separated populations (pairwise FST of <0.03) suggested high gene flow and lack of spatial genetic structuring. Molecular clock analysis of the ITS2 phylogeny traced the evolutionary history of N. navis-varingica to the Eocene Epoch, and the split between clades likely occurred from the mid-Miocene to Pleistocene Epochs (10.8-1.2 Ma). The population dispersal in the WP were likely influenced by historical events like the Quarternary glacial cycles during the period, contributing to its homogenous distributions in the region.
Collapse
Affiliation(s)
- Suh Nih Tan
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya 16310 Bachok, Kelantan, Malaysia; China-ASEAN College of Marine Sciences, Xiamen University Malaysia 43900 Sepang, Selangor, Malaysia.
| | - Yuichi Kotaki
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8572 Japan
| | - Sing Tung Teng
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak 94300 Kota Samarahan, Sarawak, Malaysia
| | - Hong Chang Lim
- Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak 94300 Kota Samarahan, Sarawak, Malaysia
| | - Chunlei Gao
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Nina Lundholm
- Natural History Museum of Denmark, University of Copenhagen, 1353 Copenhagen K, Denmark
| | - Matthias Wolf
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland 97074 Würzburg, Germany
| | - Haifeng Gu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Po Teen Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya 16310 Bachok, Kelantan, Malaysia
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya 16310 Bachok, Kelantan, Malaysia.
| |
Collapse
|
4
|
He Z, Xu Q, Chen Y, Liu S, Song H, Wang H, Leaw CP, Chen N. Acquisition and evolution of the neurotoxin domoic acid biosynthesis gene cluster in Pseudo-nitzschia species. Commun Biol 2024; 7:1378. [PMID: 39443678 PMCID: PMC11499653 DOI: 10.1038/s42003-024-07068-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Of the hitherto over 60 taxonomically identified species in the genus of Pseudo-nitzschia, 26 have been confirmed to be toxigenic. Nevertheless, the acquisition and evolution of the toxin biosynthesis (dab) genes by this extensive group of Pseudo-nitzschia species remains unclear. Through constructing chromosome-level genomes of three Pseudo-nitzschia species and draft genomes of ten additional Pseudo-nitzschia species, putative genomic integration sites for the dab genes in Pseudo-nitzschia species were explored. A putative breakpoint was observed in syntenic regions in the dab gene cluster-lacking Pseudo-nitzschia species, suggesting potential independent losses of dab genes. The breakpoints between this pair of conserved genes were also identified in some dab genes-possessing Pseudo-nitzschia species, suggesting that the dab gene clusters transposed to other loci after the initial integration. A "single acquisition, multiple independent losses (SAMIL)" model is proposed to explain the acquisition and evolution of the dab gene cluster in Pseudo-nitzschia species.
Collapse
Affiliation(s)
- Ziyan He
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
- College of Marine Science, University of Chinese Academy of Sciences, 10039, Beijing, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Qing Xu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Yang Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
- College of Marine Science, University of Chinese Academy of Sciences, 10039, Beijing, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Shuya Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Huiyin Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Hui Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310, Bachok, Kelantan, Malaysia
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
5
|
Santaniello G, Falascina G, Ziaco M, Fioretto L, Sardo A, Carelli M, Conte M, Romano G, Cutignano A. Distribution and Level of Bioactive Monoacylglycerols in 12 Marine Microalgal Species. Mar Drugs 2024; 22:258. [PMID: 38921569 PMCID: PMC11205161 DOI: 10.3390/md22060258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Microalgae are currently considered an attractive source of highly valuable metabolites potentially exploitable as anticancer agents, nutraceuticals and cosmeceuticals and for bioenergy purposes. Their ease of culturing and their high growth rates further promote their use as raw material for the production of specialty products. In the present paper, we focused our attention on specific glycerol-based lipid compounds, monoacylglycerols (MAGs), which displayed in our previous studies a selective cytotoxic activity against the haematological U-937 and the colon HCT-116 cancer cell lines. Here, we performed a quali/quantitative analysis of MAGs and total fatty acids (FAs) along with a profiling of the main lipid classes in a panel of 12 microalgal species, including diatoms and dinoflagellates. Our results highlight an inter- and intraspecific variability of MAG profile in the selected strains. Among them, Skeletonema marinoi (strain FE7) has emerged as the most promising source for possible biotechnological production of MAGs.
Collapse
Affiliation(s)
- Giovanna Santaniello
- Stazione Zoologica Anton Dohrn, Ecosustainable Marine Biotechnology Department, via Acton 55, 80133 Naples, Italy; (G.S.); (A.S.)
- National Research Council (CNR), Institute of Biomolecular Chemistry (ICB), via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.F.); (M.Z.); (L.F.); (M.C.)
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico L. De Crecchio 7, 80138 Naples, Italy;
| | - Gianna Falascina
- National Research Council (CNR), Institute of Biomolecular Chemistry (ICB), via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.F.); (M.Z.); (L.F.); (M.C.)
| | - Marcello Ziaco
- National Research Council (CNR), Institute of Biomolecular Chemistry (ICB), via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.F.); (M.Z.); (L.F.); (M.C.)
| | - Laura Fioretto
- National Research Council (CNR), Institute of Biomolecular Chemistry (ICB), via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.F.); (M.Z.); (L.F.); (M.C.)
| | - Angela Sardo
- Stazione Zoologica Anton Dohrn, Ecosustainable Marine Biotechnology Department, via Acton 55, 80133 Naples, Italy; (G.S.); (A.S.)
| | - Martina Carelli
- National Research Council (CNR), Institute of Biomolecular Chemistry (ICB), via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.F.); (M.Z.); (L.F.); (M.C.)
| | - Mariarosaria Conte
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico L. De Crecchio 7, 80138 Naples, Italy;
| | - Giovanna Romano
- Stazione Zoologica Anton Dohrn, Ecosustainable Marine Biotechnology Department, via Acton 55, 80133 Naples, Italy; (G.S.); (A.S.)
| | - Adele Cutignano
- Stazione Zoologica Anton Dohrn, Ecosustainable Marine Biotechnology Department, via Acton 55, 80133 Naples, Italy; (G.S.); (A.S.)
- National Research Council (CNR), Institute of Biomolecular Chemistry (ICB), via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.F.); (M.Z.); (L.F.); (M.C.)
| |
Collapse
|
6
|
Niu B, Pang J, Lundholm N, Liang C, Teng ST, Zheng Q, Guo X, Li Y. A Pseudo-nitzschia metabarcoding approach with a calibrated ITS1 reference sequence database applied in the Taiwan Strait. HARMFUL ALGAE 2024; 133:102602. [PMID: 38485439 DOI: 10.1016/j.hal.2024.102602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 03/19/2024]
Abstract
Pseudo-nitzschia is a cosmopolitan phytoplankton genus of which some species can form blooms and produce the neurotoxin domoic acid (DA). Identification of Pseudo-nitzschia is generally based on field material or strains followed by morphological and/or molecular characterization. However, this process is time-consuming and laborious, and can not obtain a relatively complete and reliable profile of the Pseudo-nitzschia community, because species with low abundance in the field or potentially unavailable for culturing may easily be overlooked. In the present study, specific ITS primer sets were designed and evaluated using in silico matching. The primer set ITS-84F/456R involving the complete ITS1 region was found optimal. Based on matching with a Pseudo-nitzschia ITS1 reference sequence database carefully-calibrated in this study, a metabarcoding approach using annotated amplicon sequence variants (ASV) was applied in the Taiwan Strait of the East China Sea during two cruises in the spring and summer of 2019. In total, 48 Pseudo-nitzschia species/phylotypes including 36 known and 12 novel were uncovered, and verified by haplotype networks, ITS2 secondary structure comparisons and divergence analyses. Correlation analyses revealed that temperature was a key factor affecting the seasonal variation of the Pseudo-nitzschia community. This study provides an overview of the Pseudo-nitzschia community in the Taiwan Strait, with new insights into the diversity. The developed metabarcoding approach may be used elsewhere as a standard reference for accurate annotation of Pseudo-nitzschia.
Collapse
Affiliation(s)
- Biaobiao Niu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, College of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou 510631, China
| | - Jinxiu Pang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, College of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou 510631, China
| | - Nina Lundholm
- Natural History Museum of Denmark, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark
| | - Cuiwen Liang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, College of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou 510631, China
| | - Sing Tung Teng
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia
| | - Qixiang Zheng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, College of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou 510631, China
| | - Xin Guo
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, College of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou 510631, China
| | - Yang Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, College of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou 510631, China.
| |
Collapse
|
7
|
von Dassow P, Mikhno M, Percopo I, Orellana VR, Aguilera V, Álvarez G, Araya M, Cornejo-Guzmán S, Llona T, Mardones JI, Norambuena L, Salas-Rojas V, Kooistra WHCF, Montresor M, Sarno D. Diversity and toxicity of the planktonic diatom genus Pseudo-nitzschia from coastal and offshore waters of the Southeast Pacific, including Pseudo-nitzschia dampieri sp. nov. HARMFUL ALGAE 2023; 130:102520. [PMID: 38061816 DOI: 10.1016/j.hal.2023.102520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/18/2023] [Accepted: 09/29/2023] [Indexed: 12/18/2023]
Abstract
To expand knowledge of Pseudo-nitzschia species in the Southeast Pacific, we isolated specimens from coastal waters of central Chile (36°S-30°S), the Gulf of Corcovado, and the oceanic Robinson Crusoe Island (700 km offshore) and grew them into monoclonal strains. A total of 123 Pseudo-nitzschia strains were identified to 11 species based on sequencing of the ITS region of the nuclear rDNA and on ultrastructural and morphometric analyses of the frustule in selected representatives of each clade: P. australis, P. bucculenta, P. cf. chiniana, P. cf. decipiens, P. fraudulenta, P. hasleana, P. multistriata, P. plurisecta, P. cf. sabit, the new species P. dampieri sp. nov., and one undescribed species. Partial 18S and 28S rDNA sequences, including the hypervariable V4 and D1-D3 regions used for barcoding, were gathered from representative strains of each species to facilitate future metabarcoding studies. Results showed different levels of genetic, and at times ultrastructural, diversity among the above-mentioned entities, suggesting morphological variants (P. bucculenta), rapidly radiating complexes with ill-defined species boundaries (P. cf. decipiens and P. cf. sabit), and the presence of new species (P. dampieri sp. nov., Pseudo-nitzschia sp. 1, and probably P. cf. chiniana). Domoic acid (DA) was detected in 18 out of 82 strains tested, including those of P. australis, P. plurisecta, and P. multistriata. Toxicity varied among species mostly corresponding to expectations from previous reports, with the prominent exception of P. fraudulenta; DA was not detected in any of its 10 strains tested. In conclusion, a high diversity of Pseudo-nitzschia exists in Chilean waters, particularly offshore.
Collapse
Affiliation(s)
- Peter von Dassow
- Departamento de Ecología, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, 8331150, Chile; Instituto Milenio de Oceanografía, Universidad de Concepción, Barrio Universitario S/N, Concepción, 4070112, Chile; Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | - Marta Mikhno
- Departamento de Ecología, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, 8331150, Chile; Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Isabella Percopo
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Valentina Rubio Orellana
- Departamento de Ecología, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, 8331150, Chile; Instituto Milenio de Oceanografía, Universidad de Concepción, Barrio Universitario S/N, Concepción, 4070112, Chile
| | - Víctor Aguilera
- Instituto Milenio de Oceanografía, Universidad de Concepción, Barrio Universitario S/N, Concepción, 4070112, Chile; Laboratorio de Oceanografía Desértico Costera (LODEC), Centro de Estudios Avanzados en Zonas Áridas, Larrondo 1281, Coquimbo, 1781421, Chile
| | - Gonzalo Álvarez
- Facultad de Ciencias del Mar, Departamento de Acuicultura, Universidad Católica del Norte, Larrondo 1281, Coquimbo, 1781421, Chile; Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Universidad Católica del Norte, Larrondo 1281, Coquimbo, 1781421, Chile
| | - Michael Araya
- Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Universidad Católica del Norte, Larrondo 1281, Coquimbo, 1781421, Chile
| | - Sebastián Cornejo-Guzmán
- Departamento de Geofísica, Universidad de Concepción, Barrio Universitario S/N, Concepción, 4070112 Chile
| | - Tomás Llona
- Instituto Milenio de Oceanografía, Universidad de Concepción, Barrio Universitario S/N, Concepción, 4070112, Chile
| | - Jorge I Mardones
- Centro de Estudio de Algas Nocivas (CREAN), Instituto de Fomento Pesquero, Padre Harter 574, Puerto Montt, 5501679, Chile; Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O´Higgins, Santiago 8370993, Chile
| | - Luis Norambuena
- Centro de Estudio de Algas Nocivas (CREAN), Instituto de Fomento Pesquero, Padre Harter 574, Puerto Montt, 5501679, Chile
| | - Victoria Salas-Rojas
- Departamento de Ecología, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, 8331150, Chile; Instituto Milenio de Oceanografía, Universidad de Concepción, Barrio Universitario S/N, Concepción, 4070112, Chile
| | | | - Marina Montresor
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Diana Sarno
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| |
Collapse
|
8
|
Brunson JK, Thukral M, Ryan JP, Anderson CR, Kolody BC, James C, Chavez FP, Leaw CP, Rabines AJ, Venepally P, Zheng H, Kudela RM, Smith GJ, Moore BS, Allen AE. Molecular Forecasting of Domoic Acid during a Pervasive Toxic Diatom Bloom. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565333. [PMID: 37961417 PMCID: PMC10635071 DOI: 10.1101/2023.11.02.565333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In 2015, the largest recorded harmful algal bloom (HAB) occurred in the Northeast Pacific, causing nearly 100 million dollars in damages to fisheries and killing many protected marine mammals. Dominated by the toxic diatom Pseudo-nitzschia australis , this bloom produced high levels of the neurotoxin domoic acid (DA). Through molecular and transcriptional characterization of 52 near-weekly phytoplankton net-tow samples collected at a bloom hotspot in Monterey Bay, California, we identified active transcription of known DA biosynthesis ( dab ) genes from the three identified toxigenic species, including P. australis as the primary origin of toxicity. Elevated expression of silicon transporters ( sit1 ) during the bloom supports the previously hypothesized role of dissolved silica (Si) exhaustion in contributing to bloom physiology and toxicity. We find that co-expression of the dabA and sit1 genes serves as a robust predictor of DA one week in advance, potentially enabling the forecasting of DA-producing HABs. We additionally present evidence that low levels of iron could have co-limited the diatom population along with low Si. Iron limitation represents a previously unrecognized driver of both toxin production and ecological success of the low iron adapted Pseudo-nitzschia genus during the 2015 bloom, and increasing pervasiveness of iron limitation may fuel the escalating magnitude and frequency of toxic Pseudo-nitzschia blooms globally. Our results advance understanding of bloom physiology underlying toxin production, bloom prediction, and the impact of global change on toxic blooms. Significance Pseudo-nitzschia diatoms form oceanic harmful algal blooms that threaten human health through production of the neurotoxin domoic acid (DA). DA biosynthetic gene expression is hypothesized to control DA production in the environment, yet what regulates expression of these genes is yet to be discovered. In this study, we uncovered expression of DA biosynthesis genes by multiple toxigenic Pseudo-nitzschia species during an economically impactful bloom along the North American West Coast, and identified genes that predict DA in advance of its production. We discovered that iron and silica co-limitation restrained the bloom and likely promoted toxin production. This work suggests that increasing iron limitation due to global change may play a previously unrecognized role in driving bloom frequency and toxicity.
Collapse
|
9
|
Abdul Manaff AHN, Hii KS, Luo Z, Liu M, Law IK, Teng ST, Akhir MF, Gu H, Leaw CP, Lim PT. Mapping harmful microalgal species by eDNA monitoring: A large-scale survey across the southwestern South China Sea. HARMFUL ALGAE 2023; 129:102515. [PMID: 37951609 DOI: 10.1016/j.hal.2023.102515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/02/2023] [Accepted: 09/23/2023] [Indexed: 11/14/2023]
Abstract
A large-scale sampling was undertaken during a research cruise across the South China Sea in August 2016, covering an area of about 100,000 km2 to investigate the molecular diversity and distributions of micro-eukaryotic protists, with a focus on the potentially harmful microalgal (HAB) species along the east coast of Peninsular Malaysia. Environmental DNAs from 30 stations were extracted and DNA metabarcoding targeting the V4 and V9 markers in the 18S rDNA was performed. Many protistan molecular units, including previously unreported HAB taxa, were discovered for the first time in the water. Our findings also revealed interesting spatial distribution patterns, with a marked signal of compositional turnover between latitudinal regimes of water masses, where dinophytes and diatom compositions were among the most strongly enhanced at the fronts, leading to distinct niches. Our results further confirmed the widespread distribution of HAB species, such as the toxigenic Alexandrium tamiyavaichii and Pseudo-nitzschia species, and the fish-killing Margalefidinium polykrikoides and Karlodinium veneficum. The molecular information obtained from this study provides an updated HAB species inventory and a toolset that could facilitate existing HAB monitoring schemes in the region to better inform management decisions.
Collapse
Affiliation(s)
| | - Kieng Soon Hii
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Kelantan, Malaysia
| | - Zhaohe Luo
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Minlu Liu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Ing Kuo Law
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Kelantan, Malaysia
| | - Sing Tung Teng
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Mohd Fadzil Akhir
- Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Haifeng Gu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Kelantan, Malaysia.
| | - Po Teen Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Kelantan, Malaysia.
| |
Collapse
|
10
|
Whyte C, Swan SC, Turner AD, Hatfield RG, Mitchell E, Lafferty S, Morrell N, Rowland-Pilgrim S, Davidson K. The Presence of Pseudo-nitzschia australis in North Atlantic Aquaculture Sites, Implications for Monitoring Amnesic Shellfish Toxins. Toxins (Basel) 2023; 15:554. [PMID: 37755980 PMCID: PMC10536095 DOI: 10.3390/toxins15090554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
The farming of shellfish plays an important role in providing sustainable economic growth in coastal, rural communities in Scotland and acts as an anchor industry, supporting a range of ancillary jobs in the processing, distribution and exporting industries. The Scottish Government is encouraging shellfish farmers to double their economic contribution by 2030. These farmers face numerous challenges to reach this goal, among which is the problem caused by toxin-producing microplankton that can contaminate their shellfish, leading to harvesting site closure and the recall of product. Food Standards Scotland, a non-ministerial department of the Scottish Government, carries out a monitoring programme for both the toxin-producing microplankton and the toxins in shellfish flesh, with farms being closed when official thresholds for any toxin are breached. The farm remains closed until testing for the problematic toxin alone, often diarrhetic shellfish toxin (DST), shows the site to have dropped below the regulatory threshold. While this programme has proved to be robust, questions remain regarding the other toxins that may be present at a closed site. In this study, we tested archival material collected during site closures but only tested for DSTs as part of the official control monitoring. We found the presence of amnesic shellfish toxin (AST) in low concentrations in the majority of sites tested. In one case, the level of AST breached the official threshold. This finding has implications for AST monitoring programmes around Europe.
Collapse
Affiliation(s)
- Callum Whyte
- Scottish Association for Marine Science, Oban, Argyll PA37 1QA, UK
| | - Sarah C. Swan
- Scottish Association for Marine Science, Oban, Argyll PA37 1QA, UK
| | - Andrew D. Turner
- Centre for Environment Fisheries and Aquaculture Science, The Nothe, Barrack Road, Weymouth, Dorset DT4 8UB, UK (S.R.-P.)
| | - Robert G. Hatfield
- Centre for Environment Fisheries and Aquaculture Science, The Nothe, Barrack Road, Weymouth, Dorset DT4 8UB, UK (S.R.-P.)
| | - Elaine Mitchell
- Scottish Association for Marine Science, Oban, Argyll PA37 1QA, UK
| | - Shannon Lafferty
- Scottish Association for Marine Science, Oban, Argyll PA37 1QA, UK
| | - Nadine Morrell
- Centre for Environment Fisheries and Aquaculture Science, The Nothe, Barrack Road, Weymouth, Dorset DT4 8UB, UK (S.R.-P.)
| | - Stepahanie Rowland-Pilgrim
- Centre for Environment Fisheries and Aquaculture Science, The Nothe, Barrack Road, Weymouth, Dorset DT4 8UB, UK (S.R.-P.)
| | - Keith Davidson
- Scottish Association for Marine Science, Oban, Argyll PA37 1QA, UK
| |
Collapse
|
11
|
Schreiber S, Hanisak MD, Perricone CS, Fonnegra AC, Sullivan J, McFarland M. Pseudo-nitzschia species, toxicity, and dynamics in the southern Indian River Lagoon, FL. HARMFUL ALGAE 2023; 126:102437. [PMID: 37290891 DOI: 10.1016/j.hal.2023.102437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/17/2023] [Accepted: 04/28/2023] [Indexed: 06/10/2023]
Abstract
The Indian River Lagoon (IRL) spans approximately one-third of the east coast of Florida and, in recent years, has faced frequent harmful algal blooms (HABs). Blooms of the potentially toxic diatom, Pseudo-nitzschia, occur throughout the lagoon and were reported primarily from the northern IRL. The goal of this study was to identify species of Pseudo-nitzschia and characterize their bloom dynamics in the southern IRL system where monitoring has been less frequent. Surface water samples collected from five locations between October 2018 and May 2020 had Pseudo-nitzschia spp. present in 87% of samples at cell concentrations up to 1.9×103 cells mL-1. Concurrent environmental data showed Pseudo-nitzschia spp. were associated with relatively high salinity waters and cool temperatures. Six species of Pseudo-nitzschia were isolated, cultured, and characterized through 18S Sanger sequencing and scanning electron microscopy. All isolates demonstrated toxicity and domoic acid (DA) was present in 47% of surface water samples. We report the first known occurrence of P. micropora and P. fraudulenta in the IRL, and the first known DA production from P. micropora.
Collapse
Affiliation(s)
- Stephanie Schreiber
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 N, Fort Pierce, FL 34946, United States of America.
| | - M Dennis Hanisak
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 N, Fort Pierce, FL 34946, United States of America
| | - Carlie S Perricone
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 N, Fort Pierce, FL 34946, United States of America
| | - Andia Chaves Fonnegra
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 N, Fort Pierce, FL 34946, United States of America
| | - James Sullivan
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 N, Fort Pierce, FL 34946, United States of America
| | - Malcolm McFarland
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 N, Fort Pierce, FL 34946, United States of America
| |
Collapse
|
12
|
Hubbard KA, Villac MC, Chadwick C, DeSmidt AA, Flewelling L, Granholm A, Joseph M, Wood T, Fachon E, Brosnahan ML, Richlen M, Pathare M, Stockwell D, Lin P, Bouchard JN, Pickart R, Anderson DM. Spatiotemporal transitions in Pseudo-nitzschia species assemblages and domoic acid along the Alaska coast. PLoS One 2023; 18:e0282794. [PMID: 36947524 PMCID: PMC10032537 DOI: 10.1371/journal.pone.0282794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 03/23/2023] Open
Abstract
The toxic diatom genus Pseudo-nitzschia is distributed from equatorial to polar regions and is comprised of >57 species, some capable of producing the neurotoxin domoic acid (DA). In the Pacific Arctic Region spanning the Bering, Chukchi, and Beaufort seas, DA is recognized as an emerging human and ecosystem health threat, yet little is known about the composition and distribution of Pseudo-nitzschia species in these waters. This investigation characterized Pseudo-nitzschia assemblages in samples collected in 2018 during summer (August) and fall (October-November) surveys as part of the Distributed Biological Observatory and Arctic Observing Network, encompassing a broad geographic range (57.8° to 73.0°N, -138.9° to -169.9°W) and spanning temperature (-1.79 to 11.7°C) and salinity (22.9 to 32.9) gradients associated with distinct water masses. Species were identified using a genus-specific Automated Ribosomal Intergenic Spacer Analysis (ARISA). Seventeen amplicons were observed; seven corresponded to temperate, sub-polar, or polar Pseudo-nitzschia species based on parallel sequencing efforts (P. arctica, P. delicatissima, P. granii, P. obtusa, P. pungens, and two genotypes of P. seriata), and one represented Fragilariopsis oceanica. During summer, particulate DA (pDA; 4.0 to 130.0 ng L-1) was observed in the Bering Strait and Chukchi Sea where P. obtusa was prevalent. In fall, pDA (3.3 to 111.8 ng L-1) occurred along the Beaufort Sea shelf coincident with one P. seriata genotype, and south of the Bering Strait in association with the other P. seriata genotype. Taxa were correlated with latitude, longitude, temperature, salinity, pDA, and/or chlorophyll a, and each had a distinct distribution pattern. The observation of DA in association with different species, seasons, geographic regions, and water masses underscores the significant risk of Amnesic Shellfish Poisoning (ASP) and DA-poisoning in Alaska waters.
Collapse
Affiliation(s)
- Katherine A. Hubbard
- Florida Fish and Wildlife Conservation Commission-Fish and Wildlife Research Institute, Saint Petersburg, Florida, United States of America
- Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Maria Célia Villac
- Florida Fish and Wildlife Conservation Commission-Fish and Wildlife Research Institute, Saint Petersburg, Florida, United States of America
| | - Christina Chadwick
- Florida Fish and Wildlife Conservation Commission-Fish and Wildlife Research Institute, Saint Petersburg, Florida, United States of America
| | - Alexandra A. DeSmidt
- Florida Fish and Wildlife Conservation Commission-Fish and Wildlife Research Institute, Saint Petersburg, Florida, United States of America
| | - Leanne Flewelling
- Florida Fish and Wildlife Conservation Commission-Fish and Wildlife Research Institute, Saint Petersburg, Florida, United States of America
| | - April Granholm
- Florida Fish and Wildlife Conservation Commission-Fish and Wildlife Research Institute, Saint Petersburg, Florida, United States of America
| | - Molly Joseph
- Florida Fish and Wildlife Conservation Commission-Fish and Wildlife Research Institute, Saint Petersburg, Florida, United States of America
| | - Taylor Wood
- Florida Fish and Wildlife Conservation Commission-Fish and Wildlife Research Institute, Saint Petersburg, Florida, United States of America
| | - Evangeline Fachon
- Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
- Department of Earth Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Michael L. Brosnahan
- Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Mindy Richlen
- Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Mrunmayee Pathare
- Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Dean Stockwell
- College of Fisheries and Ocean Sciences, Institute of Marine Science, Fairbanks, Alaska, United States of America
| | - Peigen Lin
- Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Josée N. Bouchard
- Centre de recherche sur les biotechnologies marines, Rimouski, Québec, Canada
| | - Robert Pickart
- Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Donald M. Anderson
- Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| |
Collapse
|
13
|
Hanifah AH, Teng ST, Law IK, Abdullah N, Chiba SUA, Lum WM, Tillmann U, Lim PT, Leaw CP. Six marine thecate Heterocapsa (Dinophyceae) from Malaysia, including the description of three novel species and their cytotoxicity potential. HARMFUL ALGAE 2022; 120:102338. [PMID: 36470602 DOI: 10.1016/j.hal.2022.102338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/16/2022] [Accepted: 10/30/2022] [Indexed: 06/17/2023]
Abstract
Thirty-four strains of Heterocapsa were established from Malaysian waters and their morphologies were examined by light, scanning, and transmission electron microscopy. Three species, H. bohaiensis, H. huensis, and H. rotundata, and three new species, H. borneoensis sp. nov., H. limii sp. nov., and H. iwatakii sp. nov. were described in this study. The three species were differentiated morphologically by unique characteristics of cell size, shape, displacement of the cingulum, shape and position of nucleus, the number and position of pyrenoids, and body scale ultrastructure. The species delimitations were robustly supported by the molecular data. A light-microscopy-based key to species of Heterocapsa is established, with two major groups, i.e., species with a single pyrenoid, and species with multiple pyrenoids. Bioassays were conducted by exposing Artemia nauplii to Heterocapsa densities of 1-5 × 105 cells mL-1, and treatments exposed to H. borneoensis showed naupliar mortality, while no naupliar death was observed in the treatments exposed to cells of H. bohaiensis, H. huensis, H. limii, and H. iwatakii. Naupliar death was observed during the initial 24 h for both tested H. borneoensis strains, and mortality rates increased up to 50% after 72-h exposure. This study documented for the first time the diversity and cytotoxic potency of Heterocapsa species from Malaysian waters.
Collapse
Affiliation(s)
- Afiqah Hamilton Hanifah
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak 94300, Malaysia
| | - Sing Tung Teng
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak 94300, Malaysia.
| | - Ing Kuo Law
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Kelantan 16310, Malaysia
| | - Nursyahida Abdullah
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak 94300, Malaysia
| | - Sheryl Uncha Andrew Chiba
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak 94300, Malaysia
| | - Wai Mun Lum
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Urban Tillmann
- Section Ecological Chemistry, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven 27570, Germany
| | - Po Teen Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Kelantan 16310, Malaysia
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Kelantan 16310, Malaysia.
| |
Collapse
|
14
|
Lum WM, Lim HC, Lau WLS, Law IK, Teng ST, Benico G, Leong SCY, Takahashi K, Gu H, Lirdwitayaprasit T, Leaw CP, Lim PT, Iwataki M. Description of two new species Chattonella tenuiplastida sp. nov. and Chattonella malayana sp. nov. (Raphidophyceae) from South China Sea, with a report of wild fish mortality. HARMFUL ALGAE 2022; 118:102322. [PMID: 36195418 DOI: 10.1016/j.hal.2022.102322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/02/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Fisheries damage caused by Chattonella red tide has been recorded in Southeast Asia. Molecular studies have clarified the presence of two species, Chattonella marina complex and Chattonella subsalsa in the region, unlike East Asia that had only C. marina complex. To elucidate the phylogeography of Chattonella in Asia, further phylogenetic and morphological examinations were carried out with 33 additional culture strains, including the strains isolated during a bloom of Chattonella sp. (up to 142 cells mL-1) that was associated with a wild fish mortality along the northeastern coast of Peninsular Malaysia in 2016, and those from Yellow Sea, where the Chattonella genotypes have not been determined. LSU rDNA and ITS2 trees showed five intrageneric clades in the genus Chattonella, which were clades I and II (C. subsalsa), clade III (C. marina complex) and two new clades, namely clade IV from Thailand and Malaysia, and clade V from Peninsular Malaysia. The positions of the two new clades were different in LSU rDNA and ITS2 trees. LSU rDNA divergences of clades IV and V from the other clades were ≥ 4.01% and ≥ 5.70%, while their ITS2 divergences were ≥ 7.44% and ≥ 16.43%, respectively. Three and five compensatory base changes (CBCs) were observed in the clades IV and V, respectively, when compared to each of their closest clade. Cells from clades IV and V showed similar morphology to C. marina complex and C. subsalsa clade II, including the presence of button-like granules on cell surface and oboe-shaped mucocysts. However, cell size, the number and shape of chloroplasts in Chattonella clades IV and V, and the non-stacked thylakoids penetrated the pyrenoid in C. subsalsa clade II, were distinctive. Based on the diagnostic chloroplast shape, we proposed the designation of clades IV and V to two new species, Chattonella tenuiplastida sp. nov. and Chattonella malayana sp. nov.
Collapse
Affiliation(s)
- Wai Mun Lum
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Hong Chang Lim
- Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia.
| | - Winnie Lik Sing Lau
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310 Bachok, Kelantan, Malaysia
| | - Ing Kuo Law
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310 Bachok, Kelantan, Malaysia; Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Sing Tung Teng
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Garry Benico
- Department of Biological Sciences, College of Science, Central Luzon State University, Science City of Muñoz, Nueva Ecija, 3120, Philippines
| | - Sandric Chee Yew Leong
- St. John's Island National Marine Laboratory, Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, 119227, Singapore
| | - Kazuya Takahashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Haifeng Gu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | | | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310 Bachok, Kelantan, Malaysia
| | - Po Teen Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310 Bachok, Kelantan, Malaysia.
| | - Mitsunori Iwataki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo, Tokyo 113-8657, Japan.
| |
Collapse
|
15
|
Kenkel CD, Smith J, Hubbard KA, Chadwick C, Lorenzen N, Tatters AO, Caron DA. Reduced representation sequencing accurately quantifies relative abundance and reveals population-level variation in Pseudo-nitzschia spp. HARMFUL ALGAE 2022; 118:102314. [PMID: 36195429 PMCID: PMC9869635 DOI: 10.1016/j.hal.2022.102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Certain species within the genus Pseudo-nitzschia are able to produce the neurotoxin domoic acid (DA), which can cause illness in humans, mass-mortality of marine animals, and closure of commercial and recreational shellfisheries during toxic events. Understanding and forecasting blooms of these harmful species is a primary management goal. However, accurately predicting the onset and severity of bloom events remains difficult, in part because the underlying drivers of bloom formation have not been fully resolved. Furthermore, Pseudo-nitzschia species often co-occur, and recent work suggests that the genetic composition of a Pseudo-nitzschia bloom may be a better predictor of toxicity than prevailing environmental conditions. We developed a novel next-generation sequencing assay using restriction site-associated DNA (2b-RAD) genotyping and applied it to mock Pseudo-nitzschia communities generated by mixing cultures of different species in known abundances. On average, 94% of the variance in observed species abundance was explained by the expected abundance. In addition, the false positive rate was low (0.45% on average) and unrelated to read depth, and false negatives were never observed. Application of this method to environmental DNA samples collected during natural Pseudo-nitzschia spp. bloom events in Southern California revealed that increases in DA were associated with increases in the relative abundance of P. australis. Although the absolute correlation across time-points was weak, an independent species fingerprinting assay (Automated Ribosomal Intergenic Spacer Analysis) supported this and identified other potentially toxic species. Finally, we assessed population-level genomic variation by mining SNPs from the environmental 2bRAD dataset. Consistent shifts in allele frequencies in P. pungens and P. subpacifica were detected between high and low DA years, suggesting that different intraspecific variants may be associated with prevailing environmental conditions or the presence of DA. Taken together, this method presents a potentially cost-effective and high-throughput approach for studies aiming to evaluate both population and species dynamics in mixed samples.
Collapse
Affiliation(s)
- Carly D Kenkel
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089, USA.
| | - Jayme Smith
- Southern California Coastal Water Research Project, 3535 Harbor Boulevard, Suite 110, Costa Mesa, CA, 92626, USA
| | - Katherine A Hubbard
- Florida Fish and Wildlife Conservation Commission-Fish and Wildlife Research Institute (FWC-FWRI), 100 8th Ave. SE, St. Petersburg, FL 33701, USA; Biology Department, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, USA
| | - Christina Chadwick
- Florida Fish and Wildlife Conservation Commission-Fish and Wildlife Research Institute (FWC-FWRI), 100 8th Ave. SE, St. Petersburg, FL 33701, USA
| | - Nico Lorenzen
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089, USA
| | - Avery O Tatters
- U.S. Environmental Protection Agency, Gulf Ecosystem Measurement and Modeling Division, 1 Sabine Island Drive, Gulf Breeze, FL, 32561, USA
| | - David A Caron
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089, USA
| |
Collapse
|
16
|
Percopo I, Ruggiero MV, Sarno D, Longobardi L, Rossi R, Piredda R, Zingone A. Phenological segregation suggests speciation by time in the planktonic diatom Pseudo-nitzschia allochrona sp. nov. Ecol Evol 2022; 12:e9155. [PMID: 35949533 PMCID: PMC9352866 DOI: 10.1002/ece3.9155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 11/11/2022] Open
Abstract
The processes leading to the emergence of new species are poorly understood in marine plankton, where weak physical barriers and homogeneous environmental conditions limit spatial and ecological segregation. Here, we combine molecular and ecological information from a long-term time series and propose Pseudo-nitzschia allochrona, a new cryptic planktonic diatom, as a possible case of speciation by temporal segregation. The new species differs in several genetic markers (18S, 28S and ITS rDNA fragments and rbcL) from its closest relatives, which are morphologically very similar or identical, and is reproductively isolated from its sibling species P. arenysensis. Data from a long-term plankton time series show P. allochrona invariably occurring in summer-autumn in the Gulf of Naples, where its closely related species P. arenysensis, P. delicatissima, and P. dolorosa are instead found in winter-spring. Temperature and nutrients are the main factors associated with the occurrence of P. allochrona, which could have evolved in sympatry by switching its phenology and occupying a new ecological niche. This case of possible speciation by time shows the relevance of combining ecological time series with molecular information to shed light on the eco-evolutionary dynamics of marine microorganisms.
Collapse
Affiliation(s)
- Isabella Percopo
- Research Infrastructures for Marine Biological Resources DepartmentStazione Zoologica Anton DohrnNaplesItaly
| | | | - Diana Sarno
- Research Infrastructures for Marine Biological Resources DepartmentStazione Zoologica Anton DohrnNaplesItaly
| | - Lorenzo Longobardi
- Integrative Marine Ecology DepartmentStazione Zoologica Anton DohrnNaplesItaly
| | - Rachele Rossi
- Istituto Zooprofilattico Sperimentale del MezzogiornoPorticiItaly
| | - Roberta Piredda
- Integrative Marine Ecology DepartmentStazione Zoologica Anton DohrnNaplesItaly
- Present address:
Department of Veterinary MedicineUniversity of Bari Aldo MoroValenzano, BariItaly
| | - Adriana Zingone
- Research Infrastructures for Marine Biological Resources DepartmentStazione Zoologica Anton DohrnNaplesItaly
- Integrative Marine Ecology DepartmentStazione Zoologica Anton DohrnNaplesItaly
| |
Collapse
|
17
|
Turk Dermastia T, Dall’Ara S, Dolenc J, Mozetič P. Toxicity of the Diatom Genus Pseudo-nitzschia (Bacillariophyceae): Insights from Toxicity Tests and Genetic Screening in the Northern Adriatic Sea. Toxins (Basel) 2022; 14:toxins14010060. [PMID: 35051037 PMCID: PMC8781606 DOI: 10.3390/toxins14010060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 02/05/2023] Open
Abstract
Diatoms of the genus Pseudo-nitzschia H.Peragallo are known to produce domoic acid (DA), a toxin involved in amnesic shellfish poisoning (ASP). Strains of the same species are often classified as both toxic and nontoxic, and it is largely unknown whether this difference is also genetic. In the Northern Adriatic Sea, there are virtually no cases of ASP, but DA occasionally occurs in shellfish samples. So far, three species-P. delicatissima (Cleve) Heiden, P. multistriata (H. Takano) H. Takano, and P. calliantha Lundholm, Moestrup, & Hasle-have been identified as producers of DA in the Adriatic Sea. By means of enzme-linked immunosorbent assay (ELISA), high-performance liquid chromatography with UV and visible spectrum detection (HPLC-UV/VIS), and liquid chromatography with tandem mass spectrometry (LC-MS/MS), we reconfirmed the presence of DA in P. multistriata and P. delicatissima and detect for the first time in the Adriatic Sea DA in P. galaxiae Lundholm, & Moestrup. Furthermore, we attempted to answer the question of the distribution of DA production among Pseudo-nitzschia species and strains by sequencing the internal transcribed spacer (ITS) phylogenetic marker and the dabA DA biosynthesis gene and coupling this with toxicity data. Results show that all subclades of the Pseudo-nitzschia genus contain toxic species and that toxicity appears to be strain dependent, often with geographic partitioning. Amplification of dabA was successful only in toxic strains of P. multistriata and the presence of the genetic architecture for DA production in non-toxic strains was thus not confirmed.
Collapse
Affiliation(s)
- Timotej Turk Dermastia
- Marine Biology Station Piran, National Institute of Biology, 6330 Piran, Slovenia;
- International Postgraduate School Jožef Stefan, 1000 Ljubljana, Slovenia
- Correspondence:
| | - Sonia Dall’Ara
- National Reference Laboratory for Marine Biotoxins, Centro Ricerche Marine, 47042 Cesenatico, Italy;
| | - Jožica Dolenc
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Patricija Mozetič
- Marine Biology Station Piran, National Institute of Biology, 6330 Piran, Slovenia;
| |
Collapse
|
18
|
Sildever S, Laas P, Kolesova N, Lips I, Lips U, Nagai S. Plankton biodiversity and species co-occurrence based on environmental DNA – a multiple marker study. METABARCODING AND METAGENOMICS 2021. [DOI: 10.3897/mbmg.5.72371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Metabarcoding in combination with high-throughput sequencing (HTS) allows simultaneous detection of multiple taxa by targeting single or several taxonomically informative gene regions from environmental DNA samples. In this study, a multiple-marker HTS approach was applied to investigate the plankton diversity and seasonal succession in the Baltic Sea from winter to autumn. Four different markers targeting the 16S, 18S, and 28S ribosomal RNA genes were employed, including a marker for more efficient dinoflagellate detection. Typical seasonal changes were observed in phyto- and bacterioplankton communities. In phytoplankton, the appearance patterns of selected common, dominant, or harmful species followed the patterns also confirmed based on 20 years of phytoplankton monitoring data. In the case of zooplankton, both macro- and microzooplankton species were detected. However, no seasonal patterns were detected in their appearance. In total, 15 and 2 new zoo- and phytoplankton species were detected from the Baltic Sea. HTS approach was especially useful for detecting microzooplankton species as well as for investigating the co-occurrence and potential interactions of different taxa. The results of this study further exemplify the efficiency of metabarcoding for biodiversity monitoring and the advantage of employing multiple markers through the detection of species not identifiable based on a single marker survey and/or by traditional morphology-based methods.
Collapse
|
19
|
Teng ST, Abdullah N, Hanifah AH, Tan SN, Gao C, Law IK, Leaw CP, Lim PT. Toxic bloom of Pseudo-nitzschia cuspidata (Bacillariophyceae) and domoic acid contamination of bivalve molluscs in Malaysia Borneo. Toxicon 2021; 202:132-141. [PMID: 34600910 DOI: 10.1016/j.toxicon.2021.09.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 11/24/2022]
Abstract
In March 2018, an algal bloom of Pseudo-nitzschia was detected, for the first time, in a semi-enclosed lagoon in Miri, Sarawak, Malaysia Borneo. The plankton samples were collected for cell enumeration and species identification by electron microscopy and molecular characterization. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was performed to detect and quantify the neurotoxin domoic acid (DA) in both the plankton and shellfish samples. The abundance of Pseudo-nitzschia cells ranged from 5.6 × 105 to 3.5 × 106 cell L-1 during the bloom event. Morphological observation of the cells by transmission electron microscopy showed that the plankton samples comprised a single Pseudo-nitzschia morphotype resembling P. cuspidata. The ITS2 sequence-structure phylogenetic inference further supported the species identity as Pseudo-nitzschia cuspidata. Low levels of DA were detected in the plankton samples, with cellular DA, particulate DA, and dissolved DA of 257-504 fg DA cell-1, 676 ng L-1, and 15 ng L-1, respectively. The amount of DA, 8 μg g-1 tissue, was found present in the shellfish sample (Magallana sp.) which is below the regulatory limit of 20 μg DA g-1 tissue. The study documented, for the first time, DA contamination in shellfish that associated with bloom of P. cuspidata in the Western Pacific region.
Collapse
Affiliation(s)
- Sing Tung Teng
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, 94300, Sarawak, Malaysia.
| | - Nursyahida Abdullah
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, 94300, Sarawak, Malaysia
| | - Afiqah Halmiton Hanifah
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, 94300, Sarawak, Malaysia
| | - Suh Nih Tan
- China-ASEAN College of Marine Sciences Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia
| | - Chunlei Gao
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Ing Kuo Law
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, 16310, Kelantan, Malaysia
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, 16310, Kelantan, Malaysia
| | - Po Teen Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, 16310, Kelantan, Malaysia
| |
Collapse
|
20
|
Nishimura T, Murray JS, Boundy MJ, Balci M, Bowers HA, Smith KF, Harwood DT, Rhodes LL. Update of the Planktonic Diatom Genus Pseudo-nitzschia in Aotearoa New Zealand Coastal Waters: Genetic Diversity and Toxin Production. Toxins (Basel) 2021; 13:637. [PMID: 34564641 PMCID: PMC8473122 DOI: 10.3390/toxins13090637] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/23/2022] Open
Abstract
Domoic acid (DA) is produced by almost half of the species belonging to the diatom genus Pseudo-nitzschia and causes amnesic shellfish poisoning (ASP). It is, therefore, important to investigate the diversity and toxin production of Pseudo-nitzschia species for ASP risk assessments. Between 2018 and 2020, seawater samples were collected from various sites around Aotearoa New Zealand, and 130 clonal isolates of Pseudo-nitzschia were established. Molecular phylogenetic analysis of partial large subunit ribosomal DNA and/or internal transcribed spacer regions revealed that the isolates were divided into 14 species (Pseudo-nitzschia americana, Pseudo-nitzschia arenysensis, Pseudo-nitzschia australis, Pseudo-nitzschia calliantha, Pseudo-nitzschia cuspidata, Pseudo-nitzschia delicatissima, Pseudo-nitzschia fraudulenta, Pseudo-nitzschia galaxiae, Pseudo-nitzschia hasleana, Pseudo-nitzschia multiseries, Pseudo-nitzschia multistriata, Pseudo-nitzschia plurisecta, Pseudo-nitzschia pungens, and Pseudo-nitzschia cf. subpacifica). The P. delicatissima and P. hasleana strains were further divided into two clades/subclades (I and II). Liquid chromatography-tandem mass spectrometry was used to assess the production of DA and DA isomers by 73 representative strains. The analyses revealed that two (P. australis and P. multiseries) of the 14 species produced DA as a primary analogue, along with several DA isomers. This study is the first geographical distribution record of P. arenysensis, P.cuspidata, P. galaxiae, and P. hasleana in New Zealand coastal waters.
Collapse
Affiliation(s)
- Tomohiro Nishimura
- Cawthron Institute, Nelson 7010, New Zealand; (J.S.M.); (M.J.B.); (K.F.S.); (D.T.H.)
| | - J. Sam Murray
- Cawthron Institute, Nelson 7010, New Zealand; (J.S.M.); (M.J.B.); (K.F.S.); (D.T.H.)
| | - Michael J. Boundy
- Cawthron Institute, Nelson 7010, New Zealand; (J.S.M.); (M.J.B.); (K.F.S.); (D.T.H.)
| | - Muharrem Balci
- Biology Department, Faculty of Science, Istanbul University, Istanbul 34134, Turkey;
| | - Holly A. Bowers
- Moss Landing Marine Laboratories, Moss Landing, CA 95039, USA;
| | - Kirsty F. Smith
- Cawthron Institute, Nelson 7010, New Zealand; (J.S.M.); (M.J.B.); (K.F.S.); (D.T.H.)
- School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| | - D. Tim Harwood
- Cawthron Institute, Nelson 7010, New Zealand; (J.S.M.); (M.J.B.); (K.F.S.); (D.T.H.)
| | - Lesley L. Rhodes
- Cawthron Institute, Nelson 7010, New Zealand; (J.S.M.); (M.J.B.); (K.F.S.); (D.T.H.)
| |
Collapse
|
21
|
Ajani PA, Verma A, Kim JH, Woodcock S, Nishimura T, Farrell H, Zammit A, Brett S, Murray SA. Using qPCR and high-resolution sensor data to model a multi-species Pseudo-nitzschia (Bacillariophyceae) bloom in southeastern Australia. HARMFUL ALGAE 2021; 108:102095. [PMID: 34588117 DOI: 10.1016/j.hal.2021.102095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Harmful algal blooms, including those caused by the toxic diatom Pseudo-nitzschia, can have significant impacts on human health, ecosystem functioning and ultimately food security. In the current study we characterized a bloom of species of Pseudo-nitzschia that occurred in a south-eastern Australian oyster-growing estuary in 2019. Using light microscopy, combined with molecular (ITS/5.8S and LSU D1-D3 rDNA regions) and toxicological evidence, we observed the bloom to consist of multiple species of Pseudo-nitzschia including P. cf. cuspidata, P. hasleana, P. fraudulenta and P. multiseries, with P. cf. cuspidata being the only species that produced domoic acid (3.1 pg DA per cell). As several species of Pseudo-nitzschia co-occurred, only one of which produced DA, we developed a rapid, sensitive and efficient quantitative real-time polymerase chain reaction (qPCR) assay to detect only species belonging to the P. pseudodelicatissima complex Clade I, to which P. cf. cuspidata belongs, and this indicated that P. cuspidata or closely related strains may have dominated the Pseudo-nitzschia community at this time. Finally, using high resolution water temperature and salinity sensor data, we modeled the relationship between light microscopy determined abundance of P. delicatissima group and environmental variables (temperature, salinity, rainfall) at two sites within the estuary. A total of eight General Linear Models (GLMs) explaining between 9 and 54% of the deviance suggested that the temperature (increasing) and/or salinity (decreasing) data were generally more predictive of high cell concentrations than the rainfall data at both sites, and that overall, cell concentrations were more predictive at the more oceanic site than the more upstream site, using this method. We conclude that the combination of rapid molecular methods such as qPCR and real-time sensor data modeling, can provide a more rapid and effective early warning of harmful algal blooms of species of Pseudo-nitzschia, resulting in more beneficial regulatory and management outcomes.
Collapse
Affiliation(s)
- Penelope A Ajani
- University of Technology Sydney, School of Life Sciences, Sydney, PO Box 123, Broadway, NSW 2007, Australia; Food Agility CRC Ltd, 81 Broadway, Ulitmo, NSW 2007, Australia.
| | - Arjun Verma
- University of Technology Sydney, School of Life Sciences, Sydney, PO Box 123, Broadway, NSW 2007, Australia; Food Agility CRC Ltd, 81 Broadway, Ulitmo, NSW 2007, Australia
| | - Jin Ho Kim
- Department of Earth and Marine Science, College of Ocean Sciences, Jeju National University, Jeju 63243, Korea
| | - Stephen Woodcock
- University of Technology Sydney, School of Life Sciences, Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | | | - Hazel Farrell
- NSW Food Authority, NSW Department of Primary Industries, PO Box 232, Taree 2430, Australia
| | - Anthony Zammit
- NSW Food Authority, NSW Department of Primary Industries, PO Box 232, Taree 2430, Australia
| | - Steve Brett
- Microalgal Services, 308 Tucker Rd, Ormond 3204, Australia
| | - Shauna A Murray
- University of Technology Sydney, School of Life Sciences, Sydney, PO Box 123, Broadway, NSW 2007, Australia; Food Agility CRC Ltd, 81 Broadway, Ulitmo, NSW 2007, Australia
| |
Collapse
|
22
|
First Report of Domoic Acid Production from Pseudo-nitzschia multistriata in Paracas Bay (Peru). Toxins (Basel) 2021; 13:toxins13060408. [PMID: 34207719 PMCID: PMC8226791 DOI: 10.3390/toxins13060408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/03/2022] Open
Abstract
The Peruvian sea is one of the most productive ecosystems in the world. Phytoplankton production provides food for fish, mammals, mollusks and birds. This trophic network is affected by the presence of toxic phytoplankton species. In July 2017, samples of phytoplankton were obtained from Paracas Bay, an important zone for scallop (Argopecten purpuratus) aquaculture in Peru. Morphological analysis revealed the presence of the genus Pseudo-nitzschia, which was isolated and cultivated in laboratory conditions. Subsequently, the monoclonal cultures were observed by scanning electron microscopy (SEM), and identified as P. multistriata, based on both the morphological characteristics, and internal transcribed spacers region (ITS2) sequence phylogenetic analysis. Toxin analysis using liquid chromatography (LC) with high-resolution mass spectrometry (HRMS) revealed the presence of domoic acid (DA) with an estimated amount of 0.004 to 0.010 pg cell−1. This is the first report of DA from the coastal waters of Peru and its detection in P. multistriata indicates that it is a potential risk. Based on our results, routine monitoring of this genus should be considered in order to ensure public health.
Collapse
|
23
|
Yñiguez AT, Lim PT, Leaw CP, Jipanin SJ, Iwataki M, Benico G, Azanza RV. Over 30 years of HABs in the Philippines and Malaysia: What have we learned? HARMFUL ALGAE 2021; 102:101776. [PMID: 33875175 DOI: 10.1016/j.hal.2020.101776] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 02/16/2020] [Indexed: 06/12/2023]
Abstract
In the Southeast Asian region, the Philippines and Malaysia are two of the most affected by Harmful Algal Blooms (HABs). Using long-term observations of HAB events, we determined if these are increasing in frequency and duration, and expanding across space in each country. Blooms of Paralytic Shellfish Toxin (PST)-producing species in the Philippines did increase in frequency and duration during the early to mid-1990s, but have stabilized since then. However, the number of sites affected by these blooms continue to expand though at a slower rate than in the 1990s. Furthermore, the type of HABs and causative species have diversified for both toxic blooms and fish kill events. In contrast, Malaysia showed no increasing trend in the frequency of toxic blooms over the past three decades since Pyrodinium bahamense was reported in 1976. However, similar to the Philippines, other PST producers such as Alexandrium minutum and Alexandrium tamiyavanichii have become a concern. No amnesic shellfish poisoning (ASP) has been confirmed in either Philippines or Malaysia thus far, while ciguatera fish poisoning cases are known from the Philippines and Malaysia but the causative organisms remain poorly studied. Since the 1990s and early 2000s, recognition of the distribution of other PST-producing species such as species of Alexandrium and Gymnodinium catenatum in Southeast Asia has grown, though there has been no significant expansion in the known distributions within the last decade. A major more recent problem in the two countries and for Southeast Asia in general are the frequent fish-killing algal blooms of various species such as Prorocentrum cordatum, Margalefidinium polykrikoides, Chattonella spp., and unarmored dinoflagellates (e.g., Karlodinium australe and Takayama sp.). These new sites affected and the increase in types of HABs and causative species could be attributed to various factors such as introduction through mariculture and eutrophication, and partly because of increased scientific awareness. These connections still need to be more concretely investigated. The link to the El Niño Southern Oscillation (ENSO) should also be better understood if we want to discern how climate change plays a role in these patterns of HAB occurrences.
Collapse
Affiliation(s)
- Aletta T Yñiguez
- Marine Science Institute, University of the Philippines, Diliman, Quezon City, Philippines.
| | - Po Teen Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Kelantan, Malaysia
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Kelantan, Malaysia
| | - Steffiana J Jipanin
- Department of Fisheries Sabah, Likas Fisheries Complex, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Mitsunori Iwataki
- Asian Natural Environmental Science Center, The University of Tokyo, Tokyo, Japan
| | - Garry Benico
- Asian Natural Environmental Science Center, The University of Tokyo, Tokyo, Japan
| | - Rhodora V Azanza
- Marine Science Institute, University of the Philippines, Diliman, Quezon City, Philippines
| |
Collapse
|
24
|
Cefarelli AO, Ferrario ME, Vernet M, Campana GL, Lundholm N. Transfer of the Antarctic diatom Nitzschia barbieri (Bacillariophyta) to the genus Fragilariopsis and emended descriptions of F. barbieri comb. nov. and F. peragallii. Polar Biol 2021. [DOI: 10.1007/s00300-021-02803-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
First Evidence of the Toxin Domoic Acid in Antarctic Diatom Species. Toxins (Basel) 2021; 13:toxins13020093. [PMID: 33530611 PMCID: PMC7912347 DOI: 10.3390/toxins13020093] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 11/16/2022] Open
Abstract
The Southern Ocean is one of the most productive ecosystems in the world. It is an area heavily dependent on marine primary production and serving as a feeding ground for numerous seabirds and marine mammals. Therefore, the phytoplankton composition and presence of toxic species are of crucial importance. Fifteen monoclonal strains of Pseudo-nitzschia subcurvata, a diatom species endemic to the Southern Ocean, were established, which were characterized by morphological and molecular data and then analysed for toxin content. The neurotoxins domoic acid and iso-domoic acid C were present in three of the strains, which is a finding that represents the first evidence of these toxins in strains from Antarctic waters. Toxic phytoplankton in Antarctic waters are still largely unexplored, and their effects on the ecosystem are not well understood. Considering P. subcurvata's prevalence throughout the Southern Ocean, these results highlight the need for further investigations of the harmful properties on the Antarctic phytoplankton community as well as the presence of the toxins in the Antarctic food web, especially in the light of a changing climate.
Collapse
|
26
|
Accoroni S, Giulietti S, Romagnoli T, Siracusa M, Bacchiocchi S, Totti C. Morphological Variability of Pseudo-nitzschia pungens Clade I (Bacillariophyceae) in the Northwestern Adriatic Sea. PLANTS 2020; 9:plants9111420. [PMID: 33114135 PMCID: PMC7716229 DOI: 10.3390/plants9111420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 11/16/2022]
Abstract
Pseudo-nitzschia pungens is a common component of the phytoplankton community of the northern Adriatic Sea. In this study, an in-depth morphological analysis of P. pungens was carried out in both cultured strains isolated in different periods and field samples, revealing a surprisingly wide variability in a number of details, with both the gross morphology and ultrastructural levels deviating from the nominal P. pungens. Colonies showed an overlap (from one-third to one-sixth) and a transapical axis (rarely reaching 3 µm), strongly differing from the original description of the species. Moreover, valves may be either symmetrical or slightly asymmetrical, with striae almost always biseriate but sometimes uniseriate or triseriate. Poroids' morphology in cingular bands was characterized by a wide variability (square, circular, or rectangular poroids without or with up to two hymen sectors), with several combination of them, even within the same cingular band. Phylogenetic analyses based on ITS rDNA showed that the P. pungens of the northern Adriatic Sea belonged to clade I. Domoic acid was not detected.
Collapse
Affiliation(s)
- Stefano Accoroni
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy; (S.G.); (T.R.); (C.T.)
- Istituto Zooprofilattico Sperimentale Umbria e Marche, Via Cupa di Posatora, 3, 60131 Ancona, Italy; (M.S.); (S.B.)
- Correspondence: ; Tel.: +39-071-2204919
| | - Sonia Giulietti
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy; (S.G.); (T.R.); (C.T.)
| | - Tiziana Romagnoli
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy; (S.G.); (T.R.); (C.T.)
| | - Melania Siracusa
- Istituto Zooprofilattico Sperimentale Umbria e Marche, Via Cupa di Posatora, 3, 60131 Ancona, Italy; (M.S.); (S.B.)
| | - Simone Bacchiocchi
- Istituto Zooprofilattico Sperimentale Umbria e Marche, Via Cupa di Posatora, 3, 60131 Ancona, Italy; (M.S.); (S.B.)
| | - Cecilia Totti
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy; (S.G.); (T.R.); (C.T.)
- Consorzio Interuniversitario per le Scienze del Mare, CoNISMa, ULR Ancona, Ancona, Italy
| |
Collapse
|
27
|
Mann DG, Trobajo R, Sato S, Li C, Witkowski A, Rimet F, Ashworth MP, Hollands RM, Theriot EC. Ripe for reassessment: A synthesis of available molecular data for the speciose diatom family Bacillariaceae. Mol Phylogenet Evol 2020; 158:106985. [PMID: 33059066 DOI: 10.1016/j.ympev.2020.106985] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/21/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
The Bacillariaceae is a very species-rich family of raphid diatoms and includes the large and taxonomically difficult genus Nitzschia, whose species are often small-celled and finely structured and have few discrete morphological characters visible in the light microscope. The classification of Nitzschia is still mostly based on one developed in the second half of the 19th century by Grunow, who separated the genus into a series of sections largely on cell shape and symmetry, the position of the raphe, transverse extension of the fibulae, and folding of the valve. We assembled and analysed single-gene and concatenated alignments of nSSU, nLSU, rbcL, psbC and cox1 to test Grunow's and subsequent classifications and to examine selected morphological characters for their potential to help define monophyletic groups. The maximum likelihood trees were equivocal as to monophyly of the family itself but showed good support for each of eight main clades of Bacillariaceae, three of which corresponded more or less to existing genera (Hantzschia, Cylindrotheca and Bacillaria). The other five main clades and some subclades comprised groups of Nitzschia species or assemblies of Nitzschia species with other genera (Pseudo-nitzschia, Fragilariopsis, Neodenticula, Tryblionella, Psammodictyon). Relationships between most of the eight main clades were not resolved robustly but all analyses recovered Nitzschia as non-monophyletic. The Grunowian classification of Nitzschia into sections was not supported, though in some respects (e.g. treatment of sigmoid species) it is better than subsequent reclassifications. Several of the main clades and subclades are cryptic (lacking morphological synapomorphies) and homoplasy is common in both light microscopical and ultrastructural characters (to the extent that organisms initially assigned to the same species sometimes prove to belong to a different main clade). Nevertheless, some characters, including the structure of the raphe canal and girdle, seem to be sufficiently conservative evolutionarily to give a provisional estimate of relationships if molecular data are unavailable. No new formal classifications are proposed but various options are explored and research needs identified.
Collapse
Affiliation(s)
- David G Mann
- Marine and Continental Waters, Institute for Food and Agricultural Research and Technology (IRTA), Crta de Poble Nou Km 5.5, E-43540 Sant Carles de la Ràpita, Catalunya, Spain; Royal Botanic Garden Edinburgh (RBGE), Edinburgh EH3 5LR, UK.
| | - Rosa Trobajo
- Marine and Continental Waters, Institute for Food and Agricultural Research and Technology (IRTA), Crta de Poble Nou Km 5.5, E-43540 Sant Carles de la Ràpita, Catalunya, Spain.
| | - Shinya Sato
- Fukui Prefectural University, 1-1 Gakuen-cho, Obama, Fukui 917-0003, Japan
| | - Chunlian Li
- Institute of Marine and Environmental Sciences, University of Szczecin, and Natural Sciences Research and Educational Center, University of Szczecin, Mickiewicza 16a, PL-70-383 Szczecin, Poland; Ecological Institute, South China Normal University, 510631 Guangzhou, China
| | - Andrzej Witkowski
- Institute of Marine and Environmental Sciences, University of Szczecin, and Natural Sciences Research and Educational Center, University of Szczecin, Mickiewicza 16a, PL-70-383 Szczecin, Poland
| | - Frédéric Rimet
- UMR CARRTEL, Savoie Mont-Blanc University, INRAE, 75bis avenue de Corzent, CS50511, F-74203 Thonon-les-Bains, France
| | - Matt P Ashworth
- UTEX Culture Collection of Algae, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Ruth M Hollands
- Royal Botanic Garden Edinburgh (RBGE), Edinburgh EH3 5LR, UK
| | - Edward C Theriot
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
28
|
Quijano-Scheggia SI, Olivos-Ortiz A, Garcia-Mendoza E, Sánchez-Bravo Y, Sosa-Avalos R, Salas Marias N, Lim HC. Phylogenetic relationships of Pseudo-nitzschia subpacifica (Bacillariophyceae) from the Mexican Pacific, and its production of domoic acid in culture. PLoS One 2020; 15:e0231902. [PMID: 32330168 PMCID: PMC7182257 DOI: 10.1371/journal.pone.0231902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/02/2020] [Indexed: 11/18/2022] Open
Abstract
Pseudo-nitzschia is a cosmopolitan genus, some species of which can produce domoic acid (DA), a neurotoxin responsible for the Amnesic Shellfish Poisoning (ASP). In this study, we identified P. subpacifica for the first time in Todos Santos Bay and Manzanillo Bay, in the Mexican Pacific using SEM and molecular methods. Isolates from Todos Santos Bay were cultivated under conditions of phosphate sufficiency and deficiency at 16°C and 22°C to evaluate the production of DA. This toxin was detected in the particulate (DAp) and dissolved (DAd) fractions of the cultures during the exponential and stationary phases of growth of the cultures. The highest DA concentration was detected during the exponential phase grown in cells maintained in P-deficient medium at 16°C (1.14 ± 0.08 ng mL-1 DAd and 4.71 ± 1.11 × 10-5 ng cell-1 of DAp). In P-sufficient cultures DA was higher in cells maintained at 16°C (0.25 ± 0.05 ng mL-1 DAd and 9.41 ± 1.23 × 10-7 ng cell-1 of DAp) than in cells cultured at 22°C. Therefore, we confirm that P. subpacifica can produce DA, especially under P-limited conditions that could be associated with extraordinary oceanographic events such as the 2013-2016 "Blob" in the northeastern Pacific Ocean. This event altered local oceanographic conditions and possibly generated the presence of potential harmful species in areas with economic importance on the Mexican Pacific coast.
Collapse
Affiliation(s)
| | - Aramis Olivos-Ortiz
- Centro Universitario de Investigaciones Oceanológicas, Universidad de Colima, Manzanillo, México
| | - Ernesto Garcia-Mendoza
- Departamento de Oceanografía Biológica, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico
| | - Yaireb Sánchez-Bravo
- Departamento de Oceanografía Biológica, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico
| | - Ramon Sosa-Avalos
- Centro Universitario de Investigaciones Oceanológicas, Universidad de Colima, Manzanillo, México
| | - Nathalli Salas Marias
- Centro Universitario de Investigaciones Oceanológicas, Universidad de Colima, Manzanillo, México
| | | |
Collapse
|
29
|
Huang CX, Dong HC, Lundholm N, Teng ST, Zheng GC, Tan ZJ, Lim PT, Li Y. Species composition and toxicity of the genus Pseudo-nitzschia in Taiwan Strait, including P. chiniana sp. nov. and P. qiana sp. nov. HARMFUL ALGAE 2019; 84:195-209. [PMID: 31128805 DOI: 10.1016/j.hal.2019.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
In a field survey in the Taiwan Strait during April 2016, the species composition and the domoic acid production of the diatom genus Pseudo-nitzschia were investigated. A total of 80 strains of Pseudo-nitzschia were established, and species identification was determined based on a combination of morphological and molecular data. Fourteen taxa were recognized, i.e., P. americana, P. brasiliana, P. calliantha, P. cuspidata, P. galaxiae, P. lundholmiae, P. multiseries, P. multistriata, P. pseudodelicatissima, P. pungens var. aveirensis, P. pungenus var. pungens and P. sabit, as well as two novel species P. chiniana C.X. Huang & Yang Li and P. qiana C.X. Huang & Yang Li. Morphologically, P. chiniana is characterized by striae comprising one or two rows of poroids, and valve ends that are normally dominated by two rows of poroids within each stria. Whereas P. qiana is unique by having a narrow valve width (1.3-1.5 μm) and sharply pointed valve ends. Both taxa constitute their own monophyletic lineage in the phylogenetic analyses inferred from LSU and ITS2 rDNA, and are well differentiated from other Pseudo-nitzschia species. Pseudo-nitzschia chiniana forms a group with P. abrensis and P. batesiana in LSU and ITS trees, whereas P. qiana is sister to P. lineola. When comparing ITS2 secondary structure, five CBCs and seven HCBCs are recognized between P. chiniana and P. abrensis, and four CBCs and ten HCBCs between P. chiniana and P. batesiana. Two CBCs and eight HCBCs are found between P. qiana with P. lineola. The ability of the strains to produce domoic acid was assessed, including a potential toxin induction by the presence of brine shrimps. Results revealed production of domoic acid in six strains belonging to three species. Without presence of brine shrimps, cellular DA (pDA) was detected in four P. multiseries strains (1.6 ± 0.3, 26.6 ± 2.7, 68.3 ± 4.2 and 56.9 ± 4.7 fg cell-1, separately), one strain of P. pseudodelicatissima (0.8 ± 0.2 fg cell-1) and one strain of P. lundholmiae (2.5 ± 0.4 fg cell-1). In the presence of brine shrimps, pDA contents increased significantly (p < 0.05) in P. lundholmiae (strain MC4218) and P. multiseries (strain MC4177), from 2.5 ± 0.4 to 8.9 ± 0.7 and 1.6 ± 0.3 to 37.2 ± 2.5 fg cell-1 respectively.
Collapse
Affiliation(s)
- Chun Xiu Huang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Healthy and Safe Aquaculture, College of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou, 510631, PR China.
| | - Huan Chang Dong
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Healthy and Safe Aquaculture, College of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou, 510631, PR China.
| | - Nina Lundholm
- Natural History Museum of Denmark, University of Copenhagen, Øster Farimagsgade 5, 1307, Copenhagen K, Denmark.
| | - Sing Tung Teng
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, 94300, Sarawak, Malaysia.
| | - Guan Chao Zheng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China.
| | - Zhi Jun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China.
| | - Po Teen Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310, Bachok, Kelantan, Malaysia.
| | - Yang Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Healthy and Safe Aquaculture, College of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou, 510631, PR China.
| |
Collapse
|
30
|
Samanta B, Ehrman JM, Kaczmarska I. A consensus secondary structure of ITS2 for the diatom Order Cymatosirales (Mediophyceae, Bacillariophyta) and reappraisal of the order based on DNA, morphology, and reproduction. Mol Phylogenet Evol 2018; 129:117-129. [DOI: 10.1016/j.ympev.2018.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/18/2018] [Accepted: 08/23/2018] [Indexed: 01/24/2023]
|
31
|
Bates SS, Hubbard KA, Lundholm N, Montresor M, Leaw CP. Pseudo-nitzschia, Nitzschia, and domoic acid: New research since 2011. HARMFUL ALGAE 2018; 79:3-43. [PMID: 30420013 DOI: 10.1016/j.hal.2018.06.001] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 05/11/2023]
Abstract
Some diatoms of the genera Pseudo-nitzschia and Nitzschia produce the neurotoxin domoic acid (DA), a compound that caused amnesic shellfish poisoning (ASP) in humans just over 30 years ago (December 1987) in eastern Canada. This review covers new information since two previous reviews in 2012. Nitzschia bizertensis was subsequently discovered to be toxigenic in Tunisian waters. The known distribution of N. navis-varingica has expanded from Vietnam to Malaysia, Indonesia, the Philippines and Australia. Furthermore, 15 new species (and one new variety) of Pseudo-nitzschia have been discovered, bringing the total to 52. Seven new species were found to produce DA, bringing the total of toxigenic species to 26. We list all Pseudo-nitzschia species, their ability to produce DA, and show their global distribution. A consequence of the extended distribution and increased number of toxigenic species worldwide is that DA is now found more pervasively in the food web, contaminating new marine organisms (especially marine mammals), affecting their physiology and disrupting ecosystems. Recent findings highlight how zooplankton grazers can induce DA production in Pseudo-nitzschia and how bacteria interact with Pseudo-nitzschia. Since 2012, new discoveries have been reported on physiological controls of Pseudo-nitzschia growth and DA production, its sexual reproduction, and infection by an oomycete parasitoid. Many advances are the result of applying molecular approaches to discovering new species, and to understanding the population genetic structure of Pseudo-nitzschia and mechanisms used to cope with iron limitation. The availability of genomes from three Pseudo-nitzschia species, coupled with a comparative transcriptomic approach, has allowed advances in our understanding of the sexual reproduction of Pseudo-nitzschia, its signaling pathways, its interactions with bacteria, and genes involved in iron and vitamin B12 and B7 metabolism. Although there have been no new confirmed cases of ASP since 1987 because of monitoring efforts, new blooms have occurred. A massive toxic Pseudo-nitzschia bloom affected the entire west coast of North America during 2015-2016, and was linked to a 'warm blob' of ocean water. Other smaller toxic blooms occurred in the Gulf of Mexico and east coast of North America. Knowledge gaps remain, including how and why DA and its isomers are produced, the world distribution of potentially toxigenic Nitzschia species, the prevalence of DA isomers, and molecular markers to discriminate between toxigenic and non-toxigenic species and to discover sexually reproducing populations in the field.
Collapse
Affiliation(s)
- Stephen S Bates
- Fisheries and Oceans Canada, Gulf Fisheries Centre, P.O. Box 5030, Moncton, New Brunswick, E1C 9B6, Canada.
| | - Katherine A Hubbard
- Fish and Wildlife Research Institute (FWRI), Florida Fish and Wildlife Conservation Commission (FWC), 100 Eighth Avenue SE, St. Petersburg, FL 33701 USA; Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA, 02543 USA
| | - Nina Lundholm
- Natural History Museum of Denmark, University of Copenhagen, Sølvgade 83S, DK-1307 Copenhagen K, Denmark
| | - Marina Montresor
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310 Bachok, Kelantan, Malaysia
| |
Collapse
|