1
|
Lusta KA, Churov AV, Beloyartsev DF, Golovyuk AL, Lee AA, Sukhorukov VN, Orekhov AN. The two coin sides of bacterial extracellular membrane nanovesicles: atherosclerosis trigger or remedy. DISCOVER NANO 2024; 19:179. [PMID: 39532781 PMCID: PMC11557815 DOI: 10.1186/s11671-024-04149-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Among the numerous driving forces that cause the atherosclerotic cardiovascular disease (ASCVD), pathogenic bacterial extracellular membrane nanovesicles (BEMNs) containing toxins and virulence factors appear to be the key trigger of inflammation and atherogenesis, the major processes involved in the pathogenesis of ASCVD. Since BEMNs are the carriers of nanosized biomolecules to distant sites, they are now being considered as a novel drug delivery system. Nowadays, many therapeutic strategies are used to treat ASCVD. However, the conventional anti-atherosclerotic therapies are not effective enough. This primarily due to the inefficiency of non-targeted drug delivery systems to tissue affected areas, which, in turn, leads to numerous side effects, as well as faulty pharmacokinetics. In this regard, nanomedicine methods using nanoparticles (NPs) as targeted drug delivery vehicles proved to be extremely useful. Bioengineered BEMNs equipped with disease-specific ligand moieties and loaded with corresponding drugs represent a promising tool in nanomedicine, which can be used as a novel drug delivery system for a successful therapy of ASCVD. In this review, we outline the involvement of pathogenic BEMNs in the triggering of ASCVD, the conventional therapeutic strategies for the treatment of ASCVD, and the recent trends in nanomedicine using BEMNs and NPs as a vehicle for targeted drug delivery.
Collapse
Affiliation(s)
- Konstantin A Lusta
- Institute for Atherosclerosis Research, Ltd, Osennyaya Street 4-1-207, Moscow, Russia, 121609.
| | - Alexey V Churov
- Institute on Aging Research, Russian Gerontology Clinical Research Center, Pirogov Russian National Research Medical University, Moscow, Russia, 129226
- Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow, Russia, 125315
| | - Dmitry F Beloyartsev
- Vascular Surgery Department, A.V. Vishnevsky National Medical Research Center of Surgery, 27 Bolshaya Serpukhovskaya Street, Moscow, Russia, 117997
| | - Alexander L Golovyuk
- Vascular Surgery Department, A.V. Vishnevsky National Medical Research Center of Surgery, 27 Bolshaya Serpukhovskaya Street, Moscow, Russia, 117997
| | - Arthur A Lee
- Insitute of Human Morphology, Petrovsky Russian National Center of Surgery, 2 Abrikosovsky Lane, Moscow, Russia, 119991
| | - Vasily N Sukhorukov
- Insitute of Human Morphology, Petrovsky Russian National Center of Surgery, 2 Abrikosovsky Lane, Moscow, Russia, 119991
- Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow, Russia, 125315
| | - Alexander N Orekhov
- Insitute of Human Morphology, Petrovsky Russian National Center of Surgery, 2 Abrikosovsky Lane, Moscow, Russia, 119991
- Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow, Russia, 125315
| |
Collapse
|
2
|
Wang J, Liu C, Cutler J, Ivanovski S, Lee RS, Han P. Microbial- and host immune cell-derived extracellular vesicles in the pathogenesis and therapy of periodontitis: A narrative review. J Periodontal Res 2024. [PMID: 38758729 DOI: 10.1111/jre.13283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/19/2024]
Abstract
Periodontitis is a chronic inflammatory disease caused by dysbiotic biofilms and destructive host immune responses. Extracellular vesicles (EVs) are circulating nanoparticles released by microbes and host cells involved in cell-to-cell communication, found in body biofluids, such as saliva and gingival crevicular fluid (GCF). EVs are mainly involved in cell-to-cell communication, and may hold promise for diagnostic and therapeutic purposes. Periodontal research has examined the potential involvement of bacterial- and host-cell-derived EVs in disease pathogenesis, diagnosis, and therapy, but data remains scarce on immune cell- or microbial-derived EVs. In this narrative review, we first provide an overview of the role of microbial and host-derived EVs on disease pathogenesis. Recent studies reveal that Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans-derived outer membrane vesicles (OMVs) can activate inflammatory cytokine release in host cells, while M1 macrophage EVs may contribute to bone loss. Additionally, we summarised current in vitro and pre-clinical research on the utilisation of immune cell and microbial-derived EVs as potential therapeutic tools in the context of periodontal treatment. Studies indicate that EVs from M2 macrophages and dendritic cells promote bone regeneration in animal models. While bacterial EVs remain underexplored for periodontal therapy, preliminary research suggests that P. gingivalis OMVs hold promise as vaccine candidates. Finally, we acknowledge the current limitations present in the field of translating immune cell derived EVs and microbial derived EVs in periodontology. It is concluded that microbial and host immune cell-derived EVs have a role in periodontitis pathogenesis and hence may be useful for studying disease pathophysiology, and as diagnostic and treatment monitoring biomarkers.
Collapse
Affiliation(s)
- Jenny Wang
- School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, The University of Queensland, Brisbane, Queensland, Australia
| | - Chun Liu
- School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, The University of Queensland, Brisbane, Queensland, Australia
- School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
| | - Jason Cutler
- School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, The University of Queensland, Brisbane, Queensland, Australia
- School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
| | - Sašo Ivanovski
- School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, The University of Queensland, Brisbane, Queensland, Australia
- School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
| | - Ryan Sb Lee
- School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, The University of Queensland, Brisbane, Queensland, Australia
- School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
| | - Pingping Han
- School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, The University of Queensland, Brisbane, Queensland, Australia
- School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
3
|
Huang B, Liu C, Yang J, Xiang E, Ivanovski S, Han P. Saliva biofilm-derived outer membrane vesicles regulate biofilm formation and immune response of oral epithelial cells on titanium surfaces. Clin Oral Investig 2024; 28:75. [PMID: 38175302 DOI: 10.1007/s00784-023-05454-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVES While the significant roles of outer membrane vesicles (OMVs) from individual oral bacterial species in bacterial-host interactions are known, the involvement of saliva biofilm-derived OMVs in peri-implant disease pathogenesis remains unclear. This study aimed to investigate the effect of saliva biofilm-derived OMVs on regulating saliva biofilm formation and modulating the immune response of the epithelial cells on titanium surfaces. MATERIALS AND METHODS Saliva derived biofilms were cultured on tissue culture plates (TCP) for 4 days using pooled saliva from four healthy donors. OMVs secreted from the TCP bound biofilm (referred to as OMVs or healthy saliva biofilm OMVs) were enriched using the size-exclusion chromatography method. We then evaluated the effects of these OMVs on the viability, metabolic activity, and the presence of oral pathogens in saliva biofilm grown on titanium discs for 24 h and 72 h. Furthermore, the impact of OMVs on the mRNA expression and inflammatory cytokines [interleukin (IL)-6, IL-1α, and monocyte chemoattractant protein-1 (MCP-1)] in human oral epithelial cells (OKF6/TERT-2) was investigated using RT-qPCR and enzyme-linked immunosorbent assay (ELISA), respectively. RESULTS Healthy saliva biofilm OMVs improved the biomass and activity of saliva biofilm cultured on the titanium surfaces, with inhibited Porphyromonas gingivalis and Fusobacterium nucleatum, and enhanced Streptococcus mutans expression. Additionally, OMVs increased pro-inflammatory cytokine IL-6 mRNA and IL-6 cytokine expression in human oral epithelial cells. However, IL-1α and MCP-1 cytokines were inhibited 24-hour post-incubation with OMVs. CONCLUSION Healthy saliva biofilm derived OMVs regulate the activity and pathogen composition of biofilms formed on titanium, while modulating the secretion of pro-inflammation factors of oral epithelial cells grown on titanium surfaces. CLINICAL RELEVANCE Healthy saliva biofilm OMVs may regulate the early biofilm formation on abutment surfaces and modulate epithelial cell immune response, which may alter the peri-implant niche and participate in the pathogenesis of peri-implant disease.
Collapse
Affiliation(s)
- Baoxin Huang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
- The University of Queensland, School of Dentistry, QLD, Brisbane, 4006, Australia
- The University of Queensland, School of Dentistry, Centre for Oral-Facial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, Queensland, Australia
| | - Chun Liu
- The University of Queensland, School of Dentistry, QLD, Brisbane, 4006, Australia
- The University of Queensland, School of Dentistry, Centre for Oral-Facial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, Queensland, Australia
| | - Jieting Yang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Enmao Xiang
- The University of Queensland, School of Dentistry, QLD, Brisbane, 4006, Australia
- The University of Queensland, School of Dentistry, Centre for Oral-Facial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, Queensland, Australia
| | - Sašo Ivanovski
- The University of Queensland, School of Dentistry, QLD, Brisbane, 4006, Australia.
- The University of Queensland, School of Dentistry, Centre for Oral-Facial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, Queensland, Australia.
| | - Pingping Han
- The University of Queensland, School of Dentistry, QLD, Brisbane, 4006, Australia.
- The University of Queensland, School of Dentistry, Centre for Oral-Facial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, Queensland, Australia.
| |
Collapse
|
4
|
Zhang M, Mi N, Ying Z, Lin X, Jin Y. Advances in the prevention and treatment of Alzheimer's disease based on oral bacteria. Front Psychiatry 2023; 14:1291455. [PMID: 38156323 PMCID: PMC10754487 DOI: 10.3389/fpsyt.2023.1291455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023] Open
Abstract
With the global population undergoing demographic shift towards aging, the prevalence of Alzheimer's disease (AD), a prominent neurodegenerative disorder that primarily afflicts individuals aged 65 and above, has increased across various geographical regions. This phenomenon is accompanied by a concomitant decline in immune functionality and oral hygiene capacity among the elderly, precipitating compromised oral functionality and an augmented burden of dental plaque. Accordingly, oral afflictions, including dental caries and periodontal disease, manifest with frequency among the geriatric population worldwide. Recent scientific investigations have unveiled the potential role of oral bacteria in instigating both local and systemic chronic inflammation, thereby delineating a putative nexus between oral health and the genesis and progression of AD. They further proposed the oral microbiome as a potentially modifiable risk factor in AD development, although the precise pathological mechanisms and degree of association have yet to be fully elucidated. This review summarizes current research on the relationship between oral bacteria and AD, describing the epidemiological and pathological mechanisms that may potentially link them. The purpose is to enrich early diagnostic approaches by incorporating emerging biomarkers, offering novel insights for clinicians in the early detection of AD. Additionally, it explores the potential of vaccination strategies and guidance for clinical pharmacotherapy. It proposes the development of maintenance measures specifically targeting oral health in older adults and advocates for guiding elderly patients in adopting healthy lifestyle habits, ultimately aiming to indirectly mitigate the progression of AD while promoting oral health in the elderly.
Collapse
Affiliation(s)
| | | | | | | | - Ying Jin
- Department of Stomatology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Techawiwattanaboon T, Phanchamnan E, Iadsee N, Makjaroen J, Pisitkun T, Patarakul K. Proteomic profile of naturally released extracellular vesicles secreted from Leptospira interrogans serovar Pomona in response to temperature and osmotic stresses. Sci Rep 2023; 13:18601. [PMID: 37903905 PMCID: PMC10616267 DOI: 10.1038/s41598-023-45863-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/25/2023] [Indexed: 11/01/2023] Open
Abstract
Bacterial extracellular vesicles (EVs) are generally formed by pinching off outer membrane leaflets while simultaneously releasing multiple active molecules into the external environment. In this study, we aimed to identify the protein cargo of leptospiral EVs released from intact leptospires grown under three different conditions: EMJH medium at 30 °C, temperature shifted to 37 °C, and physiologic osmolarity (EMJH medium with 120 mM NaCl). The naturally released EVs observed under transmission electron microscopy were spherical in shape with an approximate diameter of 80-100 nm. Quantitative proteomics and bioinformatic analysis indicated that the EVs were formed primarily from the outer membrane and the cytoplasm. The main functional COG categories of proteins carried in leptospiral EVs might be involved in cell growth, survival and adaptation, and pathogenicity. Relative to their abundance in EVs grown in EMJH medium at 30 °C, 39 and 69 proteins exhibited significant changes in response to the temperature shift and the osmotic change, respectively. During exposure to both stresses, Leptospira secreted several multifunctional proteins via EVs, while preserving certain virulence proteins within whole cells. Therefore, leptospiral EVs may serve as a decoy structure for host responses, whereas some virulence factors necessary for direct interaction with the host environment are reserved in leptospiral cells. This knowledge will be useful for understanding the pathogenesis of leptospirosis and developing as one of vaccine platforms against leptospirosis in the future.
Collapse
Affiliation(s)
- Teerasit Techawiwattanaboon
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Bangkok, Thailand
| | - Eakalak Phanchamnan
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Bangkok, Thailand
- Medical Microbiology, Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Nutta Iadsee
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Bangkok, Thailand
- Medical Microbiology, Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Jiradej Makjaroen
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kanitha Patarakul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
6
|
Zhang K, Chen X, Zhou R, Chen Z, Wu B, Qiu W, Fang F. Inhibition of gingival fibroblast necroptosis mediated by RIPK3/MLKL attenuates periodontitis. J Clin Periodontol 2023; 50:1264-1279. [PMID: 37366309 DOI: 10.1111/jcpe.13841] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/03/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
AIM Necroptosis participates in the pathogenesis of many inflammatory diseases, including periodontitis. Here, we aimed to investigate the role and mechanism of necroptosis inhibitors in attenuating periodontitis. MATERIALS AND METHODS The Gene Expression Omnibus (GEO) dataset GSE164241 was re-analysed to identify the role of necroptosis in periodontitis. Gingival specimens from healthy subjects or periodontitis patients were collected to evaluate the expression level of necroptosis-associated proteins. The therapeutic effect of necroptosis inhibitors on periodontitis was assessed in vivo and in vitro. Moreover, Transwell assays and Western blotting and siRNA transfection were used to identify the effects of necroptotic human gingival fibroblasts (hGFs) on THP-1 macrophages. RESULTS Re-analysis revealed that gingival fibroblasts (GFs) in periodontitis gingiva showed the highest area under the curve score of necroptosis. Elevated levels of necroptosis-associated proteins were identified in GFs in periodontitis gingiva collected from patients and mice. In ligature-induced periodontitis mice, local administration of receptor interacting protein kinase 3(RIPK3) inhibitor GSK'872 or sh-mixed-lineage kinase domain-like pseudokinase (Mlkl) markedly abrogated necroptosis and rescued periodontitis. Analogously, necroptosis inhibitors alleviated the inflammatory response and release of damage-associated molecular patterns in lipopolysaccharide- or LAZ (LPS + AZD'5582 + z-VAD-fmk, necroptosis inducer)-induced GFs and then reduced THP-1 cell migration and M1 polarization. CONCLUSIONS Necroptosis in GFs aggravated gingival inflammation and alveolar bone loss. Necroptosis inhibitors attenuate this process by modulating THP-1 macrophage migration and polarization. This study offers novel insights into the pathogenesis and potential therapeutic targets of periodontitis.
Collapse
Affiliation(s)
- Kaiying Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxin Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rong Zhou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhao Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Buling Wu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
| | - Wei Qiu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fuchun Fang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Zhou W, Zhao L, Mao Z, Wang Z, Zhang Z, Li M. Bidirectional Communication Between the Brain and Other Organs: The Role of Extracellular Vesicles. Cell Mol Neurobiol 2023:10.1007/s10571-023-01345-5. [PMID: 37067749 PMCID: PMC10106324 DOI: 10.1007/s10571-023-01345-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/03/2023] [Indexed: 04/18/2023]
Abstract
A number of substances released by the brain under physiological and pathological conditions exert effects on other organs. In turn, substances produced primarily by organs such as bone marrow, adipose tissue, or the heart may have an impact on the metabolism and function and metabolism of the healthy and diseased brain. Despite a mounting amount of evidence supports such bidirectional communication between the brain and other organs, research on the function of molecular mediators carried by extracellular vesicles (EVs) is in the early stages. In addition to being able to target or reach practically any organ, EVs have the ability to cross the blood-brain barrier to transport a range of substances (lipids, peptides, proteins, and nucleic acids) to recipient cells, exerting biological effects. Here, we review the function of EVs in bidirectional communication between the brain and other organs. In a small number of cases, the role has been explicitly proven; yet, in most cases, it relies on indirect evidence from EVs in cell culture or animal models. There is a dearth of research currently available on the function of EVs-carrying mediators in the bidirectional communication between the brain and bone marrow, adipose tissue, liver, heart, lungs, and gut. Therefore, more studies are needed to determine how EVs facilitate communication between the brain and other organs.
Collapse
Affiliation(s)
- Wu Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Lihong Zhao
- Department of Radiotherapy, Jilin Cancer Hospital, 1018 Huguang Street, Changchun, 130012, Jilin, China
| | - Zelu Mao
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Zhihua Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Zhixiong Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
8
|
Huang X, Wang H, Wang C, Cao Z. The Applications and Potentials of Extracellular Vesicles from Different Cell Sources in Periodontal Regeneration. Int J Mol Sci 2023; 24:ijms24065790. [PMID: 36982864 PMCID: PMC10058679 DOI: 10.3390/ijms24065790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Periodontitis is a chronic infectious disease worldwide that can cause damage to periodontal supporting tissues including gingiva, bone, cementum and periodontal ligament (PDL). The principle for the treatment of periodontitis is to control the inflammatory process. Achieving structural and functional regeneration of periodontal tissues is also essential and remains a major challenge. Though many technologies, products, and ingredients were applied in periodontal regeneration, most of the strategies have limited outcomes. Extracellular vesicles (EVs) are membranous particles with a lipid structure secreted by cells, containing a large number of biomolecules for the communication between cells. Numerous studies have demonstrated the beneficial effects of stem cell-derived EVs (SCEVs) and immune cell-derived EVs (ICEVs) on periodontal regeneration, which may be an alternative strategy for cell-based periodontal regeneration. The production of EVs is highly conserved among humans, bacteria and plants. In addition to eukaryocyte-derived EVs (CEVs), a growing body of literature suggests that bacterial/plant-derived EVs (BEVs/PEVs) also play an important role in periodontal homeostasis and regeneration. The purpose of this review is to introduce and summarize the potential therapeutic values of BEVs, CEVs and PEVs in periodontal regeneration, and discuss the current challenges and prospects for EV-based periodontal regeneration.
Collapse
Affiliation(s)
- Xin Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Huiyi Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Chuan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
9
|
Fan R, Zhou Y, Chen X, Zhong X, He F, Peng W, Li L, Wang X, Xu Y. Porphyromonas gingivalis Outer Membrane Vesicles Promote Apoptosis via msRNA-Regulated DNA Methylation in Periodontitis. Microbiol Spectr 2023; 11:e0328822. [PMID: 36629433 PMCID: PMC9927323 DOI: 10.1128/spectrum.03288-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/07/2022] [Indexed: 01/12/2023] Open
Abstract
The outer membrane vesicles (OMVs) produced by Porphyromonas gingivalis contain a variety of bioactive molecules that may be involved in the progression of periodontitis. However, the participation of P. gingivalis OMVs in the development of periodontitis has not been elucidated. Here, we isolated P. gingivalis OMVs and confirmed their participation in periodontitis both in vivo and in vitro. Microcomputed tomography (micro-CT) and histological analysis showed that under stimulation with P. gingivalis OMVs, the alveolar bone of rats was significantly resorbed in vivo. We found that P. gingivalis OMVs were taken up by human periodontal ligament cells ([hPDLCs]) in vitro, which subsequently resulted in apoptosis and inflammatory cytokine release, which was accomplished by the microRNA-size small RNA (msRNA) sRNA45033 in the P. gingivalis OMVs. Through bioinformatics analysis and screening of target genes, chromobox 5 (CBX5) was identified as the downstream target of screened-out sRNA45033. Using a dual-luciferase reporter assay, overexpression, and knockdown methods, sRNA45033 was confirmed to target CBX5 to regulate hPDLC apoptosis. In addition, CUT&Tag (cleavage under targets and tagmentation) analysis confirmed the mechanism that CBX5 regulates apoptosis through the methylation of p53 DNA. Collectively, these findings indicate that the role of P. gingivalis OMVs is immunologically relevant and related to bacterial virulence during the development of periodontitis. IMPORTANCE P. gingivalis is a bacterium often associated with periodontitis. This study demonstrates that (i) sRNA45033 in P. gingivalis OMVs targets CBX5, (ii) CBX5 regulates the methylation of p53 DNA and its expression, which is associated with apoptosis, and (iii) a novel mechanism of interaction between hosts and pathogens is mediated by OMVs in the occurrence of periodontitis.
Collapse
Affiliation(s)
- Ruyi Fan
- Department of Periodontics, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yi Zhou
- Department of Periodontics, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Xu Chen
- Department of Periodontics, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Xianmei Zhong
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Periodontics, Taizhou Stomatological Hospital, Taizhou, China
| | - Fanzhen He
- Department of Periodontics, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Wenzao Peng
- Department of Periodontics, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Lu Li
- Department of Periodontics, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Xiaoqian Wang
- Department of Periodontics, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yan Xu
- Department of Periodontics, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|
10
|
Cai R, Wang L, Zhang W, Liu B, Wu Y, Pang J, Ma C. The role of extracellular vesicles in periodontitis: pathogenesis, diagnosis, and therapy. Front Immunol 2023; 14:1151322. [PMID: 37114060 PMCID: PMC10126335 DOI: 10.3389/fimmu.2023.1151322] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Periodontitis is a prevalent disease and one of the leading causes of tooth loss. Biofilms are initiating factor of periodontitis, which can destroy periodontal tissue by producing virulence factors. The overactivated host immune response is the primary cause of periodontitis. The clinical examination of periodontal tissues and the patient's medical history are the mainstays of periodontitis diagnosis. However, there is a lack of molecular biomarkers that can be used to identify and predict periodontitis activity precisely. Non-surgical and surgical treatments are currently available for periodontitis, although both have drawbacks. In clinical practice, achieving the ideal therapeutic effect remains a challenge. Studies have revealed that bacteria produce extracellular vesicles (EVs) to export virulence proteins to host cells. Meanwhile, periodontal tissue cells and immune cells produce EVs that have pro- or anti-inflammatory effects. Accordingly, EVs play a critical role in the pathogenesis of periodontitis. Recent studies have also presented that the content and composition of EVs in saliva and gingival crevicular fluid (GCF) can serve as possible periodontitis diagnostic indicators. In addition, studies have indicated that stem cell EVs may encourage periodontal regeneration. In this article, we mainly review the role of EVs in the pathogenesis of periodontitis and discuss their diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Rong Cai
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
| | - Lu Wang
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wei Zhang
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
| | - Bing Liu
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
| | - Yiqi Wu
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jianliang Pang
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
- *Correspondence: Chufan Ma, ; Jianliang Pang,
| | - Chufan Ma
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
- *Correspondence: Chufan Ma, ; Jianliang Pang,
| |
Collapse
|
11
|
Deng DK, Zhang JJ, Gan D, Zou JK, Wu RX, Tian Y, Yin Y, Li X, Chen FM, He XT. Roles of extracellular vesicles in periodontal homeostasis and their therapeutic potential. J Nanobiotechnology 2022; 20:545. [PMID: 36585740 PMCID: PMC9801622 DOI: 10.1186/s12951-022-01757-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023] Open
Abstract
Periodontal tissue is a highly dynamic and frequently stimulated area where homeostasis is easily destroyed, leading to proinflammatory periodontal diseases. Bacteria-bacteria and cell-bacteria interactions play pivotal roles in periodontal homeostasis and disease progression. Several reviews have comprehensively summarized the roles of bacteria and stem cells in periodontal homeostasis. However, they did not describe the roles of extracellular vesicles (EVs) from bacteria and cells. As communication mediators evolutionarily conserved from bacteria to eukaryotic cells, EVs secreted by bacteria or cells can mediate interactions between bacteria and their hosts, thereby offering great promise for the maintenance of periodontal homeostasis. This review offers an overview of EV biogenesis, the effects of EVs on periodontal homeostasis, and recent advances in EV-based periodontal regenerative strategies. Specifically, we document the pathogenic roles of bacteria-derived EVs (BEVs) in periodontal dyshomeostasis, focusing on plaque biofilm formation, immune evasion, inflammatory pathway activation and tissue destruction. Moreover, we summarize recent advancements in cell-derived EVs (CEVs) in periodontal homeostasis, emphasizing the multifunctional biological effects of CEVs on periodontal tissue regeneration. Finally, we discuss future challenges and practical perspectives for the clinical translation of EV-based therapies for periodontitis.
Collapse
Affiliation(s)
- Dao-Kun Deng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jiu-Jiu Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Dian Gan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jie-Kang Zou
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Rui-Xin Wu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yi Tian
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yuan Yin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xuan Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China.
| | - Fa-Ming Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China.
| | - Xiao-Tao He
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China.
| |
Collapse
|
12
|
Exploring the Mechanisms and Association between Oral Microflora and Systemic Diseases. Diagnostics (Basel) 2022; 12:diagnostics12112800. [PMID: 36428859 PMCID: PMC9689323 DOI: 10.3390/diagnostics12112800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/01/2022] [Accepted: 10/12/2022] [Indexed: 11/18/2022] Open
Abstract
The scope of dentistry is ever-changing and dynamic in all fields of dentistry including periodontal health and disease. Recent studies show that oral health and systemic health are interdependent, particularly in the way that poor oral hygiene and periodontal health affect the systemic health of an individual and vice versa. Periodontal diseases are multifactorial in nature in which the role of bacterial infections is inevitable. Furthermore, high-throughput sequencing technologies have shed light on the dysregulation of the growth of oral microbial flora and their environment, including those that are associated with periodontitis and other oral and non-oral diseases. Under such circumstances, it becomes important to explore oral microbiota and understand the effects of periodontal pathogens in the pathogenesis of systemic diseases. In addition, it may strengthen our view that a better understanding of oral microbial flora and proper examination of the oral cavity may aid in the early diagnosis and possible treatment of systemic diseases and conditions. This will eventually lead to providing better care to our patients. Therefore, in this research, we attempt to outline the periodontal pathophysiology along with the role of periodontal pathogens in some commonly encountered systemic conditions.
Collapse
|
13
|
Liu C, Li Y, Han G. Advances of Mesenchymal Stem Cells Released Extracellular Vesicles in Periodontal Bone Remodeling. DNA Cell Biol 2022; 41:935-950. [PMID: 36315196 DOI: 10.1089/dna.2022.0359] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Extracellular vesicles (EVs) are nanoparticles that include exosomes, microvesicles, and apoptotic bodies; they interact with target cell surface receptors and transport contents, including mRNA, proteins, and enzymes into the cytoplasm of target cells to function. The biological fingerprints of EVs practically mirror those of the parental cells they originated from. In the bone remodeling microenvironment, EVs could act on osteoblasts to regulate the bone formation, promote osteoclast differentiation, and regulate bone resorption. Therefore, there have been many attempts wherein EVs were used to achieve targeted therapy in bone-related diseases. Periodontitis, a common bacterial infectious disease, could cause severe alveolar bone resorption, resulting in tooth loss, whereas research on periodontal bone regeneration is also an urgent question. Therefore, EVs-related studies are important for periodontal bone remodeling. In this review, we summarize the current knowledge of mesenchymal stem cell-EVs involved in periodontal bone remodeling and explore the functional gene expression through a comparative analysis of transcriptomic content.
Collapse
Affiliation(s)
- Chaoran Liu
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, People's Republic of China
| | - Yanan Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, People's Republic of China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
14
|
Organ-on-a-Chip for Studying Gut-Brain Interaction Mediated by Extracellular Vesicles in the Gut Microenvironment. Int J Mol Sci 2021; 22:ijms222413513. [PMID: 34948310 PMCID: PMC8707342 DOI: 10.3390/ijms222413513] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are a group of membrane vesicles that play important roles in cell-to-cell and interspecies/interkingdom communications by modulating the pathophysiological conditions of recipient cells. Recent evidence has implied their potential roles in the gut–brain axis (GBA), which is a complex bidirectional communication system between the gut environment and brain pathophysiology. Despite the evidence, the roles of EVs in the gut microenvironment in the GBA are less highlighted. Moreover, there are critical challenges in the current GBA models and analyzing techniques for EVs, which may hinder the research. Currently, advances in organ-on-a-chip (OOC) technologies have provided a promising solution. Here, we review the potential effects of EVs occurring in the gut environment on brain physiology and behavior and discuss how to apply OOCs to research the GBA mediated by EVs in the gut microenvironment.
Collapse
|
15
|
Han P, Bartold PM, Ivanovski S. The emerging role of small extracellular vesicles in saliva and gingival crevicular fluid as diagnostics for periodontitis. J Periodontal Res 2021; 57:219-231. [PMID: 34773636 DOI: 10.1111/jre.12950] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/18/2021] [Accepted: 10/26/2021] [Indexed: 02/06/2023]
Abstract
Periodontitis is a highly prevalent multifactorial chronic inflammatory disease associated with a destructive host immune-inflammatory response to microbial dysbiosis. Current clinical diagnosis is reliant on measuring past periodontal tissue loss, with a lack of molecular biomarkers to accurately diagnose periodontitis activity in 'real-time'. Thus, discovery of new classes of diagnostic biomarkers is of critical importance in periodontology. Small extracellular vesicles (<200 nm in diameter; sEVs) from oral biofluids (saliva and gingival crevicular fluid-GCF) are lipid-encapsulated bilayered vesicles and have recently emerged as a potential source of biomarkers for periodontal disease (gingivitis and periodontitis), due to the cargo of protein, genetic material and lipids derived from their parent cells. There is limited information on the isolation and characterisation methods of saliva/GCF-sEVs or the characterisation of sEVs cargo as biomarkers for periodontitis. In this review, we detail the composition of sEVs and summarise their isolation and characterisation from saliva and GCF. The potential role of saliva and GCF-derived sEVs in periodontitis diagnosis is also explored. It is proposed that sEVs cargo, including protein, microRNA, message RNA and DNA methylation, are potential biomarkers for periodontitis with good diagnostic power (area under the curve-AUC > 0.9).
Collapse
Affiliation(s)
- Pingping Han
- School of Dentistry, Epigenetics Nanodiagnostic and Therapeutic Group, Center for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), The University of Queensland, Brisbane, Queensland, Australia.,School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
| | - Peter Mark Bartold
- School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
| | - Sašo Ivanovski
- School of Dentistry, Epigenetics Nanodiagnostic and Therapeutic Group, Center for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), The University of Queensland, Brisbane, Queensland, Australia.,School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|