1
|
Zeller CJ, Wunderlin M, Wicki K, Teunissen CE, Nissen C, Züst MA, Klöppel S. Multi-night acoustic stimulation is associated with better sleep, amyloid dynamics, and memory in older adults with cognitive impairment. GeroScience 2024; 46:6157-6172. [PMID: 38744792 PMCID: PMC11493878 DOI: 10.1007/s11357-024-01195-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
Sleep is a potential early, modifiable risk factor for cognitive decline and dementia. Impaired slow wave sleep (SWS) is pronounced in individuals with cognitive impairment (CI). Cognitive decline and impairments of SWS are bi-directionally linked in a vicious cycle. SWS can be enhanced non-invasively using phase-locked acoustic stimulation (PLAS), potentially breaking this vicious cycle. Eighteen healthy older adults (HC, agemean±sd, 68.3 ± 5.1) and 16 older adults (agemean±sd, 71.9 ± 3.9) with CI (Montreal Cognitive Assessment ≤ 25) underwent one baseline (sham-PLAS) night and three consecutive stimulation nights (real-PLAS). EEG responses and blood-plasma amyloid beta Aβ42/Aβ40 ratio were measured pre- and post-intervention, as was episodic memory. The latter was again evaluated 1 week and 3 months after the intervention. In both groups, PLAS induced a significant electrophysiological response in both voltage- and time-frequency analyses, and memory performance improved in association with the magnitude of this response. In the CI group, both electrophysiological and associated memory effects were delayed compared to the healthy group. After 3 intervention nights, electrophysiological response to PLAS was no longer different between CI and HC groups. Only in the CI sample, stronger electrophysiological responses were significantly associated with improving post-intervention Aβ42/Aβ40 ratios. PLAS seems to improve SWS electrophysiology, memory, and amyloid dynamics in older adults with CI. However, effects on memory require more time to unfold compared to healthy older adults. This indicates that PLAS may become a potential tool to ameliorate cognitive decline, but longer interventions are necessary to compensate for declining brain integrity. This study was pre-registered (clinicaltrials.gov: NCT04277104).
Collapse
Affiliation(s)
- Céline J Zeller
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, 3000, Bern 60, Switzerland
- Graduate School for Health Sciences, University of Bern, 3012, Bern, Switzerland
| | - Marina Wunderlin
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, 3000, Bern 60, Switzerland
| | - Korian Wicki
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, 3000, Bern 60, Switzerland
- Graduate School for Health Sciences, University of Bern, 3012, Bern, Switzerland
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, Netherlands
| | - Christoph Nissen
- Division of Psychiatric Specialties, Department of Psychiatry, Geneva University Hospitals (HUG), 1201, Geneva, Switzerland
- Department of Psychiatry, University of Geneva, 1201, Geneva, Switzerland
| | - Marc A Züst
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, 3000, Bern 60, Switzerland.
| | - Stefan Klöppel
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, 3000, Bern 60, Switzerland
| |
Collapse
|
2
|
Aksamaz S, Mölle M, Akinola EO, Gromodka E, Bazhenov M, Marshall L. Single closed-loop acoustic stimulation targeting memory consolidation suppressed hippocampal ripple and thalamo-cortical spindle activity in mice. Eur J Neurosci 2024; 59:595-612. [PMID: 37605315 PMCID: PMC11214843 DOI: 10.1111/ejn.16116] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/20/2023] [Accepted: 07/24/2023] [Indexed: 08/23/2023]
Abstract
Brain rhythms of sleep reflect neuronal activity underlying sleep-associated memory consolidation. The modulation of brain rhythms, such as the sleep slow oscillation (SO), is used both to investigate neurophysiological mechanisms as well as to measure the impact of sleep on presumed functional correlates. Previously, closed-loop acoustic stimulation in humans targeted to the SO Up-state successfully enhanced the slow oscillation rhythm and phase-dependent spindle activity, although effects on memory retention have varied. Here, we aim to disclose relations between stimulation-induced hippocampo-thalamo-cortical activity and retention performance on a hippocampus-dependent object-place recognition task in mice by applying acoustic stimulation at four estimated SO phases compared to sham condition. Across the 3-h retention interval at the beginning of the light phase closed-loop stimulation failed to improve retention significantly over sham. However, retention during SO Up-state stimulation was significantly higher than for another SO phase. At all SO phases, acoustic stimulation was accompanied by a sharp increase in ripple activity followed by about a second-long suppression of hippocampal sharp wave ripple and longer maintained suppression of thalamo-cortical spindle activity. Importantly, dynamics of SO-coupled hippocampal ripple activity distinguished SOUp-state stimulation. Non-rapid eye movement (NREM) sleep was not impacted by stimulation, yet preREM sleep duration was effected. Results reveal the complex effect of stimulation on the brain dynamics and support the use of closed-loop acoustic stimulation in mice to investigate the inter-regional mechanisms underlying memory consolidation.
Collapse
Affiliation(s)
- Sonat Aksamaz
- Institute of Experimental and Clinical Pharmacology,
University of Lübeck, Lübeck, Germany
- University Medical Center Schleswig-Holstein,
Lübeck, Germany
| | - Matthias Mölle
- University Medical Center Schleswig-Holstein,
Lübeck, Germany
- Center of Brain, Behavior and Metabolism, Lübeck,
Germany
| | - Esther Olubukola Akinola
- Institute of Experimental and Clinical Pharmacology,
University of Lübeck, Lübeck, Germany
- University Medical Center Schleswig-Holstein,
Lübeck, Germany
| | - Erik Gromodka
- Institute of Experimental and Clinical Pharmacology,
University of Lübeck, Lübeck, Germany
| | - Maxim Bazhenov
- Department of Medicine, University of California San Diego,
La Jolla, CA, USA
| | - Lisa Marshall
- Institute of Experimental and Clinical Pharmacology,
University of Lübeck, Lübeck, Germany
- University Medical Center Schleswig-Holstein,
Lübeck, Germany
- Center of Brain, Behavior and Metabolism, Lübeck,
Germany
| |
Collapse
|
3
|
Wunderlin M, Zeller CJ, Senti SR, Fehér KD, Suppiger D, Wyss P, Koenig T, Teunissen CE, Nissen C, Klöppel S, Züst MA. Acoustic stimulation during sleep predicts long-lasting increases in memory performance and beneficial amyloid response in older adults. Age Ageing 2023; 52:afad228. [PMID: 38163288 PMCID: PMC10758173 DOI: 10.1093/ageing/afad228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Sleep and neurodegeneration are assumed to be locked in a bi-directional vicious cycle. Improving sleep could break this cycle and help to prevent neurodegeneration. We tested multi-night phase-locked acoustic stimulation (PLAS) during slow wave sleep (SWS) as a non-invasive method to improve SWS, memory performance and plasma amyloid levels. METHODS 32 healthy older adults (agemean: 68.9) completed a between-subject sham-controlled three-night intervention, preceded by a sham-PLAS baseline night. RESULTS PLAS induced increases in sleep-associated spectral-power bands as well as a 24% increase in slow wave-coupled spindles, known to support memory consolidation. There was no significant group-difference in memory performance or amyloid-beta between the intervention and control group. However, the magnitude of PLAS-induced physiological responses were associated with memory performance up to 3 months post intervention and beneficial changes in plasma amyloid. Results were exclusive to the intervention group. DISCUSSION Multi-night PLAS is associated with long-lasting benefits in memory and metabolite clearance in older adults, rendering PLAS a promising tool to build upon and develop long-term protocols for the prevention of cognitive decline.
Collapse
Affiliation(s)
- Marina Wunderlin
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, 3012 Bern, Switzerland
| | - Céline Jacqueline Zeller
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, 3012 Bern, Switzerland
| | - Samira Rafaela Senti
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
| | - Kristoffer Daniel Fehér
- University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
| | - Debora Suppiger
- Department of Neonatology, University Hospital Zurich and University of Zurich, 8006 Zürich, Switzerland
| | - Patric Wyss
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
| | - Thomas Koenig
- University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
| | - Charlotte Elisabeth Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
| | - Christoph Nissen
- University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
- Division of Psychiatric Specialties, Geneva University Hospitals (HUG), 1205 Geneva, Switzerland
| | - Stefan Klöppel
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
| | - Marc Alain Züst
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
| |
Collapse
|
4
|
Fehér KD, Omlin X, Tarokh L, Schneider CL, Morishima Y, Züst MA, Wunderlin M, Koenig T, Hertenstein E, Ellenberger B, Ruch S, Schmidig F, Mikutta C, Trinca E, Senn W, Feige B, Klöppel S, Nissen C. Feasibility, efficacy, and functional relevance of automated auditory closed-loop suppression of slow-wave sleep in humans. J Sleep Res 2023:e13846. [PMID: 36806335 DOI: 10.1111/jsr.13846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/22/2022] [Accepted: 01/23/2023] [Indexed: 02/22/2023]
Abstract
Slow-wave sleep (SWS) is a fundamental physiological process, and its modulation is of interest for basic science and clinical applications. However, automatised protocols for the suppression of SWS are lacking. We describe the development of a novel protocol for the automated detection (based on the whole head topography of frontal slow waves) and suppression of SWS (through closed-loop modulated randomised pulsed noise), and assessed the feasibility, efficacy and functional relevance compared to sham stimulation in 15 healthy young adults in a repeated-measure sleep laboratory study. Auditory compared to sham stimulation resulted in a highly significant reduction of SWS by 30% without affecting total sleep time. The reduction of SWS was associated with an increase in lighter non-rapid eye movement sleep and a shift of slow-wave activity towards the end of the night, indicative of a homeostatic response and functional relevance. Still, cumulative slow-wave activity across the night was significantly reduced by 23%. Undisturbed sleep led to an evening to morning reduction of wake electroencephalographic theta activity, thought to reflect synaptic downscaling during SWS, while suppression of SWS inhibited this dissipation. We provide evidence for the feasibility, efficacy, and functional relevance of a novel fully automated protocol for SWS suppression based on auditory closed-loop stimulation. Future work is needed to further test for functional relevance and potential clinical applications.
Collapse
Affiliation(s)
- Kristoffer D Fehér
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.,Division of Psychiatric Specialties, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Ximena Omlin
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.,Division of Psychiatric Specialties, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Leila Tarokh
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.,University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Carlotta L Schneider
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Yosuke Morishima
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Marc A Züst
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Marina Wunderlin
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.,Department of Social Neuroscience and Social Psychology, Institute of Psychology, University of Bern, Bern, Switzerland
| | - Thomas Koenig
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Elisabeth Hertenstein
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | | | - Simon Ruch
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany
| | - Flavio Schmidig
- Cognitive Neuroscience of Memory and Consciousness, Institute of Psychology, University of Bern, Bern, Switzerland
| | - Christian Mikutta
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.,Privatklinik Meiringen, Meiringen, Switzerland
| | - Ersilia Trinca
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Walter Senn
- Institute of Physiology, University of Bern, Bern, Switzerland
| | - Bernd Feige
- University of Freiburg Medical Center, Freiburg, Germany
| | - Stefan Klöppel
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Christoph Nissen
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.,Division of Psychiatric Specialties, Geneva University Hospitals (HUG), Geneva, Switzerland
| |
Collapse
|
5
|
Zeller CJ, Züst MA, Wunderlin M, Nissen C, Klöppel S. The promise of portable remote auditory stimulation tools to enhance slow-wave sleep and prevent cognitive decline. J Sleep Res 2023:e13818. [PMID: 36631001 DOI: 10.1111/jsr.13818] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 01/13/2023]
Abstract
Dementia is the seventh leading cause of mortality, and a major source of disability and dependency in older individuals globally. Cognitive decline (and, to a lesser extent, normal ageing) are associated with sleep fragmentation and loss of slow-wave sleep. Evidence suggests a bidirectional causal link between these losses. Phase-locked auditory stimulation has emerged as a promising non-invasive tool to enhance slow-wave sleep, potentially ameliorating cognitive decline. In laboratory settings, auditory stimulation is usually supervised by trained experts. Different algorithms (simple amplitude thresholds, topographic correlation, sine-wave fitting, phase-locked loop, and phase vocoder) are used to precisely target auditory stimulation to a desired phase of the slow wave. While all algorithms work well in younger adults, the altered sleep physiology of older adults and particularly those with neurodegenerative disorders requires a tailored approach that can adapt to older adults' fragmented sleep and reduced amplitudes of slow waves. Moreover, older adults might require a continuous intervention that is not feasible in laboratory settings. Recently, several auditory stimulation-capable portable devices ('Dreem®', 'SmartSleep®' and 'SleepLoop®') have been developed. We discuss these three devices regarding their potential as tools for science, and as clinical remote-intervention tools to combat cognitive decline. Currently, SleepLoop® shows the most promise for scientific research in older adults due to high transparency and customizability but is not commercially available. Studies evaluating down-stream effects on cognitive abilities, especially in patient populations, are required before a portable auditory stimulation device can be recommended as a clinical preventative remote-intervention tool.
Collapse
Affiliation(s)
- Céline J Zeller
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Marc A Züst
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Marina Wunderlin
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Christoph Nissen
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.,Division of Psychiatric Specialties, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Stefan Klöppel
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| |
Collapse
|