1
|
Kelly MG, Mann DG, Taylor JD, Juggins S, Walsh K, Pitt JA, Read DS. Maximising environmental pressure-response relationship signals from diatom-based metabarcoding in rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169445. [PMID: 38159778 DOI: 10.1016/j.scitotenv.2023.169445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/28/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
DNA metabarcoding has been performed on a large number of river phytobenthos samples collected from the UK, using rbcL primers optimised for diatoms. Within this dataset the composition of non-diatom sequence reads was studied and the effect of including these in models for evaluating the nutrient gradient was assessed. Whilst many non-diatom taxonomic groups were detected, few contained the full diversity expected in riverine environments. This may be due to the performance of the current primers in characterising the wider phytobenthic community and influenced by the sampling method employed, as both were developed specifically for diatoms. Nevertheless, the study identified considerable diversity in some groups, e.g. Eustigmatophyceae and a wider distribution than previously thought for freshwater Phaeophyceae. These results offer a strong case for the benefits of metabarcoding for expanding knowledge of aquatic biodiversity in the UK and elsewhere. Many of the ASVs associated with non-diatoms showed significant pressure responses; however, models that included non-diatoms had similar predictive strength to those based on diatoms alone. Whilst limitations of the primers for assessing non-diatoms may play a role in explaining these results, the diatoms provide a strong signal along the nutrient gradient and other algae, therefore, add little unique information. We recommend that future developments should use ASVs to calculate metrics, with links to reference databases made as a final step to generate lists of taxa to support interpretation. Any further exploration of the potential of non-diatoms would benefit from access to a well-curated reference database, similar to diat.barcode. Such a database does not yet exist, and we caution against the indiscriminate use of NCBI GenBank as a taxonomic resource as many rbcL sequences deposited have not been curated.
Collapse
Affiliation(s)
- Martyn G Kelly
- Bowburn Consultancy, 11 Monteigne Drive, Bowburn, Durham DH6 5QB, UK; School of Geography, Nottingham University, Nottingham NG7 2RD, UK.
| | - David G Mann
- Royal Botanic Garden Edinburgh, Edinburgh EH3 5LR, Scotland, UK; Marine and Continental Waters, Institute for Food and Agricultural Research and Technology (IRTA), Crta de Poble Nou Km 5.5, E-43540 La Ràpita, Catalunya, Spain
| | - Joe D Taylor
- UK Centre for Ecology & Hydrology (UKCEH), Wallingford, Oxfordshire OX10 8BB, UK
| | - Stephen Juggins
- School of Geography, Politics and Sociology, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Kerry Walsh
- Chief Scientist's Group, Environment Agency, Deanery Road, Bristol BS1 5AH, UK
| | - Jo-Anne Pitt
- Chief Scientist's Group, Environment Agency, Deanery Road, Bristol BS1 5AH, UK
| | - Daniel S Read
- UK Centre for Ecology & Hydrology (UKCEH), Wallingford, Oxfordshire OX10 8BB, UK
| |
Collapse
|
2
|
Fray D, McGovern CA, Casamatta DA, Biddanda BA, Hamsher SE. Metabarcoding reveals unique microbial mat communities and evidence of biogeographic influence in low-oxygen, high-sulfur sinkholes and springs. Ecol Evol 2024; 14:e11162. [PMID: 38529029 PMCID: PMC10961586 DOI: 10.1002/ece3.11162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/16/2024] [Accepted: 03/05/2024] [Indexed: 03/27/2024] Open
Abstract
High-sulfur, low-oxygen environments formed by underwater sinkholes and springs create unique habitats populated by microbial mat communities. To explore the diversity and biogeography of these mats, samples were collected from three sites in Alpena, Michigan, one site in Monroe, Michigan, and one site in Palm Coast, Florida. Our study investigated previously undescribed eukaryotic diversity in these habitats and further explored their bacterial communities. Mat samples and water parameters were collected from sulfur spring sites during the spring, summer, and fall of 2022. Cyanobacteria and diatoms were cultured from mat subsamples to create a culture-based DNA reference library. Remaining mat samples were used for metabarcoding of the 16S and rbcL regions to explore bacterial and diatom diversity, respectively. Analyses of water chemistry, alpha diversity, and beta diversity articulated a range of high-sulfur, low-oxygen habitats, each with distinct microbial communities. Conductivity, pH, dissolved oxygen, temperature, sulfate, and chloride had significant influences on community composition but did not describe the differences between communities well. Chloride concentration had the strongest correlation with microbial community structure. Mantel tests revealed that biogeography contributed to differences between communities as well. Our results provide novel information on microbial mat composition and present evidence that both local conditions and biogeography influence these unique communities.
Collapse
Affiliation(s)
- Davis Fray
- Annis Water Resources InstituteGrand Valley State UniversityMuskegonMichiganUSA
| | | | - Dale A. Casamatta
- Department of BiologyUniversity of North FloridaJacksonvilleFloridaUSA
| | - Bopaiah A. Biddanda
- Annis Water Resources InstituteGrand Valley State UniversityMuskegonMichiganUSA
| | - Sarah E. Hamsher
- Annis Water Resources InstituteGrand Valley State UniversityMuskegonMichiganUSA
- Department of BiologyGrand Valley State UniversityAllendaleMichiganUSA
| |
Collapse
|
3
|
Kezlya E, Tseplik N, Kulikovskiy M. Genetic Markers for Metabarcoding of Freshwater Microalgae: Review. BIOLOGY 2023; 12:1038. [PMID: 37508467 PMCID: PMC10376359 DOI: 10.3390/biology12071038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
The metabarcoding methods for studying the diversity of freshwater microalgae and routine biomonitoring are actively used in modern research. A lot of experience has been accumulated already, and many methodological questions have been solved (such as the influence of the methods and time of sample conservation, DNA extraction and bioinformatical processing). The reproducibility of the method has been tested and confirmed. However, one of the main problems-choosing a genetic marker for the study-still lacks a clear answer. We analyzed 70 publications and found out that studies on eukaryotic freshwater microalgae use 12 markers (different nuclear regions 18S and ITS and plastids rbcL, 23S and 16S). Each marker has its peculiarities; they amplify differently and have various levels of efficiency (variability) in different groups of algae. The V4 and V9 18S and rbcL regions are used most often. We concentrated especially on the studies that compare the results of using different markers and microscopy. We summarize the data on the primers for each region and on how the choice of a marker affects the taxonomic composition of a community.
Collapse
Affiliation(s)
- Elena Kezlya
- Laboratory of Molecular Systematics of Aquatic Plants, K.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 127276 Moscow, Russia
| | - Natalia Tseplik
- Laboratory of Molecular Systematics of Aquatic Plants, K.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 127276 Moscow, Russia
| | - Maxim Kulikovskiy
- Laboratory of Molecular Systematics of Aquatic Plants, K.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 127276 Moscow, Russia
| |
Collapse
|
4
|
Rybalka N, Blanke M, Tzvetkova A, Noll A, Roos C, Boy J, Boy D, Nimptsch D, Godoy R, Friedl T. Unrecognized diversity and distribution of soil algae from Maritime Antarctica (Fildes Peninsula, King George Island). Front Microbiol 2023; 14:1118747. [PMID: 37434717 PMCID: PMC10332270 DOI: 10.3389/fmicb.2023.1118747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction Eukaryotic algae in the top few centimeters of fellfield soils of ice-free Maritime Antarctica have many important effects on their habitat, such as being significant drivers of organic matter input into the soils and reducing the impact of wind erosion by soil aggregate formation. To better understand the diversity and distribution of Antarctic terrestrial algae, we performed a pilot study on the surface soils of Meseta, an ice-free plateau mountain crest of Fildes Peninsula, King George Island, being hardly influenced by the marine realm and anthropogenic disturbances. It is openly exposed to microbial colonization from outside Antarctica and connected to the much harsher and dryer ice-free zones of the continental Antarctic. A temperate reference site under mild land use, SchF, was included to further test for the Meseta algae distribution in a contrasting environment. Methods We employed a paired-end metabarcoding analysis based on amplicons of the highly variable nuclear-encoded ITS2 rDNA region, complemented by a clone library approach. It targeted the four algal classes, Chlorophyceae, Trebouxiophyceae, Ulvophyceae, and Xanthophyceae, representing key groups of cold-adapted soil algae. Results A surprisingly high diversity of 830 algal OTUs was revealed, assigned to 58 genera in the four targeted algal classes. Members of the green algal class Trebouxiophyceae predominated in the soil algae communities. The major part of the algal biodiversity, 86.1% of all algal OTUs, could not be identified at the species level due to insufficient representation in reference sequence databases. The classes Ulvophyceae and Xanthophyceae exhibited the most unknown species diversity. About 9% of the Meseta algae species diversity was shared with that of the temperate reference site in Germany. Discussion In the small portion of algal OTUs for which their distribution could be assessed, the entire ITS2 sequence identity with references shows that the soil algae likely have a wide distribution beyond the Polar regions. They probably originated from soil algae propagule banks in far southern regions, transported by aeolian transport over long distances. The dynamics and severity of environmental conditions at the soil surface, determined by high wind currents, and the soil algae's high adaptability to harsh environmental conditions may account for the high similarity of soil algal communities between the northern and southern parts of the Meseta.
Collapse
Affiliation(s)
- Nataliya Rybalka
- Department of Experimental Phycology and Culture Collection of Algae (EPSAG), Albrecht-von-Haller-Institute for Plant Sciences, Georg August University, Göttingen, Germany
| | - Matthias Blanke
- Department of Experimental Phycology and Culture Collection of Algae (EPSAG), Albrecht-von-Haller-Institute for Plant Sciences, Georg August University, Göttingen, Germany
- Department of Bioinformatics, Institute of Microbiology and Genetics, Georg August University, Göttingen, Germany
| | - Ana Tzvetkova
- Institute of Bioinformatics and Human Molecular Genetics Group, Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Angela Noll
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Christian Roos
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Jens Boy
- Institute of Soil Science, Leibniz University, Hanover, Germany
| | - Diana Boy
- Institute of Microbiology, Leibniz University, Hanover, Germany
| | - Daniel Nimptsch
- Department of Experimental Phycology and Culture Collection of Algae (EPSAG), Albrecht-von-Haller-Institute for Plant Sciences, Georg August University, Göttingen, Germany
| | - Roberto Godoy
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Thomas Friedl
- Department of Experimental Phycology and Culture Collection of Algae (EPSAG), Albrecht-von-Haller-Institute for Plant Sciences, Georg August University, Göttingen, Germany
| |
Collapse
|
5
|
Barcytė D, Zátopková M, Němcová Y, Richtář M, Yurchenko T, Jaške K, Fawley KP, Škaloud P, Ševčíková T, Fawley MW, Eliáš M. Redefining Chlorobotryaceae as one of the principal and most diverse lineages of eustigmatophyte algae. Mol Phylogenet Evol 2022; 177:107607. [PMID: 35963589 DOI: 10.1016/j.ympev.2022.107607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/11/2022] [Accepted: 08/05/2022] [Indexed: 10/15/2022]
Abstract
Eustigmatophyceae is one of the ∼17 classes of the vast algal phylum Ochrophyta. Over the last decade, the eustigmatophytes emerged as an expansive group that has grown from the initially recognized handful of species to well over 200 genetically distinct entities (potential species). Yet the majority of eustigs, remain represented by unidentified strains, or even only metabarcode sequences obtained from environmental samples. Moreover, the formal classification of the group has not yet been harmonized with the recently uncovered diversity and phylogenetic relationships within the class. Here we make a major step towards resolving this issue by addressing the diversity, phylogeny and classification of one of the most prominent eustigmatophyte clades previously informally called the "Eustigmataceae group". We obtained 18S rDNA and rbcL gene sequences from four new strains from the "Eustigmataceae group", and from several additional eustig strains, and performed the most comprehensive phylogenetic analyses of Eustigmatophyceae to date. Our results of these analyses confirm the monophyly of the "Eustigmataceae group" and define its major subclades. We also sequenced plastid genomes of five "Eustigmataceae group" strains to not only improve our understanding of the plastid gene content evolution in eustigs, but also to obtain a robustly resolved eustigmatophyte phylogeny. With this new genomic data, we have solidified the view of the "Eustigmataceae group" as a well-defined family level clade. Crucially, we also have firmly established the genus Chlorobotrys as a member of the "Eustigmataceae group". This new molecular evidence, together with a critical analysis of the literature going back to the 19th century, provided the basis to radically redefine the historical concept of the family Chlorobotryaceae as the formal taxonomic rubric corresponding to the "Eustigmataceae group". With this change, the family names Eustigmataceae and Characiopsidaceae are reduced to synonymy with the Chlorobotryaceae, with the latter having taxonomic priority. We additionally studied in detail the morphology and ultrastructure of two Chlorobotryaceae members, which we describe as Neustupella aerophytica gen. et sp. nov. and Lietzensia polymorpha gen. et sp. nov. Finally, our analyses of partial genomic data from several Chlorobotryaceae representatives identified genes for hallmark flagellar proteins in all of these strains. The presence of the flagellar proteins strongly suggests that zoosporogenesis is a common trait of the family and also occurs in the members never observed to produce flagellated stages. Altogether, our work paints a rich picture of one of the most diverse principal lineages of eustigmatophyte algae.
Collapse
Affiliation(s)
- Dovilė Barcytė
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic.
| | - Martina Zátopková
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Yvonne Němcová
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 00 Prague, Czech Republic
| | - Michal Richtář
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Tatiana Yurchenko
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Karin Jaške
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Karen P Fawley
- Division of Science and Mathematics, University of the Ozarks, Clarksville, AR 72830, USA
| | - Pavel Škaloud
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 00 Prague, Czech Republic
| | - Tereza Ševčíková
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Marvin W Fawley
- Division of Science and Mathematics, University of the Ozarks, Clarksville, AR 72830, USA
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic.
| |
Collapse
|
6
|
Cahoon AB, VanGundy RD. Alveolates (dinoflagellates, ciliates and apicomplexans) and Rhizarians are the most common microbial eukaryotes in temperate Appalachian karst caves. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:538-548. [PMID: 35388620 PMCID: PMC9542216 DOI: 10.1111/1758-2229.13060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 03/02/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
The purpose of this study was to survey the eukaryotic microbiome of two karst caves in the Valley and Ridge physiographic region of the Appalachian Mountains. Caves are known to harbour eukaryotic microbes but their very low densities and small cell size make them difficult to collect and identify. Microeukaryotes were surveyed using two methodologies, filtering water and submerging glass microscope slides mounted in periphytometers in cave pools. The periphyton sampling yielded 13.5 times more unique amplicon sequence variants (ASVs) than filtered water. The most abundant protist supergroup was Alveolata with large proportions of the ASVs belonging to dinoflagellate, ciliate and apicomplexan clades. The next most abundant were Rhizarians followed by Stramenopiles (diatoms and chrysophytes) and Ameobozoans. Very few of the ASVs, 1.5%, matched curated protist sequences with greater than 99% identity and only 2.5% could be identified from surface plankton samples collected in the same region. The overall composition of the eukaryotic microbiome appears to be a combination of bacterial grazers and parasitic species that could possibly survive underground as well as cells, cysts and spores probably transported from the surface.
Collapse
Affiliation(s)
- A. Bruce Cahoon
- Department of Natural SciencesThe University of Virginia's College at WiseWiseVA24293USA
| | - Robert D. VanGundy
- Department of Natural SciencesThe University of Virginia's College at WiseWiseVA24293USA
| |
Collapse
|
7
|
Rampen SW, Friedl T, Rybalka N, Thiel V. The Long chain Diol Index: A marine palaeotemperature proxy based on eustigmatophyte lipids that records the warmest seasons. Proc Natl Acad Sci U S A 2022; 119:e2116812119. [PMID: 35412908 PMCID: PMC9169758 DOI: 10.1073/pnas.2116812119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/11/2022] [Indexed: 12/23/2022] Open
Abstract
Long chain 1,13- and 1,15-diols are lipids which are omnipresent in marine environments, and the Long chain Diol Index (LDI), based on their distributions, has previously been introduced as a proxy for sea surface temperature. The main biological sources for long chain 1,13- and 1,15-diols have remained unknown, but our combined lipid and 23S ribosomal RNA (23S rRNA) analyses on suspended particulate matter from the Mediterranean Sea demonstrate that these lipids are produced by a marine eustigmatophyte group that originated before the currently known eustigmatophytes diversified. The 18S rRNA data confirm the existence of early-branching marine eustigmatophytes, which occur at a global scale. Differences between LDI records and other paleotemperature proxies are generally attributed to differences between the seasons in which the proxy-related organisms occur. Our results, combined with available LDI data from surface sediments, indicate that the LDI primarily registers temperatures from the warmest month when mixed-layer depths, salinity, and nutrient concentrations are low. The LDI may not be applicable in areas where Proboscia diatoms contribute 1,13-diols, but this can be recognized by enhanced contributions of C28 1,12 diol. Freshwater input may also affect the correlation between temperature and the LDI, but relative C32 1,15-diol abundances help to identify and correct for these effects. When taking those factors into account, the calibration error of the LDI is 2.4 °C. As a well-defined proxy for temperatures of the warmest seasons, the LDI can unlock important and previously inaccessible paleoclimate information and will thereby substantially improve our understanding of past climate conditions.
Collapse
Affiliation(s)
- Sebastiaan W. Rampen
- Geobiology, Geoscience Centre, University of Göttingen, 37077 Göttingen, Germany
| | - Thomas Friedl
- Experimental Phycology and Culture Collection of Algae (SAG), University of Göttingen, Göttingen, 37073 Germany
| | - Nataliya Rybalka
- Experimental Phycology and Culture Collection of Algae (SAG), University of Göttingen, Göttingen, 37073 Germany
| | - Volker Thiel
- Geobiology, Geoscience Centre, University of Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
8
|
Yang HP, Wenzel M, Hauser DA, Nelson JM, Xu X, Eliáš M, Li FW. Monodopsis and Vischeria Genomes Shed New Light on the Biology of Eustigmatophyte Algae. Genome Biol Evol 2021; 13:6402010. [PMID: 34665222 PMCID: PMC8570151 DOI: 10.1093/gbe/evab233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2021] [Indexed: 11/12/2022] Open
Abstract
Members of eustigmatophyte algae, especially Nannochloropsis and Microchloropsis, have been tapped for biofuel production owing to their exceptionally high lipid content. Although extensive genomic, transcriptomic, and synthetic biology toolkits have been made available for Nannochloropsis and Microchloropsis, very little is known about other eustigmatophytes. Here we present three near-chromosomal and gapless genome assemblies of Monodopsis strains C73 and C141 (60 Mb) and Vischeria strain C74 (106 Mb), which are the sister groups to Nannochloropsis and Microchloropsis in the order Eustigmatales. These genomes contain unusually high percentages of simple repeats, ranging from 12% to 21% of the total assembly size. Unlike Nannochloropsis and Microchloropsis, long interspersed nuclear element repeats are abundant in Monodopsis and Vischeria and might constitute the centromeric regions. We found that both mevalonate and nonmevalonate pathways for terpenoid biosynthesis are present in Monodopsis and Vischeria, which is different from Nannochloropsis and Microchloropsis that have only the latter. Our analysis further revealed extensive spliced leader trans-splicing in Monodopsis and Vischeria at 36-61% of genes. Altogether, the high-quality genomes of Monodopsis and Vischeria not only serve as the much-needed outgroups to advance Nannochloropsis and Microchloropsis research, but also shed new light on the biology and evolution of eustigmatophyte algae.
Collapse
Affiliation(s)
| | - Marius Wenzel
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | | | | | - Xia Xu
- Boyce Thompson Institute, Ithaca, New York, USA
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, New York, USA.,Plant Biology Section, Cornell University, USA
| |
Collapse
|