1
|
Triana AM, Salmi J, Hayward NMEA, Saramäki J, Glerean E. Longitudinal single-subject neuroimaging study reveals effects of daily environmental, physiological, and lifestyle factors on functional brain connectivity. PLoS Biol 2024; 22:e3002797. [PMID: 39378200 PMCID: PMC11460715 DOI: 10.1371/journal.pbio.3002797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/08/2024] [Indexed: 10/10/2024] Open
Abstract
Our behavior and mental states are constantly shaped by our environment and experiences. However, little is known about the response of brain functional connectivity to environmental, physiological, and behavioral changes on different timescales, from days to months. This gives rise to an urgent need for longitudinal studies that collect high-frequency data. To this end, for a single subject, we collected 133 days of behavioral data with smartphones and wearables and performed 30 functional magnetic resonance imaging (fMRI) scans measuring attention, memory, resting state, and the effects of naturalistic stimuli. We find traces of past behavior and physiology in brain connectivity that extend up as far as 15 days. While sleep and physical activity relate to brain connectivity during cognitively demanding tasks, heart rate variability and respiration rate are more relevant for resting-state connectivity and movie-watching. This unique data set is openly accessible, offering an exceptional opportunity for further discoveries. Our results demonstrate that we should not study brain connectivity in isolation, but rather acknowledge its interdependence with the dynamics of the environment, changes in lifestyle, and short-term fluctuations such as transient illnesses or restless sleep. These results reflect a prolonged and sustained relationship between external factors and neural processes. Overall, precision mapping designs such as the one employed here can help to better understand intraindividual variability, which may explain some of the observed heterogeneity in fMRI findings. The integration of brain connectivity, physiology data and environmental cues will propel future environmental neuroscience research and support precision healthcare.
Collapse
Affiliation(s)
- Ana María Triana
- Department of Computer Science, School of Science, Aalto University, Espoo, Finland
- Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo, Finland
| | - Juha Salmi
- Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo, Finland
- Aalto Behavioral Laboratory, Aalto Neuroimaging, Aalto University, Espoo, Finland
- MAGICS, Aalto Studios, Aalto University, Espoo, Finland
- Unit of Psychology, Faculty of Education and Psychology, Oulu University, Oulu, Finland
| | | | - Jari Saramäki
- Department of Computer Science, School of Science, Aalto University, Espoo, Finland
| | - Enrico Glerean
- Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo, Finland
- Advanced Magnetic Imaging Centre, Aalto University, Espoo, Finland
| |
Collapse
|
2
|
Zhang Q, Hou YZ, Ding H, Shu YP, Li J, Chen XZ, Li JL, Lou Q, Wang DX. Alterations of sleep deprivation on brain function: A coordinate-based resting-state functional magnetic resonance imaging meta-analysis. World J Psychiatry 2024; 14:315-329. [PMID: 38464778 PMCID: PMC10921288 DOI: 10.5498/wjp.v14.i2.315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Sleep deprivation is a prevalent issue that impacts cognitive function. Although numerous neuroimaging studies have explored the neural correlates of sleep loss, inconsistencies persist in the reported results, necessitating an investigation into the consistent brain functional changes resulting from sleep loss. AIM To establish the consistency of brain functional alterations associated with sleep deprivation through systematic searches of neuroimaging databases. Two meta-analytic methods, signed differential mapping (SDM) and activation likelihood estimation (ALE), were employed to analyze functional magnetic resonance imaging (fMRI) data. METHODS A systematic search performed according to PRISMA guidelines was conducted across multiple databases through July 29, 2023. Studies that met specific inclu-sion criteria, focused on healthy subjects with acute sleep deprivation and reported whole-brain functional data in English were considered. A total of 21 studies were selected for SDM and ALE meta-analyses. RESULTS Twenty-one studies, including 23 experiments and 498 subjects, were included. Compared to pre-sleep deprivation, post-sleep deprivation brain function was associated with increased gray matter in the right corpus callosum and decreased activity in the left medial frontal gyrus and left inferior parietal lobule. SDM revealed increased brain functional activity in the left striatum and right central posterior gyrus and decreased activity in the right cerebellar gyrus, left middle frontal gyrus, corpus callosum, and right cuneus. CONCLUSION This meta-analysis consistently identified brain regions affected by sleep deprivation, notably the left medial frontal gyrus and corpus callosum, shedding light on the neuropathology of sleep deprivation and offering insights into its neurological impact.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Radiology, The Second People’s Hospital of Guizhou Province, Guiyang 550000, Guizhou Province, China
- Department of Radiology, Guizhou Provincial People’s Hospital, Guiyang 550000, Guizhou Province, China
| | - Yong-Zhe Hou
- Department of Psychiatry of Women and Children, The Second People’s Hospital of Guizhou Province, Guiyang 550000, Guizhou Province, China
| | - Hui Ding
- Department of Radiology, The Second People’s Hospital of Guizhou Province, Guiyang 550000, Guizhou Province, China
| | - Yan-Ping Shu
- Department of Psychiatry of Women and Children, The Second People’s Hospital of Guizhou Province, Guiyang 550000, Guizhou Province, China
| | - Jing Li
- Department of Radiology, The Second People’s Hospital of Guizhou Province, Guiyang 550000, Guizhou Province, China
| | - Xi-Zhao Chen
- Department of Radiology, The Second People’s Hospital of Guizhou Province, Guiyang 550000, Guizhou Province, China
| | - Jia-Lin Li
- Medical Humanities College, Guizhou Medical University, Guiyang 550000, Guizhou Province, China
| | - Qin Lou
- Department of Radiology, The Second People’s Hospital of Guizhou Province, Guiyang 550000, Guizhou Province, China
| | - Dai-Xing Wang
- Department of Radiology, The Second People’s Hospital of Guizhou Province, Guiyang 550000, Guizhou Province, China
| |
Collapse
|
3
|
Li J, Cao Y, Ou S, Jiang T, Wang L, Ma N. The effect of total sleep deprivation on working memory: evidence from diffusion model. Sleep 2024; 47:zsae006. [PMID: 38181126 DOI: 10.1093/sleep/zsae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/30/2023] [Indexed: 01/07/2024] Open
Abstract
STUDY OBJECTIVES Working memory is crucial in human daily life and is vulnerable to sleep loss. The current study investigated the impact of sleep deprivation on working memory from the information processing perspective, to explore whether sleep deprivation affects the working memory via impairing information manipulation. METHODS Thirty-seven healthy adults attended two counterbalanced protocols: a normal sleep night and a total sleep deprivation (TSD). The N-back and the psychomotor vigilance task (PVT) assessed working memory and sustained attention. Response time distribution and drift-diffusion model analyses were applied to explore cognitive process alterations. RESULTS TSD increased the loading effect of accuracy, but not the loading effect of response time in the N-back task. TSD reduced the speed of information accumulation, increased the variability of the speed of accumulation, and elevated the decision threshold only in 1-back task. Moreover, the slow responses of PVT and N-back were severely impaired after TSD, mainly due to increased information accumulation variability. CONCLUSIONS The present study provides a new perspective to investigate behavioral performance by using response time distribution and drift-diffusion models, revealing that sleep deprivation affected multicognitive processes underlying working memory, especially information accumulation processes.
Collapse
Affiliation(s)
- Jiahui Li
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou 510631, China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Yixuan Cao
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou 510631, China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Simei Ou
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou 510631, China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Tianxiang Jiang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou 510631, China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Ling Wang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou 510631, China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Ning Ma
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou 510631, China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
4
|
Yin Y, Chen S, Song T, Zhou Q, Shao Y. Cognitive Load Moderates the Effects of Total Sleep Deprivation on Working Memory: Evidence from Event-Related Potentials. Brain Sci 2023; 13:898. [PMID: 37371376 DOI: 10.3390/brainsci13060898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Purpose: The function of working memory (WM) is impaired by total sleep deprivation (TSD) and cognitive load. However, it is unclear whether the load modulates the effect of TSD on WM. We conducted a pilot study to investigate the effects of 36 h of TSD on WM under different load levels. Materials and methods: Twenty-two male students aged 18-25 years were enrolled, who underwent two types of sleep conditions (baseline and 36 h TSD), where they performed two N-back WM tasks (one-back task and two-back task) with simultaneous electroencephalography recordings. Results: Repeated measures analysis of variance (ANOVA) indicated that, with the increasing load, the reaction time increased and the accuracy decreased. After TSD, the correct number per unit time decreased. The significant interaction effect of the P3 amplitudes between the load level and the sleep condition showed that the reduction in the amplitude of P3 in the two-back task due to TSD was more obvious than that in the one-back task. Conclusions: Our results provided evidence for the moderation of load on the impairment of TSD on WM. The degree of TSD-induced impairment for a higher load was greater than that for a lower load. The current study provides new insights into the mechanisms by which sleep deprivation affects cognitive function.
Collapse
Affiliation(s)
- Ying Yin
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Shufang Chen
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Tao Song
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Qianxiang Zhou
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yongcong Shao
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- School of Psychology, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
5
|
Chen J, Gong X, Wang L, Xu M, Zhong X, Peng Z, Song T, Xu L, Lian J, Shao Y, Weng X. Altered Postcentral Connectivity after Sleep Deprivation Correlates to Impaired Risk Perception: A Resting-State Functional Magnetic Resonance Imaging Study. Brain Sci 2023; 13:brainsci13030514. [PMID: 36979324 PMCID: PMC10046171 DOI: 10.3390/brainsci13030514] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Previous studies revealed that sleep deprivation (SD) impairs risk perception and leads to poor decision-making efficiency. However, how risk perception is related to brain regions' communication after SD has not been elucidated. In this study, we investigated the neuropsychological mechanisms of SD-impaired risk perception. METHODS Nineteen healthy male adults were recruited and underwent resting-state functional magnetic resonance imaging during a state of rested wakefulness and after nearly 36 h of total SD. They then completed the balloon analog risk task, which was used to measure the risk perception ability of risky decision-making. Regional homogeneity (ReHo) and voxel-wise functional connectivity were used to investigate neurobiological changes caused by SD. Correlation analysis was used to investigate the relationship between changes in ReHo, function, and risk perception. RESULTS At the behavioral level, risk perception decreased after 36 h of SD. At the neural level, SD induced a significant increase in ReHo in the right postcentral gyrus and was positively correlated with risk perception changes. The functional connectivity between the right postcentral gyrus, left medial temporal gyrus, and right inferior temporal gyrus was enhanced. Critically, increased right postcentral gyrus and right inferior temporal gyrus connectivity positively correlated with changes in risk perception. CONCLUSIONS SD impairs the risk perception associated with altered postcentral connectivity. The brain requires more energy to process and integrate sensory and perceptual information after SD, which may be one possible reason for decreased risk perception ability after SD.
Collapse
Affiliation(s)
- Jie Chen
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Xinxin Gong
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Letong Wang
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Mengmeng Xu
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Xiao Zhong
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Ziyi Peng
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Tao Song
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Lin Xu
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Jie Lian
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Yongcong Shao
- School of Psychology, Beijing Sport University, Beijing 100084, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xiechuan Weng
- Department of Neuroscience, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| |
Collapse
|