1
|
Lueth AJ, Allshouse AA, Silver RM, Hawkins MS, Grobman WA, Redline S, Zee P, Manchada S, Pien G. Allostatic load in early pregnancy and sleep-disordered breathing. J Matern Fetal Neonatal Med 2024; 37:2305680. [PMID: 38253519 DOI: 10.1080/14767058.2024.2305680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
OBJECTIVES To assess the association between allostatic load in early pregnancy and sleep-disordered breathing (SDB) during pregnancy. METHODS High allostatic load in the first trimester was defined as ≥ 4 of 12 biomarkers (systolic blood pressure, diastolic blood pressure, body mass index, cholesterol, low-density lipoprotein, high-density lipoprotein, high sensitivity C-reactive protein, triglycerides, insulin, glucose, creatinine, and albumin) in the unfavorable quartile. SDB was objectively measured using the Embletta-Gold device and operationalized as "SDB ever" in early (6-15 weeks) or mid-pregnancy (22-31 weeks); SDB at each time point was analyzed as secondary outcomes. Multivariable logistic regression was used to test the association between high allostatic load and SDB, adjusted for confounders. Moderation and sensitivity analyses were conducted to assess the role of allostatic load in racial disparities of SDB and obesity affected the relationship between allostatic load and SDB. RESULTS High allostatic load was present in 35.0% of the nuMoM2b cohort. The prevalence of SDB ever occurred among 8.3% during pregnancy. After adjustment, allostatic load remained significantly associated with SDB ever (aOR= 5.3; 3.6-7.9), in early-pregnancy (aOR= 7.0; 3.8-12.8), and in mid-pregnancy (aOR= 5.8; 3.7-9.1). The association between allostatic load and SDB was not significantly different for people with and without obesity. After excluding BMI from the allostatic load score, the association decreased in magnitude (aOR= 2.6; 1.8-3.9). CONCLUSION The association between allostatic load and SDB was independent of confounders including BMI. The complex and likely bidirectional relationship between chronic stress and SDB deserves further study in reducing SDB.
Collapse
Affiliation(s)
- Amir J Lueth
- Department of Obstetrics and Gynecology, University of Utah Health, Salt Lake City, UT, USA
| | - Amanda A Allshouse
- Department of Obstetrics and Gynecology, University of Utah Health, Salt Lake City, UT, USA
| | - Robert M Silver
- Department of Obstetrics and Gynecology, University of Utah Health, Salt Lake City, UT, USA
| | - Marquis S Hawkins
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - William A Grobman
- Department of Obstetrics and Gynecology, Ohio State University, Columbus, OH, USA
| | - Susan Redline
- Department of Obstetrics and Gynecology, Harvard Medical School, Boston, MA, USA
| | - Phyllis Zee
- Department of Obstetrics and Gynecology, Northwestern University, Evanston, IL, USA
| | - Shalini Manchada
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University, Bloomington, IN, USA
| | - Grace Pien
- Department of Obstetrics and Gynecology, School of Medicine, John Hopkins University, Baltimore, MD, USA
| |
Collapse
|
2
|
Gilbert L, Raubenheimer D, Hibbert EJ, Nanan R. PsyNBIOsis: Investigating the Association between Maternal Gestational Diabetes, Mental Health, Diet and Childhood Obesity Risk: Protocol for a Prospective, Longitudinal, Observational Study. Nutrients 2023; 16:124. [PMID: 38201953 PMCID: PMC10781001 DOI: 10.3390/nu16010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/01/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is associated with poorer maternal mental health (depression and anxiety). Maternal mental health and GDM are likely to influence diet, which in turn impacts the course of GDM. Maternal diet may also be directly or indirectly associated with changes in infant anthropometry. The aims of this study are to (1) examine the associations between maternal GDM, mental health and diet, and (2) evaluate the associations between these maternal factors, breastmilk composition and infant anthropometry. METHODS This prospective, observational, longitudinal cohort study compares a cohort of women with and without GDM. Maternal mental health and diet are assessed using validated questionnaires. Breastmilk composition is measured with the Human Milk Analyzer, and infant body composition is measured with air displacement plethysmography. SIGNIFICANCE AND IMPACT Once data have been collected, PsyNBIOsis will provide evidence for the associations between maternal mental health, GDM status and diet, and their impact on breastmilk composition and early infant growth. The results may inform the Developmental Origins of Health and Disease framework and provide data on which to build cost-effective interventions to prevent both the development of mental health issues in mothers and adverse growth patterns in infants.
Collapse
Affiliation(s)
- Leah Gilbert
- Nepean Clinical School, Faculty of Medicine and Health, University of Sydney, Penrith, NSW 2751, Australia
| | - David Raubenheimer
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2003, Australia
- School of Life and Environmental Science, University of Sydney, Sydney, NSW 2003, Australia
| | - Emily J. Hibbert
- Nepean Clinical School, Faculty of Medicine and Health, University of Sydney, Penrith, NSW 2751, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2003, Australia
- Nepean Hospital, Penrith, NSW 2747, Australia
| | - Ralph Nanan
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2003, Australia
| |
Collapse
|
3
|
Russell KL, Rodman HR, Pak VM. Sleep insufficiency, circadian rhythms, and metabolomics: the connection between metabolic and sleep disorders. Sleep Breath 2023; 27:2139-2153. [PMID: 37147557 DOI: 10.1007/s11325-023-02828-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/06/2023] [Accepted: 04/05/2023] [Indexed: 05/07/2023]
Abstract
PURPOSE US adults who report experiencing insufficient sleep are more likely to suffer from metabolic disorders such as hyperlipidemia, diabetes, and obesity than those with sufficient sleep. Less is understood about the underlying molecular mechanisms connecting these phenomena. A systematic, qualitative review of metabolomics studies exploring metabolic changes in response to sleep insufficiency, sleep deprivation, or circadian disruption was conducted in accordance with PRISMA guidelines. METHODS An electronic literature review in the PubMed database was performed considering publications through May 2021 and screening and eligibility criteria were applied to articles retrieved. The following keywords were used: "metabolomics" and "sleep disorders" or "sleep deprivation" or "sleep disturbance" or "circadian rhythm." After screening and addition of studies included from reference lists of retrieved studies, 16 records were identified for review. RESULTS Consistent changes in metabolites were observed across studies between individuals experiencing sleep deprivation compared to non-sleep deprived controls. Significant increases in phosphatidylcholines, acylcarnitines, sphingolipids, and other lipids were consistent across studies. Increased levels of amino acids such as tryptophan and phenylalanine were also noted. However, studies were limited to small samples of young, healthy, mostly male participants conducted in short inpatient sessions, limiting generalizability. CONCLUSION Changes in lipid and amino acid metabolites accompanying sleep deprivation and/or circadian rhythms may indicate cellular membrane and protein breakdown underlying the connection between sleep disturbance, hyperlipidemia, and other metabolic disorders. Larger epidemiological studies examining changes in the human metabolome in response to chronic insufficient sleep would help elucidate this relationship.
Collapse
Affiliation(s)
| | | | - Victoria M Pak
- Emory Nell Hodgson School of Nursing, Atlanta, GA, USA.
- Emory Rollins School of Public Health, Atlanta, GA, USA.
| |
Collapse
|
4
|
Priyadarshini M, Navarro G, Reiman DJ, Sharma A, Xu K, Lednovich K, Manzella CR, Khan MW, Garcia MS, Allard S, Wicksteed B, Chlipala GE, Szynal B, Bernabe BP, Maki PM, Gill RK, Perdew GH, Gilbert J, Dai Y, Layden BT. Gestational Insulin Resistance Is Mediated by the Gut Microbiome-Indoleamine 2,3-Dioxygenase Axis. Gastroenterology 2022; 162:1675-1689.e11. [PMID: 35032499 PMCID: PMC9040389 DOI: 10.1053/j.gastro.2022.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 12/23/2021] [Accepted: 01/03/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS Normal gestation involves a reprogramming of the maternal gut microbiome (GM) that contributes to maternal metabolic changes by unclear mechanisms. This study aimed to understand the mechanistic underpinnings of the GM-maternal metabolism interaction. METHODS The GM and plasma metabolome of CD1, NIH-Swiss, and C57 mice were analyzed with the use of 16S rRNA sequencing and untargeted liquid chromatography-mass spectrometry throughout gestation. Pharmacologic and genetic knockout mouse models were used to identify the role of indoleamine 2,3-dioxygenase (IDO1) in pregnancy-associated insulin resistance (IR). Involvement of gestational GM was studied with the use of fecal microbial transplants (FMTs). RESULTS Significant variation in GM alpha diversity occurred throughout pregnancy. Enrichment in gut bacterial taxa was mouse strain and pregnancy time point specific, with the species enriched at gestation day 15/19 (G15/19), a point of heightened IR, being distinct from those enriched before or after pregnancy. Metabolomics revealed elevated plasma kynurenine at G15/19 in all 3 mouse strains. IDO1, the rate-limiting enzyme for kynurenine production, had increased intestinal expression at G15, which was associated with mild systemic and gut inflammation. Pharmacologic and genetic inhibition of IDO1 inhibited kynurenine levels and reversed pregnancy-associated IR. FMT revealed that IDO1 induction and local kynurenine level effects on IR derive from the GM in both mouse and human pregnancy. CONCLUSIONS GM changes accompanying pregnancy shift IDO1-dependent tryptophan metabolism toward kynurenine production, intestinal inflammation, and gestational IR, a phenotype reversed by genetic deletion or inhibition of IDO1. (Gestational Gut Microbiome-IDO1 Axis Mediates Pregnancy Insulin Resistance; EMBL-ENA ID: PRJEB45047. MetaboLights ID: MTBLS3598).
Collapse
Affiliation(s)
- Medha Priyadarshini
- Division of Endocrinology, Diabetes, and Metabolism and UIC, Chicago-IL, U.S.A
| | - Guadalupe Navarro
- Division of Endocrinology, Diabetes, and Metabolism and UIC, Chicago-IL, U.S.A
| | - Derek J Reiman
- Department of Biomedical Engineering, UIC, Chicago-IL, U.S.A
| | - Anukriti Sharma
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Main Campus, Cleveland-OH, U.S.A
| | - Kai Xu
- Division of Endocrinology, Diabetes, and Metabolism and UIC, Chicago-IL, U.S.A
| | - Kristen Lednovich
- Division of Endocrinology, Diabetes, and Metabolism and UIC, Chicago-IL, U.S.A
| | | | - Md Wasim Khan
- Division of Endocrinology, Diabetes, and Metabolism and UIC, Chicago-IL, U.S.A
| | - Mariana Salas Garcia
- Department of Pediatrics, University of California San Diego (UCSD) School of Medicine, La Jolla-CA, U.S.A
| | - Sarah Allard
- Department of Pediatrics, University of California San Diego (UCSD) School of Medicine, La Jolla-CA, U.S.A
| | - Barton Wicksteed
- Division of Endocrinology, Diabetes, and Metabolism and UIC, Chicago-IL, U.S.A
| | - George E Chlipala
- Research Informatics Core, Research Resources Center, UIC, Chicago-IL, U.S.A
| | - Barbara Szynal
- Division of Endocrinology, Diabetes, and Metabolism and UIC, Chicago-IL, U.S.A
| | | | - Pauline M Maki
- Department of Psychiatry, UIC, Chicago-IL, U.S.A.; Department of Psychology, and UIC, Chicago-IL, U.S.A.; Department of Obstetrics and Gynecology, UIC, Chicago-IL, U.S.A
| | - Ravinder K Gill
- Division of Gastroenterology and Hepatology, UIC, Chicago-IL, U.S.A
| | - Gary H Perdew
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, Pennsylvania, U.S.A
| | - Jack Gilbert
- Department of Pediatrics, University of California San Diego (UCSD) School of Medicine, La Jolla-CA, U.S.A.; Scripps Institution of Oceanography, UCSD, La Jolla-CA, U.S.A
| | - Yang Dai
- Department of Biomedical Engineering, UIC, Chicago-IL, U.S.A
| | - Brian T Layden
- Division of Endocrinology, Diabetes, and Metabolism, University of Illinois, Chicago, Illinois; Jesse Brown Veterans Affair Medical Center, Chicago, Illinois.
| |
Collapse
|
5
|
Zhu Z, Huang R, Liu W, Wang J, Wu S, Chen M, Huang A, Xie Y, Chen M, Jiao C, Zhang J, Wu Q, Ding Y. Whole Agrocybe cylindracea Prevented Obesity Linking with Modification of Gut Microbiota and Associated Fecal Metabolites in High-Fat Diet-Fed Mice. Mol Nutr Food Res 2022; 66:e2100897. [PMID: 35092163 DOI: 10.1002/mnfr.202100897] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/18/2021] [Indexed: 11/09/2022]
Abstract
SCOPE Whole-food-based strategies to prevent metabolic diseases are growing interests. Agrocybe cylindracea (AC) is a major edible mushroom with high values of nutrition, but little is known about its health benefits as a portion of whole food. METHODS AND RESULTS Diet-induced obese, C57BL/6J mice were fed an HFD with or without AC (3% or 5%, w/w in the diet) for 9 weeks. The results showed that dietary AC reduced body weight, adipose accumulation, impairment of glucose tolerance, lipid levels, and liver injury in HFD-fed mice. Moreover, AC not only prevented HFD-induced gut disorder, as indicated by the enriched probiotic Bifidobacterium and reduced endotoxin-bearing Proteobacteria, but also improved the endotoxin (LPS) level and gut tissue structure. Fecal metabolites such as harmine and harmanine were also remarkably altered by AC. Spearman's correlation analysis revealed that the AC-altered microbes and metabolites were strongly correlated with obesity-related indexes. CONCLUSION These findings suggest that dietary AC prevents HFD-induced obesity and its complications in association with modulating gut microbiota and associated fecal metabolites. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zhenjun Zhu
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, 510632, China
| | - Rui Huang
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, 510632, China.,Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou, 510070, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, 510070, China
| | - Wei Liu
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, 510632, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shujian Wu
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, 510632, China.,Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou, 510070, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, 510070, China
| | - Mengfei Chen
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, 510632, China.,Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou, 510070, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, 510070, China
| | - Aohuan Huang
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, 510632, China.,Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou, 510070, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, 510070, China
| | - Yizhen Xie
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, 510663, China
| | - Moutong Chen
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou, 510070, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, 510070, China
| | - Chunwei Jiao
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, 510663, China
| | - Jumei Zhang
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou, 510070, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, 510070, China
| | - Qingping Wu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou, 510070, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, 510070, China
| | - Yu Ding
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, 510632, China.,Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou, 510070, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, 510070, China
| |
Collapse
|
6
|
Chen LD, Huang ZW, Huang YZ, Huang JF, Zhang ZP, Lin XJ. Untargeted Metabolomic Profiling of Liver in a Chronic Intermittent Hypoxia Mouse Model. Front Physiol 2021; 12:701035. [PMID: 34305653 PMCID: PMC8298499 DOI: 10.3389/fphys.2021.701035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
Obstructive sleep apnea (OSA) has been demonstrated to be associated with liver injury. Nevertheless, the mechanisms linking the two disorders remain largely unexplored to date. Based on UHPLC/Q-TOF MS platform, the present study aimed to study the hepatic metabolomic profiling in a chronic intermittent hypoxia (CIH) mouse model to identify altered metabolites and related metabolic pathways. C57BL/6 Mice (n = 12 each group) were exposed to intermittent hypoxia or control conditions (room air) for 12 weeks. At the end of the exposure, liver enzymes and histological changes were assessed. Untargeted metabolomics approach by UHPLC/Q-TOF MS and orthogonal partial least squares-discriminant analysis (OPLS-DA) were applied to screen altered metabolites in mice liver. Bioinformatics analyses were applied to identify the related metabolic pathways. CIH treatment caused a remarkable liver injury in mice. A total of 27 differential metabolites in negative ion mode and 44 in positive ion mode were identified between the two groups. These metabolites were correlated to multiple biological and metabolic processes, including various amino acid metabolism, membrane transport, lipid metabolism, carbohydrate metabolism, nucleotide metabolism, ferroptosis, etc. three differential metabolites including glutathione, glutathione disulfide, arachidonic acid (peroxide free) were identified in the ferroptosis pathway. CIH was associated with a significant metabolic profiling change in mice liver. The metabolites in amino acid metabolism, membrane transport, lipid metabolism, carbohydrate metabolism, nucleotide metabolism, and ferroptosis played an important role in CIH-induced liver injury. These findings contribute to a better understanding of the mechanisms linking OSA and liver injury and help identify potential therapeutic targets.
Collapse
Affiliation(s)
- Li-Da Chen
- Department of Respiratory and Critical Care Medicine, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Zhi-Wei Huang
- Department of Otolaryngology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Yu-Zhen Huang
- Department of Pathology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Jie-Feng Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Zhong-Ping Zhang
- Department of Pathology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Xue-Jun Lin
- Department of Laboratory Medicine, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| |
Collapse
|