1
|
Crowley R, Alderman E, Javadi AH, Tamminen J. A systematic and meta-analytic review of the impact of sleep restriction on memory formation. Neurosci Biobehav Rev 2024; 167:105929. [PMID: 39427809 DOI: 10.1016/j.neubiorev.2024.105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/06/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Modern life causes a quarter of adults and half of teenagers to sleep for less than is recommended (Kocevska et al., 2021). Given well-documented benefits of sleep on memory, we must understand the cognitive costs of short sleep. We analysed 125 sleep restriction effect sizes from 39 reports involving 1234 participants. Restricting sleep (3-6.5 hours) compared to normal sleep (7-11 hours) negatively affects memory formation with a small effect size (Hedges' g = 0.29, 95 % CI = [0.13, 0.44]). We detected no evidence for publication bias. When sleep restriction effect sizes were compared with 185 sleep deprivation effect sizes (Newbury et al., 2021) no statistically significant difference was found, suggesting that missing some sleep has similar consequences for memory as not sleeping at all. When the analysis was restricted to post-encoding, rather than pre-encoding, sleep loss, sleep deprivation was associated with larger memory impairment than restriction. Our findings are best accounted for by the sequential hypothesis which emphasises complementary roles of slow-wave sleep and REM sleep for memory.
Collapse
Affiliation(s)
- Rebecca Crowley
- Department of Psychology, Royal Holloway, University of London, Egham TW20 0EX, United Kingdom.
| | - Eleanor Alderman
- Department of Psychology, Royal Holloway, University of London, Egham TW20 0EX, United Kingdom.
| | | | - Jakke Tamminen
- Department of Psychology, Royal Holloway, University of London, Egham TW20 0EX, United Kingdom.
| |
Collapse
|
2
|
Schmidig FJ, Geva-Sagiv M, Falach R, Yakim S, Gat Y, Sharon O, Fried I, Nir Y. A visual paired associate learning (vPAL) paradigm to study memory consolidation during sleep. J Sleep Res 2024; 33:e14151. [PMID: 38286437 DOI: 10.1111/jsr.14151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 01/31/2024]
Abstract
Sleep improves the consolidation and long-term stability of newly formed memories and associations. Most research on human declarative memory and its consolidation during sleep uses word-pair associations requiring exhaustive learning. In the present study, we present the visual paired association learning (vPAL) paradigm, in which participants learn new associations between images of celebrities and animals. The vPAL is based on a one-shot exposure that resembles learning in natural conditions. We tested if vPAL can reveal a role for sleep in memory consolidation by assessing the specificity of memory recognition, and the cued recall performance, before and after sleep. We found that a daytime nap improved the stability of recognition memory and discrimination abilities compared to identical intervals of wakefulness. By contrast, cued recall of associations did not exhibit significant sleep-dependent effects. High-density electroencephalography during naps further revealed an association between sleep spindle density and stability of recognition memory. Thus, the vPAL paradigm opens new avenues for future research on sleep and memory consolidation across ages and heterogeneous populations in health and disease.
Collapse
Affiliation(s)
- Flavio Jean Schmidig
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology & Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maya Geva-Sagiv
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California, USA
| | - Rotem Falach
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology & Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sharon Yakim
- Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University, Jerusalem, Israel
| | - Yael Gat
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology & Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Omer Sharon
- Center for Human Sleep Science, Department of Psychology, University of California, Berkeley, Berkeley, USA
| | - Itzhak Fried
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California, USA
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yuval Nir
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology & Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- The Sieratzki-Sagol Center for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
3
|
Wiranto Y, Siengsukon C, Mazzotti DR, Burns JM, Watts A. Sex differences in the role of sleep on cognition in older adults. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2024; 5:zpae066. [PMID: 39372545 PMCID: PMC11450268 DOI: 10.1093/sleepadvances/zpae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/21/2024] [Indexed: 10/08/2024]
Abstract
Study Objectives The study aimed to investigate sex differences in the relationship between sleep quality (self-report and objective) and cognitive function across three domains (executive function, verbal memory, and attention) in older adults. Methods We analyzed cross-sectional data from 207 participants with normal cognition (NC) or mild cognitive impairment (89 males and 118 females) aged over 60 years. The relationship between sleep quality and cognitive performance was estimated using generalized additive models. Objective sleep was measured with the GT9X Link ActiGraph, and self-reported sleep was measured with the Pittsburgh Sleep Quality Index. Results We found that females exhibited lower executive function with increased objective total sleep time, with a steeper decline in performance after 400 minutes (p = .015). Additionally, longer objective sleep correlated with lower verbal memory linearly (p = .046). In males, a positive linear relationship emerged between objective sleep efficiency and executive function (p = .036). Self-reported sleep was not associated with cognitive performance in females and males with NC. However, in males with cognitive impairment, there was a nonlinear positive relationship between self-reported sleep and executive function (p < .001). Conclusions Our findings suggest that the association between sleep parameters on cognition varies between older males and females, with executive function being most strongly associated with objective sleep for both sexes top of form. Interventions targeting sleep quality to mitigate cognitive decline in older adults may need to be tailored according to sex, with distinct approaches for males and females.
Collapse
Affiliation(s)
- Yumiko Wiranto
- Department of Psychology, University of Kansas, Lawrence, KS, USA
| | - Catherine Siengsukon
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Diego R Mazzotti
- Division of Medical Informatics, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jeffrey M Burns
- Alzheimer’s Disease Research Center, University of Kansas, Fairway, KS, USA
| | - Amber Watts
- Department of Psychology, University of Kansas, Lawrence, KS, USA
- Alzheimer’s Disease Research Center, University of Kansas, Fairway, KS, USA
| |
Collapse
|
4
|
Wiranto Y, Siengsukon C, Mazzotti DR, Burns JM, Watts A. Sex Differences in the Role of Sleep on Cognition in Older Adults. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.08.24300996. [PMID: 38633788 PMCID: PMC11023683 DOI: 10.1101/2024.01.08.24300996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Study Objectives The study aimed to investigate sex differences in the relationship between sleep quality (self-report and objective) and cognitive function across three domains (executive function, verbal memory, and attention) in older adults. Methods We analyzed cross-sectional data from 207 participants with normal cognition or mild cognitive impairment (89 males and 118 females) aged over 60. The relationship between sleep quality and cognitive performance was estimated using generalized additive models. Objective sleep was measured with the GT9X Link Actigraph, and self-reported sleep was measured with the Pittsburgh Sleep Quality Index. Results We found that females exhibited stable performance of executive function with up to about 400 minutes of total sleep time, with significant declines in performance (p = 0.02) when total sleep time was longer. Additionally, a longer total sleep time contributed to lower verbal memory in a slightly non-linear manner (p = 0.03). Higher self-reported sleep complaints were associated with poorer executive function in females with normal cognition (p = 0.02). In males, a positive linear relationship emerged between sleep efficiency and executive function (p = 0.04), while self-reported sleep was not associated with cognitive performance in males with normal cognition. Conclusions Our findings suggest that the relationships between sleep quality and cognition differ between older males and females, with executive function being the most influenced by objective and self-reported sleep. Interventions targeting sleep quality to mitigate cognitive decline in older adults may need to be tailored according to sex, with distinct approaches for males and females.
Collapse
Affiliation(s)
- Yumiko Wiranto
- Department of Psychology, University of Kansas, Lawrence, Kansas, United States of America
| | - Catherine Siengsukon
- University of Kansas Medical Center, Department of Physical Therapy and Rehabilitation Science, Kansas City, KS USA
| | - Diego R. Mazzotti
- Division of Medical Informatics, Department of Internal Medicine, University of Kansas Medical Center
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center
| | - Jeffrey M. Burns
- University of Kansas, Alzheimer’s Disease Research Center, Fairway, Kansas, United States of America
| | - Amber Watts
- Department of Psychology, University of Kansas, Lawrence, Kansas, United States of America
- University of Kansas, Alzheimer’s Disease Research Center, Fairway, Kansas, United States of America
| |
Collapse
|
5
|
Weiner OM, O'Byrne J, Cross NE, Giraud J, Tarelli L, Yue V, Homer L, Walker K, Carbone R, Dang-Vu TT. Slow oscillation-spindle cross-frequency coupling predicts overnight declarative memory consolidation in older adults. Eur J Neurosci 2024; 59:662-685. [PMID: 37002805 DOI: 10.1111/ejn.15980] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/06/2023] [Accepted: 03/24/2023] [Indexed: 04/04/2023]
Abstract
Cross-frequency coupling (CFC) between brain oscillations during non-rapid-eye-movement (NREM) sleep (e.g. slow oscillations [SO] and spindles) may be a neural mechanism of overnight memory consolidation. Declines in CFC across the lifespan might accompany coinciding memory problems with ageing. However, there are few reports of CFC changes during sleep after learning in older adults, controlling for baseline effects. Our objective was to examine NREM CFC in healthy older adults, with an emphasis on spindle activity and SOs from frontal electroencephalogram (EEG), during a learning night after a declarative learning task, as compared to a baseline night without learning. Twenty-five older adults (M [SD] age = 69.12 [5.53] years; 64% female) completed a two-night study, with a pre- and post-sleep word-pair associates task completed on the second night. SO-spindle coupling strength and a measure of coupling phase distance from the SO up-state were both examined for between-night differences and associations with memory consolidation. Coupling strength and phase distance from the up-state peak were both stable between nights. Change in coupling strength between nights was not associated with memory consolidation, but a shift in coupling phase towards (vs. away from) the up-state peak after learning predicted better memory consolidation. Also, an exploratory interaction model suggested that associations between coupling phase closer to the up-state peak and memory consolidation may be moderated by higher (vs. lower) coupling strength. This study supports a role for NREM CFC in sleep-related memory consolidation in older adults.
Collapse
Affiliation(s)
- Oren M Weiner
- PERFORM Centre and Center for Studies in Behavioural Neurobiology, Department of Psychology and Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montréal, Quebec, Canada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, CIUSSS Centre-Sud-de-l'île-de-Montréal, Montréal, Quebec, Canada
| | - Jordan O'Byrne
- PERFORM Centre and Center for Studies in Behavioural Neurobiology, Department of Psychology and Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montréal, Quebec, Canada
- Department of Psychology, Université de Montréal, Montréal, Quebec, Canada
| | - Nathan E Cross
- PERFORM Centre and Center for Studies in Behavioural Neurobiology, Department of Psychology and Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montréal, Quebec, Canada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, CIUSSS Centre-Sud-de-l'île-de-Montréal, Montréal, Quebec, Canada
| | - Julia Giraud
- Department of Neurosciences, Université de Montréal, Montréal, Quebec, Canada
| | - Lukia Tarelli
- PERFORM Centre and Center for Studies in Behavioural Neurobiology, Department of Psychology and Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montréal, Quebec, Canada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, CIUSSS Centre-Sud-de-l'île-de-Montréal, Montréal, Quebec, Canada
| | - Victoria Yue
- PERFORM Centre and Center for Studies in Behavioural Neurobiology, Department of Psychology and Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montréal, Quebec, Canada
| | - Léa Homer
- PERFORM Centre and Center for Studies in Behavioural Neurobiology, Department of Psychology and Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montréal, Quebec, Canada
| | - Katherine Walker
- PERFORM Centre and Center for Studies in Behavioural Neurobiology, Department of Psychology and Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montréal, Quebec, Canada
| | - Roxanne Carbone
- PERFORM Centre and Center for Studies in Behavioural Neurobiology, Department of Psychology and Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montréal, Quebec, Canada
| | - Thien Thanh Dang-Vu
- PERFORM Centre and Center for Studies in Behavioural Neurobiology, Department of Psychology and Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montréal, Quebec, Canada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, CIUSSS Centre-Sud-de-l'île-de-Montréal, Montréal, Quebec, Canada
- Department of Neurosciences, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
6
|
Chen P, Hao C, Ma N. Sleep spindles consolidate declarative memory with tags: A meta-analysis of adult data. JOURNAL OF PACIFIC RIM PSYCHOLOGY 2024; 18. [DOI: 10.1177/18344909241226761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024] Open
Abstract
Tags are attached to salient information during the wake period, which can preferentially determine what information can be consolidated during sleep. Previous studies demonstrated that spindles during non-rapid eye movement (NREM) sleep give priority to strengthening memory representations with tags, indicating a privileged reactivation of tagged information. The current meta-analysis investigated whether and how spindles can capture different tags to consolidate declarative memory. This study searched the Web of Science, Google Scholar, PubMed, PsycINFO, and OATD databases for studies that spindles consolidate declarative memory with tags. A meta-analysis using a random-effects model was performed. Based on 19 datasets from 18 studies (N = 388), spindles had a medium effect on the consolidation of declarative memory with tags ( r = 0.519). In addition, spindles derived from whole-night sleep and nap studies were positively related to the consolidation of memory representations with tags. These findings reveal the shared mechanism that spindles are actively involved in the prefrontal-hippocampus circuits to consolidate memory with tags.
Collapse
Affiliation(s)
- Peiyao Chen
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| | - Chao Hao
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| | - Ning Ma
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| |
Collapse
|
7
|
Lipinska G, Austin H, Moonsamy JR, Henry M, Lewis R, Baldwin DS, Thomas KGF, Stuart B. Preferential consolidation of emotional reactivity during sleep: A systematic review and meta-analysis. Front Behav Neurosci 2022; 16:976047. [PMID: 36268469 PMCID: PMC9578377 DOI: 10.3389/fnbeh.2022.976047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022] Open
Abstract
Many studies have investigated whether sleep affects cognitively unmodulated reactivity to emotional stimuli. These studies operationalize emotion regulation by using subjective and/or objective measures to compare pre- and post-sleep reactivity to the same emotional stimuli. Findings have been inconsistent: some show that sleep attenuates emotional reactivity, whereas others report enhanced or maintained reactivity. Across-study methodological differences may account for discrepant findings. To resolve the questions of whether sleep leads to the attenuation, enhancement, or maintenance of emotional reactivity, and under which experimental conditions particular effects are observed, we undertook a synthesized narrative and meta-analytic approach. We searched PubMed, PsycINFO, PsycARTICLES, Web of Science, and Cochrane Library databases for relevant articles, using search terms determined a priori and search limits of language = English, participants = human, and dates = January 2006–June 2021. Our final sample included 24 studies that investigated changes in emotional reactivity in response to negatively and/or positively valenced material compared to neutral material over a period of sleep compared to a matched period of waking. Primary analyses used random effects modeling to investigate whether sleep preferentially modulates reactivity in response to emotional stimuli; secondary analyses examined potential moderators of the effect. Results showed that sleep (or equivalent periods of wakefulness) did not significantly affect psychophysiological measures of reactivity to negative or neutral stimuli. However, self-reported arousal ratings of negative stimuli were significantly increased post-sleep but not post-waking. Sub-group analyses indicated that (a) sleep-deprived participants, compared to those who slept or who experienced daytime waking, reacted more strongly and negatively in response to positive stimuli; (b) nap-exposed participants, compared to those who remained awake or who slept a full night, rated negative pictures less negatively; and (c) participants who did not obtain substantial REM sleep, compared to those who did and those exposed to waking conditions, had attenuated reactivity to neutral stimuli. We conclude that sleep may affect emotional reactivity, but that studies need more consistency in methodology, commitment to collecting both psychophysiological and self-report measures, and should report REM sleep parameters. Using these methodological principles would promote a better understanding of under which conditions particular effects are observed.
Collapse
Affiliation(s)
- Gosia Lipinska
- UCT Sleep Sciences and Applied Cognitive Science and Experimental Neuroscience Team (ACSENT), Department of Psychology, University of Cape Town, Cape Town, South Africa
- *Correspondence: Gosia Lipinska
| | - Holly Austin
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jasmin R. Moonsamy
- UCT Sleep Sciences and Applied Cognitive Science and Experimental Neuroscience Team (ACSENT), Department of Psychology, University of Cape Town, Cape Town, South Africa
| | - Michelle Henry
- UCT Sleep Sciences and Applied Cognitive Science and Experimental Neuroscience Team (ACSENT), Department of Psychology, University of Cape Town, Cape Town, South Africa
- Numeracy Centre, Centre for Higher Education Development, University of Cape Town, Cape Town, South Africa
| | - Raphaella Lewis
- UCT Sleep Sciences and Applied Cognitive Science and Experimental Neuroscience Team (ACSENT), Department of Psychology, University of Cape Town, Cape Town, South Africa
| | - David S. Baldwin
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Kevin G. F. Thomas
- UCT Sleep Sciences and Applied Cognitive Science and Experimental Neuroscience Team (ACSENT), Department of Psychology, University of Cape Town, Cape Town, South Africa
| | - Beth Stuart
- Centre for Evaluation and Methods, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
8
|
Paditz E, Wiater A, Ipsiroglu O, Quante M, Müller-Hagedorn S, Hoch B, Erler T, Mollin J, Schneider B, Poets CF. [Current developments in sleep research and sleep medicine: an assessment of the "Paediatrics" taskforce]. SOMNOLOGIE 2022; 26:174-178. [PMID: 35991291 PMCID: PMC9379224 DOI: 10.1007/s11818-022-00383-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 11/22/2022]
Affiliation(s)
- Ekkehart Paditz
- Zentrum für Angewandte Prävention®, Blasewitzer Str. 41, 01307 Dresden, Deutschland
| | | | - Osman Ipsiroglu
- BC Children’s Hospital/BCCH Research Institute, 4500 Oak St, BC V6H 3N1 Vancouver, Kanada
- Universitätsklinik für Kinder- und Jugendheilkunde, Währinger Gürtel 18–20, 1090 Wien, Österreich
| | - Mirja Quante
- Universitätsklinikum Tübingen, Calwerstr. 7, 72076 Tübingen, Deutschland
| | - Silvia Müller-Hagedorn
- Department für Zahn‑, Mund- und Kieferheilkunde, Klinik für Kieferorthopädie, Universitätsklinikum Freiburg, Hugstetterstr. 55, 79106 Freiburg, Deutschland
| | | | - Thomas Erler
- Klinikum Westbrandenburg, Standort Potsdam, Charlottenstr. 72, 14467 Potsdam, Deutschland
| | - Julian Mollin
- Klinikum Westbrandenburg, Standort Potsdam, Charlottenstr. 72, 14467 Potsdam, Deutschland
| | - Barbara Schneider
- Sozialpädiatrisches Zentrum Landshut am Kinderkrankenhaus St. Marien gGmbH, Grillparzerstr. 9, 84036 Landshut, Deutschland
| | - Christian F. Poets
- Universitätsklinikum Tübingen, Calwerstr. 7, 72076 Tübingen, Deutschland
| |
Collapse
|
9
|
Dutheil F, Danini B, Bagheri R, Fantini ML, Pereira B, Moustafa F, Trousselard M, Navel V. Effects of a Short Daytime Nap on the Cognitive Performance: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph181910212. [PMID: 34639511 PMCID: PMC8507757 DOI: 10.3390/ijerph181910212] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND Napping in the workplace is under debate, with interesting results on work efficiency and well-being of workers. In this systematic review and meta-analysis, we aimed to assess the benefits of a short daytime nap on cognitive performance. METHODS PubMed, Cochrane Library, ScienceDirect and PsycInfo databases were searched until 19 August 2021. Cognitive performance in working-aged adults, both before and following a daytime nap or under control conditions (no nap), was analysed by time and by type of cognitive function (alertness, executive function and memory). RESULTS We included 11 studies (all in laboratory conditions including one with a subgroup in working conditions) for a total of 381 participants. Mean duration of nap was 55.4 ± 29.4 min. Overall cognitive performance did not differ at baseline (t0) between groups (effect size -0.03, 95% CI -0.14 to 0.07), and improved in the nap group following the nap (t1) (0.18, 0.09 to 0.27), especially for alertness (0.29, 0.10 to 0.48). Sensitivity analyses gave similar results comparing only randomized controlled trials, and after exclusion of outliers. Whatever the model used, performance mainly improved until 120 min after nap, with conflicting results during the sleep inertia period. Early naps in the afternoon (before 1.00 p.m.) gave better cognitive performance (0.24, -0.07 to 0.34). The benefits of napping were independent of sex and age. Duration of nap and time between nap and t1 did not influence cognitive performance. CONCLUSIONS Despite the fact that our meta-analyses included almost exclusively laboratory studies, daytime napping in the afternoon improved cognitive performance with beneficial effects of early nap. More studies in real work condition are warranted before implementing daytime napping at work as a preventive measure to improve work efficiency.
Collapse
Affiliation(s)
- Frédéric Dutheil
- CNRS, LaPSCo, Physiological and Psychosocial Stress, University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, Occupational and Environmental Medicine, WittyFit, F-63000 Clermont-Ferrand, France
- Correspondence:
| | - Benjamin Danini
- Preventive and Occupational Medicine, University Hospital of Clermont-Ferrand, F-63000 Clermont-Ferrand, France;
| | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan 8174673441, Iran;
| | - Maria Livia Fantini
- NPsy-Sydo, Sleep Disorders, University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France;
| | - Bruno Pereira
- Clinical Research and Innovation Direction, CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France;
| | - Farès Moustafa
- Emergency Department, CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France;
| | - Marion Trousselard
- Neurophysiology of Stress, Armies’ Biomedical Research Institute, Armies’ Health Service, F-91220 Brétigny sur Orge, France;
| | - Valentin Navel
- CNRS, INSERM, GReD, University Hospital of Clermont-Ferrand, Ophthalmology, CHU Clermont-Ferrand, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France;
| |
Collapse
|
10
|
den Berg van NH, Pozzobon A, Fang Z, Al-Kuwatli J, Toor B, Ray LB, Fogel SM. Sleep Enhances Consolidation of Memory Traces for Complex Problem-Solving Skills. Cereb Cortex 2021; 32:653-667. [PMID: 34383034 DOI: 10.1093/cercor/bhab216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/13/2021] [Accepted: 06/09/2021] [Indexed: 11/12/2022] Open
Abstract
Sleep consolidates memory for procedural motor skills, reflected by sleep-dependent changes in the hippocampal-striatal-cortical network. Other forms of procedural skills require the acquisition of a novel strategy to solve a problem, which recruit overlapping brain regions and specialized areas including the caudate and prefrontal cortex. Sleep preferentially benefits strategy and problem-solving skills over the accompanying motor execution movements. However, it is unclear how acquiring new strategies benefit from sleep. Here, participants performed a task requiring the execution of a sequence of movements to learn a novel cognitive strategy. Participants performed this task while undergoing fMRI before and after an interval of either a full night sleep, a daytime nap, or wakefulness. Participants also performed a motor control task, which precluded the opportunity to learn the strategy. In this way, we subtracted motor execution-related brain activations from activations specific to the strategy. The sleep and nap groups experienced greater behavioral performance improvements compared to the wake group on the strategy-based task. Following sleep, we observed enhanced activation of the caudate in addition to other regions in the hippocampal-striatal-cortical network, compared to wakefulness. This study demonstrates that sleep is a privileged time to enhance newly acquired cognitive strategies needed to solve problems.
Collapse
Affiliation(s)
- N H den Berg van
- School of Psychology, University of Ottawa, Ottawa K1N 6N5, Canada
| | - A Pozzobon
- School of Psychology, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Z Fang
- School of Psychology, University of Ottawa, Ottawa K1N 6N5, Canada.,Sleep Unit, University of Ottawa Institute of Mental Health Research at The Royal, Ottawa, Ottawa K1Z 7K4, Canada.,University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa K1H 8M5, Canada
| | - J Al-Kuwatli
- School of Psychology, University of Ottawa, Ottawa K1N 6N5, Canada
| | - B Toor
- School of Psychology, University of Ottawa, Ottawa K1N 6N5, Canada
| | - L B Ray
- School of Psychology, University of Ottawa, Ottawa K1N 6N5, Canada
| | - S M Fogel
- School of Psychology, University of Ottawa, Ottawa K1N 6N5, Canada.,Sleep Unit, University of Ottawa Institute of Mental Health Research at The Royal, Ottawa, Ottawa K1Z 7K4, Canada.,University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa K1H 8M5, Canada
| |
Collapse
|
11
|
Hokett E, Arunmozhi A, Campbell J, Verhaeghen P, Duarte A. A systematic review and meta-analysis of individual differences in naturalistic sleep quality and episodic memory performance in young and older adults. Neurosci Biobehav Rev 2021; 127:675-688. [PMID: 34000349 PMCID: PMC8330880 DOI: 10.1016/j.neubiorev.2021.05.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 01/20/2023]
Abstract
Better sleep quality has been associated with better episodic memory performance in young adults. However, the strength of sleep-memory associations in aging has not been well characterized. It is also unknown whether factors such as sleep measurement method (e.g., polysomnography, actigraphy, self-report), sleep parameters (e.g., slow wave sleep, sleep duration), or memory task characteristics (e.g., verbal, pictorial) impact the strength of sleep-memory associations. Here, we assessed if the aforementioned factors modulate sleep-memory relationships. Across age groups, sleep-memory associations were similar for sleep measurement methods, however, associations were stronger for PSG than self-report. Age group moderated sleep-memory associations for certain sleep parameters. Specifically, young adults demonstrated stronger positive sleep-memory associations for slow wave sleep than the old, while older adults demonstrated stronger negative associations between greater wake after sleep onset and poorer memory performance than the young. Collectively, these data show that young and older adults maintain similar strength in sleep-memory relationships, but age impacts the specific sleep correlates that contribute to these relationships.
Collapse
|
12
|
Barham MP, Lum JAG, Conduit R, Fernadez L, Enticott PG, Clark GM. A Daytime Nap Does Not Enhance the Retention of a First-Order or Second-Order Motor Sequence. Front Behav Neurosci 2021; 15:659281. [PMID: 34335198 PMCID: PMC8324096 DOI: 10.3389/fnbeh.2021.659281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/24/2021] [Indexed: 11/23/2022] Open
Abstract
This study examined the effects of a daytime nap on the retention of implicitly learnt “first-order conditional” (FOC) and “second-order conditional” (SOC) motor sequences. The implicit learning and retention of a motor sequence has been linked to the neural processes undertaken by the basal ganglia and primary motor cortex (i.e., procedural memory system). There is evidence, however, suggesting that SOC learning may further rely on the hippocampus-supported declarative memory system. Sleep appears to benefit the retention of information processed by the declarative memory system, but not the procedural memory system. Thus, it was hypothesized that sleep would benefit the retention of a SOC motor sequence but not a FOC sequence. The implicit learning and retention of these sequences was examined using the Serial Reaction Time Task. In this study, healthy adults implicitly learnt either a FOC (n = 20) or a SOC sequence (n = 20). Retention of both sequences was assessed following a daytime nap and period of wakefulness. Sleep was not found to improve the retention of the SOC sequence. There were no significant differences in the retention of a FOC or a SOC sequence following a nap or period of wakefulness. The study questions whether the declarative memory system is involved in the retention of implicitly learnt SOC sequences.
Collapse
Affiliation(s)
- Michael P Barham
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Jarrad A G Lum
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Russell Conduit
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology, Melbourne, VIC, Australia
| | - Lara Fernadez
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Gillian M Clark
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
13
|
Ricci S, Tatti E, Nelson AB, Panday P, Chen H, Tononi G, Cirelli C, Ghilardi MF. Extended Visual Sequence Learning Leaves a Local Trace in the Spontaneous EEG. Front Neurosci 2021; 15:707828. [PMID: 34335178 PMCID: PMC8322764 DOI: 10.3389/fnins.2021.707828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/24/2021] [Indexed: 01/22/2023] Open
Abstract
We have previously demonstrated that, in rested subjects, extensive practice in a motor learning task increased both electroencephalographic (EEG) theta power in the areas involved in learning and improved the error rate in a motor test that shared similarities with the task. A nap normalized both EEG and performance changes. We now ascertain whether extensive visual declarative learning produces results similar to motor learning. Thus, during the morning, we recorded high-density EEG in well rested young healthy subjects that learned the order of different visual sequence task (VSEQ) for three one-hour blocks. Afterward, a group of subjects took a nap and another rested quietly. Between each VSEQ block, we recorded spontaneous EEG (sEEG) at rest and assessed performance in a motor test and a visual working memory test that shares similarities with VSEQ. We found that after the third block, VSEQ induced local theta power increases in the sEEG over a right temporo-parietal area that was engaged during the task. This local theta increase was preceded by increases in alpha and beta power over the same area and was paralleled by performance decline in the visual working memory test. Only after the nap, VSEQ learning rate improved and performance in the visual working memory test was restored, together with partial normalization of the local sEEG changes. These results suggest that intensive learning, like motor learning, produces local theta power increases, possibly reflecting local neuronal fatigue. Sleep may be necessary to resolve neuronal fatigue and its effects on learning and performance.
Collapse
Affiliation(s)
- Serena Ricci
- Department of Physiology, Pharmacology and Neuroscience, CUNY School of Medicine, New York, NY, United States.,Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
| | - Elisa Tatti
- Department of Physiology, Pharmacology and Neuroscience, CUNY School of Medicine, New York, NY, United States
| | - Aaron B Nelson
- Department of Physiology, Pharmacology and Neuroscience, CUNY School of Medicine, New York, NY, United States
| | - Priya Panday
- Department of Physiology, Pharmacology and Neuroscience, CUNY School of Medicine, New York, NY, United States
| | - Henry Chen
- Department of Physiology, Pharmacology and Neuroscience, CUNY School of Medicine, New York, NY, United States
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| | - M Felice Ghilardi
- Department of Physiology, Pharmacology and Neuroscience, CUNY School of Medicine, New York, NY, United States
| |
Collapse
|
14
|
Sleep Spindles Preferentially Consolidate Weakly Encoded Memories. J Neurosci 2021; 41:4088-4099. [PMID: 33741722 DOI: 10.1523/jneurosci.0818-20.2021] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 01/22/2023] Open
Abstract
Sleep has been shown to be critical for memory consolidation, with some research suggesting that certain memories are prioritized for consolidation. Initial strength of a memory appears to be an important boundary condition in determining which memories are consolidated during sleep. However, the role of consolidation-mediating oscillations, such as sleep spindles and slow oscillations, in this preferential consolidation has not been explored. Here, 54 human participants (76% female) studied pairs of words to three distinct encoding strengths, with recall being tested immediately following learning and again 6 h later. Thirty-six had a 2 h nap opportunity following learning, while the remaining 18 remained awake throughout. Results showed that, across 6 h awake, weakly encoded memories deteriorated the fastest. In the nap group, however, this effect was attenuated, with forgetting rates equivalent across encoding strengths. Within the nap group, consolidation of weakly encoded items was associated with fast sleep spindle density during non-rapid eye movement sleep. Moreover, sleep spindles that were coupled to slow oscillations predicted the consolidation of weak memories independently of uncoupled sleep spindles. These relationships were unique to weakly encoded items, with spindles not correlating with memory for intermediate or strong items. This suggests that sleep spindles facilitate memory consolidation, guided in part by memory strength.SIGNIFICANCE STATEMENT Given the countless pieces of information we encode each day, how does the brain select which memories to commit to long-term storage? Sleep is known to aid in memory consolidation, and it appears that certain memories are prioritized to receive this benefit. Here, we found that, compared with staying awake, sleep was associated with better memory for weakly encoded information. This suggests that sleep helps attenuate the forgetting of weak memory traces. Fast sleep spindles, a hallmark oscillation of non-rapid eye movement sleep, mediate consolidation processes. We extend this to show that fast spindles were uniquely associated with the consolidation of weakly encoded memories. This provides new evidence for preferential sleep-based consolidation and elucidates a physiological correlate of this benefit.
Collapse
|
15
|
Nelson AB, Ricci S, Tatti E, Panday P, Girau E, Lin J, Thomson BO, Chen H, Marshall W, Tononi G, Cirelli C, Ghilardi MF. Neural fatigue due to intensive learning is reversed by a nap but not by quiet waking. Sleep 2021; 44:5880034. [PMID: 32745192 DOI: 10.1093/sleep/zsaa143] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/01/2020] [Indexed: 11/13/2022] Open
Abstract
Do brain circuits become fatigued due to intensive neural activity or plasticity? Is sleep necessary for recovery? Well-rested subjects trained extensively in a visuo-motor rotation learning task (ROT) or a visuo-motor task without rotation learning (MOT), followed by sleep or quiet wake. High-density electroencephalography showed that ROT training led to broad increases in EEG power over a frontal cluster of electrodes, with peaks in the theta (mean ± SE: 24% ± 6%, p = 0.0013) and beta ranges (10% ± 3%, p = 0.01). These traces persisted in the spontaneous EEG (sEEG) between sessions (theta: 42% ± 8%, p = 0.0001; beta: 35% ± 7%, p = 0.002) and were accompanied by increased errors in a motor test with kinematic characteristics and neural substrates similar to ROT (81.8% ± 0.8% vs. 68.2% ± 2.3%; two-tailed paired t-test: p = 0.00001; Cohen's d = 1.58), as well as by score increases of subjective task-specific fatigue (4.00 ± 0.39 vs. 5.36 ± 0.39; p = 0.0007; Cohen's d = 0.60). Intensive practice with MOT did not affect theta sEEG or the motor test. A nap, but not quiet wake, induced a local sEEG decrease of theta power by 33% (SE: 8%, p = 0.02), renormalized test performance (70.9% ± 2.9% vs 79.1% ± 2.7%, p = 0.018, Cohen's d = 0.85), and improved learning ability in ROT (adaptation rate: 71.2 ± 1.2 vs. 73.4 ± 0.9, p = 0.024; Cohen's d = 0.60). Thus, sleep is necessary to restore plasticity-induced fatigue and performance.
Collapse
Affiliation(s)
- Aaron B Nelson
- CUNY School of Medicine, Department of Physiology, Pharmacology & Neuroscience, New York, New York
| | - Serena Ricci
- CUNY School of Medicine, Department of Physiology, Pharmacology & Neuroscience, New York, New York.,DIBRIS, Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi, University of Genova, Genova, Italy
| | - Elisa Tatti
- CUNY School of Medicine, Department of Physiology, Pharmacology & Neuroscience, New York, New York
| | - Priya Panday
- CUNY School of Medicine, Department of Physiology, Pharmacology & Neuroscience, New York, New York
| | - Elisa Girau
- CUNY School of Medicine, Department of Physiology, Pharmacology & Neuroscience, New York, New York
| | - Jing Lin
- CUNY School of Medicine, Department of Physiology, Pharmacology & Neuroscience, New York, New York
| | - Brittany O Thomson
- CUNY School of Medicine, Department of Physiology, Pharmacology & Neuroscience, New York, New York
| | - Henry Chen
- CUNY School of Medicine, Department of Physiology, Pharmacology & Neuroscience, New York, New York
| | - William Marshall
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Mathematics and Statistics, Brock University, St. Catharines, ON, Canada
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin
| | - M Felice Ghilardi
- CUNY School of Medicine, Department of Physiology, Pharmacology & Neuroscience, New York, New York
| |
Collapse
|
16
|
Abstract
Purpose of review Napping is a common behavior across age groups. While studies have shown a benefit of overnight sleep on memory consolidation, given differences in nap frequency, composition, and intent, it is important to consider whether naps serve a memory function across development and aging. Recent findings We review studies of the role of naps in declarative, emotional, and motor procedural memory consolidation across age groups. Recent findings in both developmental and aging populations find that naps benefit learning of many tasks but may require additional learning or sleep bouts compared to young adult populations. These studies have also identified variations in nap physiology based on the purpose of the nap, timing of the nap, or age. Summary These studies lend to our understanding of the function of sleep, and the potential for naps as an intervention for those with reduced nighttime sleep or learning impairments.
Collapse
Affiliation(s)
- Bethany J Jones
- Department of Psychological & Brain Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts, U.S.A
- Neuroscience & Behavior Program, University of Massachusetts, Amherst, Amherst, Massachusetts, U.S.A
| | - Rebecca M C Spencer
- Department of Psychological & Brain Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts, U.S.A
- Neuroscience & Behavior Program, University of Massachusetts, Amherst, Amherst, Massachusetts, U.S.A
- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts, U.S.A
| |
Collapse
|
17
|
Thompson K, Gibbings A, Shaw J, Ray L, Hébert G, De Koninck J, Fogel S. Sleep and Second-Language Acquisition Revisited: The Role of Sleep Spindles and Rapid Eye Movements. Nat Sci Sleep 2021; 13:1887-1902. [PMID: 34703346 PMCID: PMC8536881 DOI: 10.2147/nss.s326151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/01/2021] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Second-language learning (SLL) depends on distinct functional-neuroanatomical systems including procedural and declarative long-term memory. Characteristic features of rapid eye movement (REM) and non-REM sleep such as rapid eye movements and sleep spindles are electrophysiological markers of cognitively complex procedural and declarative memory consolidation, respectively. In adults, grammatical learning depends at first on declarative memory ("early SLL") then shifts to procedural memory with experience ("late SLL"). However, it is unknown if the shift from declarative to procedural memory in early vs late SLL is supported by sleep. Here, we hypothesized that increases in sleep spindle characteristics would be associated with early SLL, whereas increases in REM activity (eg, density and EEG theta-band activity time-locked to rapid eye movements) would be associated with late SLL. METHODS Eight Anglophone (English first language) participants completed four polysomnographic recordings throughout an intensive 6-week French immersion course. Sleep spindle data and electroencephalographic spectral power time-locked to rapid eye movements were extracted from parietal temporal electrodes. RESULTS As predicted, improvements in French proficiency were associated with changes in spindles during early SLL. Furthermore, we observed increased event-related theta power time-locked to rapid eye movements during late SLL compared with early SLL. The increases in theta power were significantly correlated with improvements in French proficiency. DISCUSSION This supports the notion that sleep spindles are involved in early SLL when grammar depends on declarative memory, whereas cortical theta activity time-locked to rapid eye movements is involved in late SLL when grammar depends on procedural memory.
Collapse
Affiliation(s)
| | - Aaron Gibbings
- School of Psychology, University of Ottawa, Ottawa, ON, Canada.,Sleep Unit, University of Ottawa Institute of Mental Health at the Royal, Ottawa, ON, Canada
| | - James Shaw
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Laura Ray
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Gilles Hébert
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Joseph De Koninck
- School of Psychology, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Stuart Fogel
- School of Psychology, University of Ottawa, Ottawa, ON, Canada.,Sleep Unit, University of Ottawa Institute of Mental Health at the Royal, Ottawa, ON, Canada.,University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
18
|
De Zeeuw CI, Canto CB. Sleep deprivation directly following eyeblink-conditioning impairs memory consolidation. Neurobiol Learn Mem 2020; 170:107165. [PMID: 31953233 PMCID: PMC7184677 DOI: 10.1016/j.nlm.2020.107165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 12/05/2019] [Accepted: 01/12/2020] [Indexed: 10/31/2022]
Abstract
The relation between sleep and different forms of memory formation continues to be a relevant topic in our daily life. Sleep has been found to affect cerebellum-dependent procedural memory formation, but it remains to be elucidated to what extent the level of sleep deprivation directly after motor training also influences our ability to store and retrieve memories. Here, we studied the effect of disturbed sleep in mice during two different time-windows, one covering the first four hours following eyeblink conditioning (EBC) and another window following the next period of four hours. Compared to control mice with sleep ad libitum, the percentage of conditioned responses and their amplitude were impaired when mice were deprived of sleep directly after conditioning. This impairment was still significant when the learned EBC responses were extinguished and later reacquired. However, consolidation of eyeblink responses was not affected when mice were deprived later than four hours after acquisition, not even when tested during a different day-night cycle for control. Moreover, mice that slept longer directly following EBC showed a tendency for more conditioned responses. Our data indicate that consolidation of motor memories can benefit from sleep directly following memory formation.
Collapse
Affiliation(s)
- Chris I De Zeeuw
- Netherlands Institute for Neuroscience, KNAW, 1105 BA Amsterdam, the Netherlands; Department of Neuroscience, Erasmus MC, 3000 CA Rotterdam, the Netherlands
| | - Cathrin B Canto
- Netherlands Institute for Neuroscience, KNAW, 1105 BA Amsterdam, the Netherlands; Department of Neuroscience, Erasmus MC, 3000 CA Rotterdam, the Netherlands.
| |
Collapse
|
19
|
Poluektov M, Narbut A, Dorokhov V. Daytime napping and its effects on memory consolidation. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:127-132. [DOI: 10.17116/jnevro2020120081127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Bothe K, Hirschauer F, Wiesinger HP, Edfelder JM, Gruber G, Hoedlmoser K, Birklbauer J. Gross motor adaptation benefits from sleep after training. J Sleep Res 2019; 29:e12961. [PMID: 31868978 PMCID: PMC7540033 DOI: 10.1111/jsr.12961] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 01/26/2023]
Abstract
Sleep has been shown to facilitate the consolidation of newly acquired motor memories. However, the role of sleep in gross motor learning, especially in motor adaptation, is less clear. Thus, we investigated the effects of nocturnal sleep on the performance of a gross motor adaptation task, i.e. riding an inverse steering bicycle. Twenty‐six male participants (M = 24.19, SD = 3.70 years) were randomly assigned to a PM‐AM‐PM (n = 13) or an AM‐PM‐AM (n = 13) group, i.e. they trained in the evening/morning and were re‐tested the next morning/evening and the following evening/morning (PM‐AM‐PM/AM‐PM‐AM group) so that every participant spent one sleep as well as one wake interval between the three test sessions. Inverse cycling performance was assessed by speed (riding time) and accuracy (standard deviation of steering angle) measures. Behavioural results showed that in the PM‐AM‐PM group a night of sleep right after training stabilized performance (accuracy and speed) and was further improved over the subsequent wake interval. In the AM‐PM‐AM group, a significant performance deterioration after the initial wake interval was followed by the restoration of subjects' performance levels from right after training when a full night of sleep was granted. Regarding sleep, right hemispheric fast N2 sleep spindle activity was related to better stabilization of inverse cycling skills, thus possibly reflecting the ongoing process of updating the participants' mental model from “how to ride a bicycle” to “how to ride an inverse steering bicycle”. Our results demonstrate that sleep facilitates the consolidation of gross motor adaptation, thus adding further insights to the role of sleep for tasks with real‐life relevance.
Collapse
Affiliation(s)
- Kathrin Bothe
- Laboratory for Sleep, Cognition and Consciousness Research, Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Franziska Hirschauer
- Laboratory for Sleep, Cognition and Consciousness Research, Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Hans-Peter Wiesinger
- Department of Sport and Exercise Science, University of Salzburg, Salzburg, Austria
| | - Janina M Edfelder
- Department of Sport and Exercise Science, University of Salzburg, Salzburg, Austria
| | - Georg Gruber
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Kerstin Hoedlmoser
- Laboratory for Sleep, Cognition and Consciousness Research, Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Juergen Birklbauer
- Department of Sport and Exercise Science, University of Salzburg, Salzburg, Austria
| |
Collapse
|
21
|
van Schalkwijk FJ, Hauser T, Hoedlmoser K, Ameen MS, Wilhelm FH, Sauter C, Klösch G, Moser D, Gruber G, Anderer P, Saletu B, Parapatics S, Zeitlhofer J, Schabus M. Procedural memory consolidation is associated with heart rate variability and sleep spindles. J Sleep Res 2019; 29:e12910. [PMID: 31454120 PMCID: PMC7317359 DOI: 10.1111/jsr.12910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 11/30/2022]
Abstract
Sleep and memory studies often focus on overnight rather than long‐term memory changes, traditionally associating overnight memory change (OMC) with sleep architecture and sleep patterns such as spindles. In addition, (para‐)sympathetic innervation has been associated with OMC after a daytime nap using heart rate variability (HRV). In this study we investigated overnight and long‐term performance changes for procedural memory and evaluated associations with sleep architecture, spindle activity (SpA) and HRV measures (R‐R interval [RRI], standard deviation of R‐R intervals [SDNN], as well as spectral power for low [LF] and high frequencies [HF]). All participants (N = 20, Mage = 23.40 ± 2.78 years) were trained on a mirror‐tracing task and completed a control (normal vision) and learning (mirrored vision) condition. Performance was evaluated after training (R1), after a full‐night sleep (R2) and 7 days thereafter (R3). Overnight changes (R2‐R1) indicated significantly higher accuracy after sleep, whereas a significant long‐term (R3‐R2) improvement was only observed for tracing speed. Sleep architecture measures were not associated with OMC after correcting for multiple comparisons. However, individual SpA change from the control to the learning night indicated that only “SpA enhancers” exhibited overnight improvements for accuracy and long‐term improvements for speed. HRV analyses revealed that lower SDNN and LF power was associated with better OMC for the procedural speed measure. Altogether, this study indicates that overnight improvement for procedural memory is specific for spindle enhancers, and is associated with HRV during sleep following procedural learning.
Collapse
Affiliation(s)
- Frank J van Schalkwijk
- Laboratory for Sleep, Cognition and Consciousness Research, Centre for Cognitive Neuroscience (CCNS), University of Salzburg, Salzburg, Austria
| | - Theresa Hauser
- Laboratory for Sleep, Cognition and Consciousness Research, Centre for Cognitive Neuroscience (CCNS), University of Salzburg, Salzburg, Austria
| | - Kerstin Hoedlmoser
- Laboratory for Sleep, Cognition and Consciousness Research, Centre for Cognitive Neuroscience (CCNS), University of Salzburg, Salzburg, Austria
| | - Mohamed S Ameen
- Laboratory for Sleep, Cognition and Consciousness Research, Centre for Cognitive Neuroscience (CCNS), University of Salzburg, Salzburg, Austria
| | - Frank H Wilhelm
- Clinical Stress and Emotion Laboratory, Division of Clinical Psychology, Psychotherapy and Health Psychology, Department of Psychology, University of Salzburg, Salzburg, Austria
| | - Cornelia Sauter
- Department of Neurology, Medical University of Vienna, Vienna, Austria.,Competence Center of Sleep Medicine, Charité - University Medicine, Berlin, Germany
| | - Gerhard Klösch
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Doris Moser
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Georg Gruber
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Peter Anderer
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Bernd Saletu
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Silvia Parapatics
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Josef Zeitlhofer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Manuel Schabus
- Laboratory for Sleep, Cognition and Consciousness Research, Centre for Cognitive Neuroscience (CCNS), University of Salzburg, Salzburg, Austria
| |
Collapse
|
22
|
Adult Gross Motor Learning and Sleep: Is There a Mutual Benefit? Neural Plast 2018; 2018:3076986. [PMID: 30186317 PMCID: PMC6110005 DOI: 10.1155/2018/3076986] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/11/2018] [Accepted: 07/28/2018] [Indexed: 12/26/2022] Open
Abstract
Posttraining consolidation, also known as offline learning, refers to neuroplastic processes and systemic reorganization by which newly acquired skills are converted from an initially transient state into a more permanent state. An extensive amount of research on cognitive and fine motor tasks has shown that sleep is able to enhance these processes, resulting in more stable declarative and procedural memory traces. On the other hand, limited evidence exists concerning the relationship between sleep and learning of gross motor skills. We are particularly interested in this relationship with the learning of gross motor skills in adulthood, such as in the case of sports, performing arts, devised experimental tasks, and rehabilitation practice. Thus, the present review focuses on sleep and gross motor learning (GML) in adults. The literature on the impact of sleep on GML, the consequences of sleep deprivation, and the influence of GML on sleep architecture were evaluated for this review. While sleep has proven to be beneficial for most gross motor tasks, sleep deprivation in turn has not always resulted in performance decay. Furthermore, correlations between motor performance and sleep parameters have been found. These results are of potential importance for integrating sleep in physiotherapeutic interventions, especially for patients with impaired gross motor functions.
Collapse
|
23
|
A Study of the Effects of Daily Physical Activity on Memory and Attention Capacities in College Students. JOURNAL OF HEALTHCARE ENGINEERING 2018; 2018:2942930. [PMID: 29765585 PMCID: PMC5885397 DOI: 10.1155/2018/2942930] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/16/2018] [Accepted: 02/12/2018] [Indexed: 12/18/2022]
Abstract
This study evaluated the relationship between daily physical activity (DPA) and memory capacity, as well as the association between daily activity and attention capacity, in college students in Taiwan. Participants (mean age = 20.79) wore wearable trackers for 106 days in order to collect DPA. These data were analyzed in association with their memory and attention capacities, as assessed using the spatial span test (SST) and the trail making test (TMT). The study showed significant negative correlations between memory capacity, time spent on the attention test (TSAT), calories burnt, and very active time duration (VATD) on the day before testing (r = −0.272, r = −0.176, r = 0.289, r = 0.254, resp.) and during the week prior to testing (r = −0.364, r = −0.395, r = 0.268, r = 0.241, resp.). The calories burnt and the VATD per day thresholds, which at best discriminated between normal-to-good and low attention capacity, were ≥2283 calories day−1, ≥20 minutes day−1 of very high activity (VHA) on the day before testing, or ≥13,640 calories week−1, ≥76 minutes week−1 of VHA during the week prior to testing. Findings indicated the short-term effects that VATD and calories burnt on the day before or during the week before testing significantly and negatively associated with memory and attention capacities of college students.
Collapse
|