1
|
Coleman LJM, Martone PT. Grow with the flow: Is phenotypic plasticity across hydrodynamic gradients common in seaweeds? JOURNAL OF PHYCOLOGY 2024; 60:1058-1067. [PMID: 39269426 DOI: 10.1111/jpy.13503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024]
Abstract
Seaweeds are widely assumed to be phenotypically plastic across hydrodynamic gradients, yet while many marine macroalgae exhibit intraspecific phenotypic variation that correlates with flow, researchers often fail to test whether such variation is due to plasticity or another mechanism, such as local adaptation. In this minireview, we considered mechanisms for sensing flow in seaweeds that could facilitate adaptive phenotypic plasticity across hydrodynamic gradients. We then reviewed the literature from 1900 to 2024 to see how often phenotypic variation and plasticity across hydrodynamic gradients had been observed and demonstrated in different groups of seaweeds. In the last 124 years, phenotypic variation and plasticity in response to flow have been well documented in brown algae but scarcely documented in red and green algae. This could suggest that brown algae are better able to sense and respond to flow than red and green algae, perhaps due to the intercalary meristem of many brown algae, including most kelps. However, this skewed distribution could also be the result of publication bias, as most studies involving flow have been conducted on brown algae. Only 30% of 141 papers specifically investigated if observations of phenotypic variation along hydrodynamic gradients were due to plasticity. To date, phenotypic plasticity in response to flow has been demonstrated in 20 brown algal species, five red algal species, and two green algal species. Thus, the assumption that phenotypic plasticity to flow is common across seaweeds is not particularly well supported by the literature. Mechanisms underlying plasticity to flow are poorly understood and remain a critical avenue for future research.
Collapse
Affiliation(s)
- Liam J M Coleman
- Department of Botany & Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Patrick T Martone
- Department of Botany & Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Stelling‐Wood TP, Gribben PE, Poore AGB. Habitat variability in an underwater forest: Using a trait‐based approach to predict associated communities. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13523] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Talia P. Stelling‐Wood
- Evolution & Ecology Research Centre UNSW Sydney Sydney NSW Australia
- Centre of Marine Science and Innovation UNSW Sydney Sydney NSW Australia
| | - Paul E. Gribben
- Centre of Marine Science and Innovation UNSW Sydney Sydney NSW Australia
- Sydney Institute of Marine Science Mosman NSW Australia
| | - Alistair G. B. Poore
- Evolution & Ecology Research Centre UNSW Sydney Sydney NSW Australia
- Centre of Marine Science and Innovation UNSW Sydney Sydney NSW Australia
| |
Collapse
|
3
|
McCoy SJ, Santillán-Sarmiento A, Brown MT, Widdicombe S, Wheeler GL. Photosynthetic Responses of Turf-forming Red Macroalgae to High CO 2 Conditions. JOURNAL OF PHYCOLOGY 2020; 56:85-96. [PMID: 31553063 DOI: 10.1111/jpy.12922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 08/18/2019] [Indexed: 06/10/2023]
Abstract
Seaweeds are important components of near-shore ecosystems as primary producers, foundation species, and biogeochemical engineers. Seaweed communities are likely to alter under predicted climate change scenarios. We tested the physiological responses of three perennial, turf-building, intertidal rhodophytes, Mastocarpus stellatus, Osmundea pinnatifida, and the calcified Ellisolandia elongata, to elevated pCO2 over 6 weeks. Responses varied between these three species. E. elongata was strongly affected by high pCO2 , whereas non-calcified species were not. Elevated pCO2 did not induce consistent responses of photosynthesis and respiration across these three species. While baseline photophysiology differed significantly between species, we found few clear effects of elevated pCO2 on this aspect of macroalgal physiology. We found effects of within-species variation in elevated pCO2 response in M. stellatus, but not in the other species. Overall, our data confirm the sensitivity of calcified macroalgae to elevated pCO2 , but we found no evidence suggesting that elevated pCO2 conditions will have a strong positive or negative impact on photosynthetic parameters in non-calcified macroalgae.
Collapse
Affiliation(s)
- Sophie J McCoy
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, Florida, 32306-4295, USA
- Plymouth Marine Laboratory, Prospect Place, Plymouth, Devon, PL1 3DH, UK
| | - Alex Santillán-Sarmiento
- School of Biological and Marine Sciences, University of Plymouth, 4th Floor Davy Building, Drake Circus, Plymouth, PL4 8AA, UK
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121, Napoli, Italy
- Faculty of Engineering, National University of Chimborazo, Av. Antonio José de Sucre Km 1 1/2 via Guano, EC 060108, Riobamba, Ecuador
| | - Murray T Brown
- School of Biological and Marine Sciences, University of Plymouth, 4th Floor Davy Building, Drake Circus, Plymouth, PL4 8AA, UK
| | - Stephen Widdicombe
- Plymouth Marine Laboratory, Prospect Place, Plymouth, Devon, PL1 3DH, UK
| | - Glen L Wheeler
- Marine Biological Association of the UK, Citadel Hill, Plymouth, PL1 2PB, UK
| |
Collapse
|