1
|
Song W, Liu L, Liang H, Cheng H, He W, Yin Q, Zhang Z, Lin W, Li H, Li Q, Liu W, Zhang D, Chen D, Yuan Q. m 6Am Methyltransferase PCIF1 Regulates Periodontal Inflammation. J Dent Res 2024; 103:1130-1140. [PMID: 39290151 DOI: 10.1177/00220345241271078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
N6,2'-O-dimethyladenosine (m6Am), a common mRNA modification in eukaryotic capped mRNAs, plays a pivotal role in cellular functions and disease progression. However, its involvement in host inflammation remains elusive. Here, we demonstrate that loss of m6Am methyltransferase phosphorylated CTD interacting factor 1 (PCIF1) attenuates periodontal inflammation in whole-body and myeloid lineage-specific knockout mouse models. Pcif1 deletion inhibits macrophage phagocytosis and migration through m6Am-Csf1r signaling. In addition, colony-stimulating factor-1 receptor (CSF1R) is identified as a potential target for the treatment of periodontitis. We thus reveal a previously unrecognized role for PCIF1-mediated m6Am modification in governing macrophage responses and periodontal inflammation.
Collapse
Affiliation(s)
- W Song
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - L Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - H Liang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - H Cheng
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - W He
- Nuffield Department of Medicine, Center for Immuno-Oncology, University of Oxford, Oxford, UK
| | - Q Yin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Z Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - W Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - H Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Q Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - W Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - D Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - D Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Q Yuan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Zeisbrich M, Rzepka R, Finzel S, Venhoff N, Voll RE. Macrophage colony-stimulating factor receptor/CD115 + non-classical monocytes are expanded in systemic lupus erythematosus and associated with lupus nephritis. Scand J Rheumatol 2024:1-10. [PMID: 39171822 DOI: 10.1080/03009742.2024.2387483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024]
Abstract
OBJECTIVE In systemic lupus erythematosus (SLE), the non-classical monocyte compartment is expanded, but its phenotype and association with clinical disease manifestations have not been explored. METHOD Monocyte subsets from 39 SLE patients, 32 healthy age-matched controls, and 16 patients from a disease control (autoimmune connective tissue disease other than SLE) were determined based on CD14 and CD16 surface expression. Cell surface expression of the receptors for macrophage colony-stimulating factor (M-CSF) (CD115) and granulocyte-macrophage colony-stimulating factor (GM-CSF) (CD116), as well as 6-Sulpho LacNAc (slan), were analysed by flow cytometry. The association of monocyte populations with disease manifestations, disease activity markers, and current medication of each patient was analysed by chart review. RESULTS Non-classical monocytes displayed a cell-type specific signature of high M-CSF receptor CD115 and low GM-CSF receptor CD116 expression that separated them from the other two monocyte subsets. In healthy individuals, the M-CSF receptor on non-classical monocytes was an age-dependent surface marker, with lower expression in young adults. However, SLE monocytes were characterized by a marked expansion of M-CSF receptor/CD115+ non-classical monocytes in patients of all ages. The expanded population of M-CSF receptor/CD115+ non-classical monocytes was associated with lupus nephritis but not with disease activity, and coexpressed slan. CONCLUSION The non-classical monocyte subset in SLE is characterized by an expansion of M-CSF receptor/CD115+ cells that are associated with lupus nephritis and coexpress slan.
Collapse
Affiliation(s)
- M Zeisbrich
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Freiburg im Breisgau, Germany
| | - R Rzepka
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Freiburg im Breisgau, Germany
| | - S Finzel
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Freiburg im Breisgau, Germany
| | - N Venhoff
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Freiburg im Breisgau, Germany
| | - R E Voll
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
3
|
Lin B, Ser HL, Wang L, Li J, Chan KG, Lee LH, Tan LTH. The Emerging Role of MMP12 in the Oral Environment. Int J Mol Sci 2023; 24:ijms24054648. [PMID: 36902078 PMCID: PMC10002488 DOI: 10.3390/ijms24054648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Matrix metalloproteinase-12 (MMP12), or macrophage metalloelastase, plays important roles in extracellular matrix (ECM) component degradation. Recent reports show MMP12 has been implicated in the pathogenesis of periodontal diseases. To date, this review represents the latest comprehensive overview of MMP12 in various oral diseases, such as periodontitis, temporomandibular joint dysfunction (TMD), orthodontic tooth movement (OTM), and oral squamous cell carcinoma (OSCC). Furthermore, the current knowledge regarding the distribution of MMP12 in different tissues is also illustrated in this review. Studies have implicated the association of MMP12 expression with the pathogenesis of several representative oral diseases, including periodontitis, TMD, OSCC, OTM, and bone remodelling. Although there may be a potential role of MMP12 in oral diseases, the exact pathophysiological role of MMP12 remains to be elucidated. Understanding the cellular and molecular biology of MMP12 is essential, as MMP12 could be a potential target for developing therapeutic strategies targeting inflammatory and immunologically related oral diseases.
Collapse
Affiliation(s)
- Bingpeng Lin
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
- Department of Orthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Hooi Leng Ser
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia
| | - Lijing Wang
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiang Li
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
- Department of Orthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang 212013, China
- Correspondence: (K.-G.C.); (L.-H.L.)
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
- Innovative Bioprospection Development Research Group (InBioD), Clinical School Johor Bahru, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Johor Bahru 80100, Malaysia
- Correspondence: (K.-G.C.); (L.-H.L.)
| | - Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
- Innovative Bioprospection Development Research Group (InBioD), Clinical School Johor Bahru, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Johor Bahru 80100, Malaysia
| |
Collapse
|
4
|
Almarghlani A, Settem RP, Croft AJ, Metcalfe S, Giangreco M, Kay JG. Interleukin-34 Permits Porphyromonas gingivalis Survival and NF-κB p65 Inhibition in Macrophages. Mol Oral Microbiol 2022; 37:109-121. [PMID: 35576119 DOI: 10.1111/omi.12366] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022]
Abstract
Interleukin-34 (IL-34) is a cytokine that supports the viability and differentiation of macrophages. An important cytokine for the development of epidermal immunity, IL-34 is present and plays a role in the immunity of the oral environment. IL-34 has been linked to inflammatory periodontal diseases, which involve innate phagocytes, including macrophages. Whether IL-34 can alter the ability of macrophages to effectively interact with oral microbes is currently unclear. Using macrophages derived from human blood monocytes with either the canonical cytokine colony-stimulating factor (CSF)1 or IL-34, we compared the ability of the macrophages to phagocytose, kill, and respond through the production of cytokines to the periodontal keystone pathogen Porphyromonas gingivalis. While macrophages derived from both cytokines were able to engulf the bacterium equally, IL-34 derived macrophages were much less capable of killing internalized P. gingivalis. Of the macrophage cell surface receptors known to interact with P. gingivalis, DC-SIGN was found to have the largest variation between IL-34 and CSF1-derived macrophages. We also found that upon interaction with P. gingivalis, IL-34 derived macrophages produced significantly less of the neutrophil chemotactic factor IL-8 than macrophages derived in the presence of CSF1. Mechanistically, we identified that levels of IL-8 corresponded with P. gingivalis survival and dephosphorylation of the major transcription factor NF-κB p65. Overall, we found that macrophages differentiated in the presence of IL-34, a dominant cytokine in the oral gingiva, have a reduced ability to kill the keystone pathogen P. gingivalis and may be susceptible to specific bacteria-mediated cytokine modification. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ammar Almarghlani
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, 3435 Main Street, Buffalo, NY, 14214, USA.,Current Address: Department of Periodontics, Faculty of Dentistry, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Rajendra P Settem
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, 3435 Main Street, Buffalo, NY, 14214, USA
| | - Andrew J Croft
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, 3435 Main Street, Buffalo, NY, 14214, USA
| | - Sarah Metcalfe
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, 3435 Main Street, Buffalo, NY, 14214, USA
| | - Matthew Giangreco
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, 3435 Main Street, Buffalo, NY, 14214, USA
| | - Jason G Kay
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, 3435 Main Street, Buffalo, NY, 14214, USA
| |
Collapse
|