1
|
Ning DS, Zhou ZQ, Zhou SH, Chen JM. Identification of macrophage differentiation related genes and subtypes linking atherosclerosis plaque processing and metabolic syndrome via integrated bulk and single-cell sequence analysis. Heliyon 2024; 10:e34295. [PMID: 39130409 PMCID: PMC11315131 DOI: 10.1016/j.heliyon.2024.e34295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
Metabolic syndrome(MS) is a separate risk factor for the advancement of atherosclerosis(AS) plaque but mechanism behind this remains unclear. There may be a significant role for the immune system in this process. This study aims to identify potential diagnostic genes in MS patients at a higher risk of developing and progressing to AS. Datasets were retrevied from gene expression omnibus(GEO) database and differentially expressed genes were identified. Hub genes, immune cell dysregulation and AS subtypes were identified using a conbination of muliple bioinformatic analysis, machine learning and consensus clustering. Diagnostic value of hub genes was estimated using a nomogram and ROC analysis. Finally, enrichment analysis, competing endogenous RNA(ceRNA) network, single-cell RNA(scRNA) sequencing analysis and drug-protein interaction prediction was constructed to identify the functional roles, potential regulators and distribution for hub genes. Four hub genes and two macrophage-related subtypes were identified. Their strong diagnostic value was validated and functional process were identified. ScRNA analysis identified the macrophage differentiation regulation function of F13A1. CeRNA network and drug-protein binding modes revealed the potential therapeutic method. Four immune-correlated hub genes(F13A1, MMRN1, SLCO2A1 and ZNF521) were identified with their diagnostic value being assesed, which F13A1 was found strong correlated with macrophage differentiation and could be potential diagnostic and therapeutic marker for AS progression in MS patients.
Collapse
Affiliation(s)
- Da-Sheng Ning
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, PR China
- Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China
- Southern China Key Laboratory of Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Zi-Qing Zhou
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, PR China
- Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China
- Southern China Key Laboratory of Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Shu-Heng Zhou
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, PR China
- Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China
- Southern China Key Laboratory of Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Ji-Mei Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, PR China
- Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China
- Southern China Key Laboratory of Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| |
Collapse
|
2
|
Connell NT. Factor XIII subunits are stronger together. Blood 2024; 143:385-387. [PMID: 38300613 DOI: 10.1182/blood.2023023039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
|
3
|
Dang Y, Zhang Y, Jian M, Luo P, Anwar N, Ma Y, Zhang D, Wang X. Advances of Blood Coagulation Factor XIII in Bone Healing. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:591-604. [PMID: 37166415 DOI: 10.1089/ten.teb.2023.0016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The biologic process of bone healing is complicated, involving a variety of cells, cytokines, and growth factors. As a result of bone damage, the activation of a clotting cascade leads to hematoma with a high osteogenic potential in the initial stages of healing. A major factor involved in this course of events is clotting factor XIII (FXIII), which can regulate bone defect repair in different ways during various stages of healing. Autografts and allografts often have defects in clinical practice, making the development of advanced materials that support bone regeneration a critical requirement. Few studies, however, have examined the promotion of bone healing by FXIII in combination with biomaterials, in particular, its effect on blood coagulation and osteogenesis. Therefore, we mainly summarized the role of FXIII in promoting bone regeneration by regulating the extracellular matrix and type I collagen, bone-related cells, angiogenesis, and platelets, and described the research progress of FXIII = related biomaterials on osteogenesis. This review provides a reference for investigators to explore the mechanism by which FXIII promotes bone healing and the combination of FXIII with biomaterials to achieve targeted bone tissue repair.
Collapse
Affiliation(s)
- Yi Dang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yi Zhang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Minghui Jian
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Peng Luo
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Nadia Anwar
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yaping Ma
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dingmei Zhang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Center for Tissue Engineering, The Fourth Military Medical University, Xian, China
| | - Xin Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- School of Mechanical, Medical and Process Engineering, Center for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
4
|
Alnima T, Meijer RI, Spronk HMH, Warlé M, Cate HT. Diabetes- versus smoking-related thrombo-inflammation in peripheral artery disease. Cardiovasc Diabetol 2023; 22:257. [PMID: 37735399 PMCID: PMC10514957 DOI: 10.1186/s12933-023-01990-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
Peripheral artery disease (PAD) is a major health problem with increased cardiovascular mortality, morbidity and disabling critical limb threatening ischemia (CLTI) and amputation. Diabetes mellitus (DM) and cigarette smoke are the main risk factors for the development of PAD. Although diabetes related PAD shows an accelerated course with worse outcome regarding complications, mortality and amputations compared with non-diabetic patients, current medical treatment does not make this distinction and includes standard antiplatelet and lipid lowering drugs for all patients with PAD. In this review we discuss the pathophysiologic mechanisms of PAD, with focus on differences in thrombo-inflammatory processes between diabetes-related and smoking-related PAD, and hypothesize on possible mechanisms for the progressive course of PAD in DM. Furthermore, we comment on current medical treatment and speculate on alternative medical drug options for patients with PAD and DM.
Collapse
Affiliation(s)
- T Alnima
- Department of Internal Medicine, Section of Vascular Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
- Department of Internal Medicine, Section of Diabetology, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - R I Meijer
- Department of Internal Medicine, Section of Diabetology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - H M H Spronk
- Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - M Warlé
- Department of Vascular Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - H Ten Cate
- Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
5
|
Yan L, Wang T, Qiu J, Zhang X, Peng J, Fang Y, Sheng Z. Identification of a novel mutation in the factor XIII A subunit in a patient with inherited factor XIII deficiency. Int J Hematol 2023:10.1007/s12185-023-03594-y. [PMID: 37059930 DOI: 10.1007/s12185-023-03594-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/16/2023]
Abstract
Inherited factor XIII (FXIII) deficiency is an extremely rare and under-diagnosed autosomal recessive inherited coagulopathy, which is caused by genetic defects in the F13A1 or F13B gene. More than 200 genetic mutations have been identified since the first case of inherited FXIII deficiency was reported. This study aimed to identify underlying gene mutations in a patient with inherited FXIII deficiency who presented with recurrent intracerebral hemorrhage. Levels of plasma FXIII-A antigen were measured, F13A1 and F13B genes were sequenced, mutation information was analyzed, and the mutated protein structure was predicted using bioinformatics methods. Molecular genetic analysis identified four mutations of FXIII-related genes in the proband, including three previously reported mutations inherited from his parents (c.631G>A, p.Gly210Arg and c.1687G>A, p.Gly562Arg of F13A1 gene and c.344G>A, p.Arg115His of F13B gene) and a novel spontaneous mutation of F13A1 gene (c.2063C>G, p.Ser687Cys). Molecular structural modeling demonstrated that the novel Ser687Cys mutation may cause changes in the spatial structure of FXIII-A and increase its instability. In conclusion, we identified a novel and likely pathogenic mutation of the F13A1 gene, which enriched the gene mutation spectrum of inherited FXIII deficiency. The findings may provide promising targets for diagnosis and treatment of inherited FXIII deficiency.
Collapse
Affiliation(s)
- Lijie Yan
- Department of Hematology, Qilu Hospital of Shandong University, No. 107 Wenhua West Road, Jinan, China
| | - Tiantian Wang
- Shandong Blood Center, Shandong Hemophilia Treatment Center, No. 22, Shanshi East Road, Jinan, China
| | - Jihua Qiu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xinsheng Zhang
- Shandong Blood Center, Shandong Hemophilia Treatment Center, No. 22, Shanshi East Road, Jinan, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital of Shandong University, No. 107 Wenhua West Road, Jinan, China
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yunhai Fang
- Shandong Blood Center, Shandong Hemophilia Treatment Center, No. 22, Shanshi East Road, Jinan, China.
| | - Zi Sheng
- Department of Hematology, Qilu Hospital of Shandong University, No. 107 Wenhua West Road, Jinan, China.
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
6
|
Wang W, Wu S, Wang AY, Wu T, Luo H, Zhao JW, Chen J, Li Y, Ding H. Thrombomodulin activation driven by LXR agonist attenuates renal injury in diabetic nephropathy. Front Med (Lausanne) 2023; 9:916620. [PMID: 36698821 PMCID: PMC9870310 DOI: 10.3389/fmed.2022.916620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 08/15/2022] [Indexed: 01/11/2023] Open
Abstract
Objective Inflammation and thrombosis are recognized as interrelated biological processes. Both thrombomodulin (TM) and factor XIII-A (FXIII-A) are involved in inflammation and coagulation process. However, their role in the pathogenesis of diabetic nephropathy (DN) remains unclear. In vitro study, the liver X receptor (LXR) agonist T0901317 can up-regulate the expression of TM in glomerular endothelial cells. Now we evaluated the interaction between TM activation and FXIII-A and their effects against renal injury. Methods We first evaluated the serum levels of FXIII-A and TM and the expression of TM, LXR-α and FXIII-A in renal tissues of patients with biopsy-proven DN. We then analyzed the expression of TM, LXR-α and FXIII-A in renal tissues of db/db DN mice after upregulating TM expression via T0901317 or downregulating its expression via transfection of TM shRNA-loaded adenovirus. We also investigated the serum levels of Tumor necrosis factor (TNF)-α, Interleukin (IL)-6, creatinine, and urinary microalbumin level in db/db mice. Results Our study showed that elevations in serum levels of FXIII-A positively correlated to the serum levels of TM and were also associated with end-stage kidney disease in patients with DN. The number of TM+ cells in the renal tissues of patients with DN negatively correlated with the number of FXIII-A+ cells and positively correlated with the number of LXR-α+ cells and estimated glomerular filtration rate (eGFR), whereas the number of FXIII-A+ cells negatively correlated with the eGFR. Conclusion Thrombomodulin activation with T0901317 downregulated FXIII-A expression in the kidney tissue and alleviated renal injury in db/db mice.
Collapse
Affiliation(s)
- Wei Wang
- Renal Division and Institute of Nephrology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Song Wu
- Renal Division and Institute of Nephrology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Amanda Y. Wang
- Renal and Metabolic Division, The George Institute for Global Health, University of New South Wales Australia, Newtown, NSW, Australia,Department of Renal Medicine, Concord Repatriation General Hospital, Concord Clinical School, University of Sydney, Camperdown, NSW, Australia,Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia,*Correspondence: Amanda Y. Wang ✉
| | - Tao Wu
- Internal Medicine, Louisiana State University Health Science at Shreveport, Shreveport, LA, United States
| | - Haojun Luo
- Renal Division and Institute of Nephrology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jia Wei Zhao
- The Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, Australia
| | - Jin Chen
- Renal Division and Institute of Nephrology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yi Li
- Renal Division and Institute of Nephrology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Hanlu Ding
- Renal Division and Institute of Nephrology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China,Hanlu Ding ✉
| |
Collapse
|
7
|
Yan Z, Zhang K, Wang G, Wang L, Zhang J, Qiu Z, Guo Z, Zhang K, Li J. Differential proteomic of plasma provides a new perspective on scientific diagnosis and drug screening for dampness heat diarrhea in calves. Front Vet Sci 2022; 9:986329. [PMID: 36204290 PMCID: PMC9530945 DOI: 10.3389/fvets.2022.986329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022] Open
Abstract
Dampness heat diarrhea (DHD) is one of the most common syndromes of calf diarrhea. Its complex etiology and lack of objective diagnostic criteria bring great challenges to the diagnosis and treatment of this disease. This study aims to screen some prospective diagnostic biomarkers or therapeutic targets for calves with DHD by investigating the differential protein profiles of plasma between DHD calves and clinically healthy calves by mass spectrometry-based proteomic. A total of 120 DHD calves and 90 clinically healthy calves were divided into two groups randomly, 30 DHD calves and 30 clinically healthy calves in the test group, and 90 DHD calves and 60 clinically healthy calves in the validation group. In the test group, a total of 52 proteins were differentially expressed between calves with DHD and clinically healthy calves, 13 proteins were significantly increased and 39 proteins were significantly decreased. The differentially expressed proteins were associated with the intestinal immune network of IgA production, caffeine metabolism, purine metabolism, and PI3K signaling pathway. In the validation group, 13 proteins were selected from 52 differential expression proteins for parallel reaction monitoring validation to verify their associations with DHD calves. The targeted proteomic results showed that fibronectin precursor (FN1) and apolipoprotein C-IV precursor (APOC4) were significantly associated with DHD in calves, and they were downregulated in sick calves. In conclusion, the differential expression of plasma proteins was associated with DHD pathogenesis in calves, and the FN1 and APOC4 might be the potential clinical biomarkers for diagnosis of DHD in calves, and the intestinal immune network of IgA production, caffeine metabolism, purine metabolism, and PI3K signaling pathway are the candidate targets to treat DHD in calves. Our finding provides a reference for further investigating the pathogenesis, developing techniques of diagnosis, and screening treatment drugs for DHD in calves.
Collapse
|
8
|
Marchetti M, Gomez-Rosas P, Russo L, Gamba S, Sanga E, Verzeroli C, Ambaglio C, Schieppati F, Restuccia F, Bonanomi E, Rizzi M, Fagiuoli S, D’Alessio A, Gerotziafas GT, Lorini L, Falanga A. Fibrinolytic Proteins and Factor XIII as Predictors of Thrombotic and Hemorrhagic Complications in Hospitalized COVID-19 Patients. Front Cardiovasc Med 2022; 9:896362. [PMID: 35757331 PMCID: PMC9226333 DOI: 10.3389/fcvm.2022.896362] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction In a prospective cohort of hospitalized COVID-19 patients, an extensive characterization of hemostatic alterations by both global and specific assays was performed to clarify mechanisms underlying the coagulopathy and identify predictive factors for thrombotic and hemorrhagic events during hospitalization. Materials and Methods Intensive care unit (ICU; n = 46) and non-ICU (n = 55) patients were enrolled, and the occurrence of thrombotic and hemorrhagic events was prospectively monitored. At study inclusion, thromboelastometry together with the measurement of specific coagulation proteins and hypercoagulation markers was performed. Results Patients (median age 67 years) showed significantly shorter clot formation time together with greater maximum clot firmness by thromboelastometry, increased levels of F1 + 2 and D-dimer, as biomarkers of hypercoagulability, and of procoagulant factors V, VIII, IX, XI, and fibrinogen, while FXIII was significantly reduced. The concentration of fibrinolytic proteins, tissue plasminogen activator (t-PA) and plasminogen activator inhibitor type 1 (PAI-1) were elevated in the overall cohort of patients. Many of these hemostatic alterations were significantly greater in ICU compared to non-ICU subjects and, furthermore, they were associated with inflammatory biomarker elevation [i.e., interleukin 6 (IL-6), C-reactive protein (CRP), neutrophil to lymphocyte ratio (NLR), and procalcitonin]. After enrollment, 7 thrombosis and 14 major bleedings occurred. Analysis of clinical and biological data identified increased t-PA, PAI-1, and NLR values as independent predictive factors for thrombosis, while lower FXIII levels were associated with bleeding. Conclusion This study demonstrates alterations in all different hemostatic compartments analyzed, particularly in severe COVID-19 conditions, that strongly correlated with the inflammatory status. A potential role of fibrinolytic proteins together with NLR and of FXIII as predictors of thrombotic and hemorrhagic complications, respectively, is highlighted.
Collapse
Affiliation(s)
- Marina Marchetti
- Department of Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII, Bergamo, Italy
- *Correspondence: Marina Marchetti,
| | - Patricia Gomez-Rosas
- Department of Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII, Bergamo, Italy
- Hematology Service, Hospital General Regional Tecamac Instituto Mexicano del Seguro Social (IMSS), Mexico, Mexico
| | - Laura Russo
- Department of Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Sara Gamba
- Department of Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Eleonora Sanga
- Department of Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Cristina Verzeroli
- Department of Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Chiara Ambaglio
- Department of Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Francesca Schieppati
- Department of Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Francesco Restuccia
- Department of Anesthesiology and Critical Care Medicine, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Ezio Bonanomi
- Department of Anesthesiology and Critical Care Medicine, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Marco Rizzi
- Unit of Infectious Diseases, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Stefano Fagiuoli
- Department of Internal Medicine, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Andrea D’Alessio
- Medical Oncology and Internal Medicine, Policlinico San Marco – Gruppo San Donato, Bergamo, Italy
| | - Grigorios T. Gerotziafas
- Sorbonne Université, INSERM UMR_S938, Research Group “Cancer-Hemostasis-Angiogenesis”, Centre de Recherche Saint-Antoine, Institut Universitaire de Cancérologie, Paris, France
| | - Luca Lorini
- Department of Anesthesiology and Critical Care Medicine, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Anna Falanga
- Department of Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII, Bergamo, Italy
- School of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
| |
Collapse
|
9
|
Ravuri HG, Sadowski P, Noor Z, Satake N, Mills PC. Plasma proteomic changes in response to surgical trauma and a novel transdermal analgesic treatment in dogs. J Proteomics 2022; 265:104648. [PMID: 35691609 DOI: 10.1016/j.jprot.2022.104648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
Abstract
Assessment of pain responses and inflammation during animal surgery is difficult because traditional methods, such as visual analogue scores, are not applicable while under anaesthesia. Acute phase proteins (APPs), such as C-reactive protein and haptoglobin, that are typically monitored in veterinary research, do not show a significant change until at least 2 h post-surgery and therefore, immediate pathophysiological changes are uncertain. The current study used sequential window acquisition of all theoretical mass spectra (SWATH-MS) to investigate plasma proteome changes that occur immediately following surgery in dogs and also to assess the efficacy of a novel transdermal ketoprofen (TK) formulation. Castration was chosen as surgical model in this study. The procedure was performed on twelve dogs (n = 6 in two groups) and blood samples were collected at 0 h, 1 and 2 h after surgery for proteomic analysis. Following surgery, there was a general downregulation of proteins, including complement C- 3, complement factor B, complement factor D, transthyretin, and proteins associated with lipid, cholesterol, and glucose metabolisms, reflecting the systemic response to surgical trauma. Many of these changes were diminished in the transdermal group (TD) since ketoprofen, a non-steroidal anti-inflammatory drug (NSAID), inhibits prostanoids and the associated chemotactic neutrophil migration to site of tissue injury. SIGNIFICANCE: SWATH-MS Proteomic analysis revealed significant changes in plasma proteins, predominantly involved in early acute phase and inflammatory response at 1 & 2 h after surgery in castrated dogs. Pre-operative application of transdermal ketoprofen formulation had reduced the systemic immune response, which was confirmed by negligible alteration of proteins in transdermal treated group. A key outcome of this experiment was studying the efficacy of a novel transdermal NSAID formulation in dogs.
Collapse
Affiliation(s)
- Halley Gora Ravuri
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Pawel Sadowski
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD, Australia
| | - Zainab Noor
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Nana Satake
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Paul C Mills
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia.
| |
Collapse
|
10
|
The impact of acquired coagulation factor XIII deficiency in traumatic bleeding and wound healing. Crit Care 2022; 26:69. [PMID: 35331308 PMCID: PMC8943792 DOI: 10.1186/s13054-022-03940-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/03/2022] [Indexed: 11/24/2022] Open
Abstract
Factor XIII (FXIII) is a protein involved in blood clot stabilisation which also plays an important role in processes including trauma, wound healing, tissue repair, pregnancy, and even bone metabolism. Following surgery, low FXIII levels have been observed in patients with peri-operative blood loss and FXIII administration in those patients was associated with reduced blood transfusions. Furthermore, in patients with low FXIII levels, FXIII supplementation reduced the incidence of post-operative complications including disturbed wound healing. Increasing awareness of potentially low FXIII levels in specific patient populations could help identify patients with acquired FXIII deficiency; although opinions and protocols vary, a cut-off for FXIII activity of ~ 60–70% may be appropriate to diagnose acquired FXIII deficiency and guide supplementation. This narrative review discusses altered FXIII levels in trauma, surgery and wound healing, diagnostic approaches to detect FXIII deficiency and clinical guidance for the treatment of acquired FXIII deficiency.
Collapse
|
11
|
Yamada Y, Abe T, Ochiai H, Ashizuka S. Refractory Duodenal Bleeding Ulcers Successfully Treated with Factor XIII Transfusion. Intern Med 2021; 60:2217-2221. [PMID: 33583894 PMCID: PMC8355396 DOI: 10.2169/internalmedicine.6463-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A 67-year-old woman with a history of autoimmune hepatitis was admitted for fever, acute hepatic dysfunction, and acute kidney injury. She was diagnosed with multiple duodenal ulcers. Despite the administration of proton pump inhibitor and red blood cells, her black stool and anemia progressed, and she was therefore transferred to our hospital. Despite hemostatic treatments, she continued to bleed. On the 21st day of admission, an endoscopic examination showed the oozing of blood from the duodenal mucosa. A low factor XIII (FXIII) activity level was detected, and she was administered FXIII concentrate. The bleeding stopped and she was thereafter discharged.
Collapse
Affiliation(s)
- Yusuke Yamada
- Department of Trauma and Critical Care Medicine, University of Miyazaki Hospital, Japan
| | - Tomohiro Abe
- Department of Trauma and Critical Care Medicine, University of Miyazaki Hospital, Japan
| | - Hidenobu Ochiai
- Department of Trauma and Critical Care Medicine, University of Miyazaki Hospital, Japan
| | - Shinya Ashizuka
- Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, Japan
| |
Collapse
|
12
|
Alshehri FSM, Whyte CS, Tuncay A, Williams ML, Wilson HM, Mutch NJ. Monocytes Expose Factor XIII-A and Stabilize Thrombi against Fibrinolytic Degradation. Int J Mol Sci 2021; 22:ijms22126591. [PMID: 34205443 PMCID: PMC8234680 DOI: 10.3390/ijms22126591] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 12/24/2022] Open
Abstract
Factor XIII (FXIII) is a transglutaminase that promotes thrombus stability by cross-linking fibrin. The cellular form, a homodimer of the A subunits, denoted FXIII-A, lacks a classical signal peptide for its release; however, we have shown that it is exposed on activated platelets. Here we addressed whether monocytes expose intracellular FXIII-A in response to stimuli. Using flow cytometry, we demonstrate that FXIII-A antigen and activity are up-regulated on human monocytes in response to stimulation by IL-4 and IL-10. Higher basal levels of the FXIII-A antigen were noted on the membrane of the monocytic cell line THP-1, but activity was significantly enhanced following stimulation with IL-4 and IL-10. In contrast, treatment with lipopolysaccharide did not upregulate exposure of FXIII-A in THP-1 cells. Quantification of the FXIII-A activity revealed a significant increase in THP-1 cells in total cell lysates following stimulation with IL-4 and IL-10. Following fractionation, the largest pool of FXIII-A was membrane associated. Monocytes were actively incorporated into the fibrin mesh of model thrombi. We found that stimulation of monocytes and THP-1 cells with IL-4 and IL-10 stabilized FXIII-depleted thrombi against fibrinolytic degradation, via a transglutaminase-dependent mechanism. Our data suggest that monocyte-derived FXIII-A externalized in response to stimuli participates in thrombus stabilization.
Collapse
|
13
|
Factor XIII-A: An Indispensable "Factor" in Haemostasis and Wound Healing. Int J Mol Sci 2021; 22:ijms22063055. [PMID: 33802692 PMCID: PMC8002558 DOI: 10.3390/ijms22063055] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
Factor XIII (FXIII) is a transglutaminase enzyme that catalyses the formation of ε-(γ-glutamyl)lysyl isopeptide bonds into protein substrates. The plasma form, FXIIIA2B2, has an established function in haemostasis, with fibrin being its principal substrate. A deficiency in FXIII manifests as a severe bleeding diathesis emphasising its crucial role in this pathway. The FXIII-A gene (F13A1) is expressed in cells of bone marrow and mesenchymal lineage. The cellular form, a homodimer of the A subunits denoted FXIII-A, was perceived to remain intracellular, due to the lack of a classical signal peptide for its release. It is now apparent that FXIII-A can be externalised from cells, by an as yet unknown mechanism. Thus, three pools of FXIII-A exist within the circulation: plasma where it circulates in complex with the inhibitory FXIII-B subunits, and the cellular form encased within platelets and monocytes/macrophages. The abundance of this transglutaminase in different forms and locations in the vasculature reflect the complex and crucial roles of this enzyme in physiological processes. Herein, we examine the significance of these pools of FXIII-A in different settings and the evidence to date to support their function in haemostasis and wound healing.
Collapse
|
14
|
Memtsas VP, Arachchillage DRJ, Gorog DA. Role, Laboratory Assessment and Clinical Relevance of Fibrin, Factor XIII and Endogenous Fibrinolysis in Arterial and Venous Thrombosis. Int J Mol Sci 2021; 22:ijms22031472. [PMID: 33540604 PMCID: PMC7867291 DOI: 10.3390/ijms22031472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Diseases such as myocardial infarction, ischaemic stroke, peripheral vascular disease and venous thromboembolism are major contributors to morbidity and mortality. Procoagulant, anticoagulant and fibrinolytic pathways are finely regulated in healthy individuals and dysregulated procoagulant, anticoagulant and fibrinolytic pathways lead to arterial and venous thrombosis. In this review article, we discuss the (patho)physiological role and laboratory assessment of fibrin, factor XIII and endogenous fibrinolysis, which are key players in the terminal phase of the coagulation cascade and fibrinolysis. Finally, we present the most up-to-date evidence for their involvement in various disease states and assessment of cardiovascular risk.
Collapse
Affiliation(s)
- Vassilios P. Memtsas
- Cardiology Department, East and North Hertfordshire NHS Trust, Stevenage, Hertfordshire SG1 4AB, UK;
| | - Deepa R. J. Arachchillage
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London SW7 2AZ, UK;
- Department of Haematology, Imperial College Healthcare NHS Trust, London W2 1NY, UK
- Department of Haematology, Royal Brompton Hospital, London SW3 6NP, UK
| | - Diana A. Gorog
- Cardiology Department, East and North Hertfordshire NHS Trust, Stevenage, Hertfordshire SG1 4AB, UK;
- School of Life and Medical Sciences, Postgraduate Medical School, University of Hertfordshire, Hertfordshire AL10 9AB, UK
- Faculty of Medicine, National Heart and Lung Institute, Imperial College, London SW3 6LY, UK
- Correspondence: ; Tel.: +44-207-0348841
| |
Collapse
|
15
|
Clinical Validation of an Automated Fluorogenic Factor XIII Activity Assay Based on Isopeptidase Activity. Int J Mol Sci 2021; 22:ijms22031002. [PMID: 33498248 PMCID: PMC7863959 DOI: 10.3390/ijms22031002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
Hereditary factor XIII (FXIII) deficiency is a rare autosomal bleeding disorder which can cause life-threatening bleeding. Acquired deficiency can be immune-mediated or due to increased consumption or reduced synthesis. The most commonly used screening test is insensitive, and widely used quantitative assays have analytical limitations. The present study sought to validate Technofluor FXIII Activity, the first isopeptidase-based assay available on a routine coagulation analyser, the Ceveron s100. Linearity was evidenced throughout the measuring range, with correlation coefficients of >0.99, and coefficients of variation for repeatability and reproducibility were <5% and <10%, respectively. A normally distributed reference range of 47.0–135.5 IU/dL was derived from 154 normal donors. Clinical samples with Technofluor FXIII Activity results between 0 and 167.0 IU/dL were assayed with Berichrom® FXIII Activity, a functional ammonia release assay, and the HemosIL™ FXIII antigen assay, generating correlations of 0.950 and 0.980, respectively. Experiments with a transglutaminase inhibitor showed that Technofluor FXIII Activity can detect inhibition of enzymatic activity. No interference was exhibited by high levels of haemolysis and lipaemia, and interference by bilirubin was evident at 18 mg/dL, a level commensurate with severe liver disease. Technofluor FXIII Activity is a rapid, accurate and precise assay suitable for routine diagnostic use with fewer interferents than ammonia release FXIII activity assays.
Collapse
|
16
|
Nagala M, Crocker PR. Towards understanding the cell surface phenotype, metabolic properties and immune functions of resident macrophages of the peritoneal cavity and splenic red pulp using high resolution quantitative proteomics. Wellcome Open Res 2020. [DOI: 10.12688/wellcomeopenres.16061.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background:Resident macrophages (Mϕs) are distributed throughout the body and are important for maintaining tissue homeostasis and for defence against infections. Tissue Mϕs are highly adapted to their microenvironment and thought to mediate tissue-specific functions involving metabolism and immune defence that are not fully elucidated. Methods:We have used high resolution quantitative proteomics to gain insights into the functions of two types of resident tissue Mϕs: peritoneal cavity Mϕs and splenic red pulp Mϕs. The cellular expression levels of many proteins were validated by flow cytometry and were consistently in agreement with the proteomics data.Results:Peritoneal and splenic red pulp macrophages displayed major differences in cell surface phenotype reflecting their adaptation to different tissue microenvironments and tissue-specific functions. Peritoneal Mϕs were shown to be enriched in a number of key enzymes and metabolic pathways normally associated with the liver, such as metabolism of fructose, detoxification, nitrogen homeostasis and the urea cycle. Supporting these observations, we show that peritoneal Mϕs are able to utilise glutamine and glutamate which are rich in peritoneum for urea generation. In comparison, splenic red pulp Mϕs were enriched in proteins important for adaptive immunity such as antigen presenting MHC molecules, in addition to proteins required for erythrocyte homeostasis and iron turnover. We also show that these tissue Mϕs may utilise carbon and nitrogen substrates for different metabolic fates to support distinct tissue-specific roles.Conclusions:This study provides new insights into the functions of tissue Mϕs in immunity and homeostasis. The comprehensive proteomics data sets are a valuable resource for biologists and immunologists.
Collapse
|
17
|
Ma S, Chen C, Liang Q, Wu X, Wang X, Wu W, Liu Y, Ding Q. Phenotype and genotype of FXIII deficiency in two unrelated probands: identification of a novel F13A1 large deletion mediated by complex rearrangement. Orphanet J Rare Dis 2019; 14:182. [PMID: 31340840 PMCID: PMC6657060 DOI: 10.1186/s13023-019-1144-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/25/2019] [Indexed: 01/27/2023] Open
Abstract
Background Inherited Factor XIII deficiency (FXIIID) is one of the most severe and under-diagnosed rare bleeding disorders. Only 5 large deletions involving one or more exons in F13A1 have been reported, and lacking of multiplex ligation-dependent probe amplification (MLPA) assay might underestimate the copy number variations (CNVs) in F13A1 and F13B. We had characterized the clinical presentation of two unrelated severe FXIIID probands and explored the pathogenic mechanisms. Results Both probands experienced several episodes of fatal bleeding and delayed wound healings prior to diagnosis. FXIII activity was measured by the ammonia release assay, and FXIII-A and FXIII-B antigens were determined by ELISA. All the exons including exon-intron boundaries and promoter regions of F13A1 and F13B were amplified and directly sequenced. Copy number variations (CNVs) of F13A1 and F13B were detected by the CNVplex® method. Breakpoints of the F13A1 large deletion were identified by quantitative primer walking combined long-range PCR (LR-PCR) strategies. Proband 1 was found to have compound heterozygous mutations of a novel small deletion (c.1147del) and a missense mutation p.Arg383Ser. Proband 2 was compound heterozygous for a novel large deletion (g.[77815_112815del;112837_116628del]) and a missense mutation p.Arg716Gly in F13A1. Bioinformatics analysis of the large deletion breakpoints predicted that two fork stalling and template switching and/or microhomology-mediated break-induced replication (FoSTeS/MMBIR) events with two homologies of TCT and C might be responsible for the complex rearrangement. Prophylactic replacement therapy was immediately administered for the two probands upon establishment of the diagnosis. Conclusions We detected two type I FXIIID pedigrees and adopted CNVplex® method to detect CNVs of F13A1 and F13B for the first time. A large heterozygous deletion of g.[77815_112815del;112837_116628del] in F13A1, mediated by two FoSTeS/MMBIR events, was identified. Electronic supplementary material The online version of this article (10.1186/s13023-019-1144-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Siyu Ma
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, China
| | - Changming Chen
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, China
| | - Qian Liang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, China
| | - Xi Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, China
| | - Xuefeng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, China.,Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenman Wu
- Faculty of Medical Laboratory Science, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, China. .,Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Yan Liu
- Department of Burns and Plastic Surgery, Ruijin Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Qiulan Ding
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, China. .,Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
18
|
Hulsart-Billström G, Janson O, Engqvist H, Welch K, Hong J. Thromboinflammation as bioactivity assessment of H 2O 2-alkali modified titanium surfaces. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:66. [PMID: 31127371 PMCID: PMC6534515 DOI: 10.1007/s10856-019-6248-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
The release of growth factors from platelets, mediated by the coagulation and the complement system, plays an important role in the bone formation around implants. This study aimed at exploring the thromboinflammatory response of H2O2-alkali soaked commercially pure titanium grade 2 discs exposed to whole human blood, as a way to assess the bioactivity of the discs. Commercially pure titanium grade 2 discs were modified by soaking in H2O2, NaOH and Ca(OH)2. The platelet aggregation, coagulation activation and complement activation was assessed by exposing the discs to fresh whole blood from human donors. The platelet aggregation was examined by a cell counter and the coagulation and complement activation were assessed by ELISA-measurements of the concentration of thrombin-antithrombin complex, C3a and terminal complement complex. The modified surface showed a statistically significant increased platelet aggregation, coagulation activation and complement activation compared to unexposed blood. The surface also showed a statistically significant increase of coagulation activation compared to PVC. The results of this study showed that the H2O2-alkali soaked surfaces induced a thromboinflammatory response that indicates that the surfaces are bioactive.
Collapse
Affiliation(s)
- Gry Hulsart-Billström
- Department of Engineering Sciences, Division of Applied Material Science, Uppsala University, 751 21, Uppsala, Sweden
| | - Oscar Janson
- Department of Engineering Sciences, Division of Applied Material Science, Uppsala University, 751 21, Uppsala, Sweden
| | - Håkan Engqvist
- Department of Engineering Sciences, Division of Applied Material Science, Uppsala University, 751 21, Uppsala, Sweden
| | - Ken Welch
- Department of Engineering Sciences, Division of Nanotechnology and Functional Materials, Uppsala University, 751 21, Uppsala, Sweden
| | - Jaan Hong
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory C5, Uppsala University, 75185, Uppsala, Sweden.
| |
Collapse
|
19
|
Bernerth K, Schiefke I, Liebscher K, Raczynski S, Kottmann T, Teich N. Factor-XIII activity in patients with mild to moderate ulcerative colitis and active bleeding: a prospective observational study. BMC Res Notes 2018; 11:853. [PMID: 30514356 PMCID: PMC6278029 DOI: 10.1186/s13104-018-3963-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/29/2018] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Coagulation factor XIII plays a key role in fibrin clot stabilization and epithelial healing. Under chronic inflammatory conditions involving bleeding and an activation of the coagulation cascade, the FXIIIa inversely correlate with disease activity. We assumed that FXIIIa could be a predictor of severity in patients with ulcerative colitis (UC). Here, we evaluated the course of plasma activity of FXIIIa in 49 patients with mild to moderate UC and active rectal bleeding. Patients with a partial Mayo bleeding subscore > 2 were eligible to participate in our prospective observational study in an outpatient setting. FXIIIa was investigated during acute flare conditions, after bleeding had stopped and later on in quiescent UC. RESULTS Plasma activity of FXIIIa did not show any significant differences during the UC course. FXIIIa was measured below normal range < 70% in only 8 patients during the flare and increased to normal values during follow-up in 7 of these patients. Low FXIIIa during the flare was not associated with an increased bleeding activity. In patients with a mild to moderate UC flare and prolonged bleeding, FXIIIa activity is neither predictive of UC severity nor of any bleeding activity in an outpatient setting. Trial registration This non interventional, non pharmacological prospective study was not obligated to receive a unique identifying number. This trial is registered with the Ethics Committee of the State Medical Chamber of Saxony, Dresden, Germany (Clinical Trials Registry number EK-BR-03/14-1).
Collapse
Affiliation(s)
| | - Ingolf Schiefke
- Department of Gastroenterology Hepatology, Endocrinology, and Diabetology, Leipzig, Klinikum St. Georg gGmbH, Leipzig, Germany
| | - Karin Liebscher
- Institute of Transfusion Medicine and Clinical Hemostasis, Klinikum St. Georg gGmbH, Leipzig, Germany
| | | | - Tanja Kottmann
- Clinical Research Organization Dr. med Kottmann, Hamm, Germany
| | - Niels Teich
- Practice for Digestive and Metabolic Diseases, Nordstr. 21, 04105, Leipzig, Germany.
| |
Collapse
|
20
|
Effect of early administration of coagulation factor XIII on fistula after pancreatic surgery: the FIPS randomized controlled trial. Langenbecks Arch Surg 2018; 403:933-940. [PMID: 30506109 DOI: 10.1007/s00423-018-1736-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/25/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE The administration of exogenous factor XIII (FXIII) is reportedly effective for fistula closure in patients with a low plasma FXIII level. This study was performed to analyze the effect of early administration of exogenous FXIII on postoperative pancreatic fistula (POPF). METHODS A single-center randomized controlled, open-label, parallel group, superiority trial was conducted from October 2015 to August 2016 in Japan. Patients with POPF and a plasma FXIII level of ≤ 70% on postoperative day 7 were randomly assigned to an early replacement (ER) group or control group in a 1:1 ratio by an independent coordinator using a computer-generated random number table. The ER group received FXIII concentrate the day after randomization, and the control group received no FXIII concentrate within 2 weeks. The primary endpoint was the duration of drain placement from randomization (DDPR). RESULTS Fifty patients were randomized (ER group, 24; control group, 26), and all were analyzed with an intention-to-treat approach. There was no significant difference in the DDPR between the two groups (18 vs. 16 days; hazard ratio, 1.45; 95% confidence interval, 0.813-2.583). No serious harm was reported in either group. CONCLUSION Early administration of exogenous FXIII does not facilitate the healing of POPF. TRIAL REGISTRATION University Hospital Medical Information Network (UMIN) Center (UMIN000019480, http://www.umin.ac.jp ).
Collapse
|
21
|
Abstract
Objective: To provide a comprehensive literature review on roles of coagulation factor XIII (FXIII) in coagulation, wound healing, neoplasm, bone metabolism, and pregnancy. Data Sources: All articles in PubMed with key words Coagulation factor XIII, wound, leukemia, tumor, bone, and pregnancy with published date from 2001 to 2016 were included in the study. Frequently cited publications before 2000 were also included. Study Selection: We reviewed the role of FXIII in biologic processes as documented in clinical, animal, and in vitro studies. Results: FXIII, a member of the transglutaminase (TG) family, plays key roles in various biological processes. Besides its well-known function in coagulation, the cross-linking of small molecules catalyzed by FXIII has been found in studies to help promote wound healing, improve bone metabolism, and prevent miscarriages. The study has also shown that FXIII concentration level differs in the blood of patients with leukemia and solid tumors and offers promises as a diagnostic indicator. Conclusions: FXIII has many more biologic functions besides being known as coagulation factor. The TG activity of FXIII contributes to several processes, including wound healing, bone extracellular matrix stabilization, and the interaction between embryo and decidua of uterus. Further research is needed to elucidate the link between FXIII and leukemia and solid tumors.
Collapse
Affiliation(s)
- Da-Yu Shi
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Shu-Jie Wang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
22
|
Soendergaard C, Kvist PH, Seidelin JB, Pelzer H, Nielsen OH. Systemic and intestinal levels of factor XIII-A: the impact of inflammation on expression in macrophage subtypes. J Gastroenterol 2016; 51:796-807. [PMID: 26660730 DOI: 10.1007/s00535-015-1152-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 11/25/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND Subunit A of coagulation factor XIII (FXIII-A) is important for clot stability and acts in the subsequent wound healing process. Loss of plasma FXIII-A has been reported after surgery, sepsis, and inflammatory conditions. In the intestinal mucosa, FXIII-A is expressed by macrophages and cellular FXIII-A has been associated with phagocytosis and migration of macrophages. The objective was to evaluate the consequences of intestinal inflammation on resident mucosal macrophages, focusing on the level and distribution of FXIII-A. METHODS Plasma and colonic biopsies were collected from 67 patients with ulcerative colitis and controls. Intestinal samples were stained using immunohistochemistry for FXIII-A and macrophages (CD68, CD163 and iNOS). In situ hybridization were used to assess the intestinal expression of FXIII-A. FXIII-A antigen and activity levels were measured in plasma. RESULTS Increased infiltration of CD68 positive macrophages in the inflamed mucosa coincided with increased extracellular deposited FXIII-A and decreased expression and intracellular protein levels of FXIII-A. A decreased proportion of FXIII-A/CD68/CD163 triple-positive macrophages was observed in inflamed mucosa, indicating a reduction of the M2 phenotype with consequent loss of FXIII-A. No induction of iNOS positive macrophages was observed. Stimulation of naïve monocytes with physiological concentrations of pro-inflammatory mediators negatively affected the expression of FXIII-A. Measurements in plasma confirmed the loss of both FXIII antigen and activity during active disease. CONCLUSIONS Intestinal inflammation in UC induces loss of M2 macrophages with subsequent loss of FXIII-A synthesis. The loss of cellular FXIII-A may impact migration and phagocytosis, and hence limit pathogen eradication in UC.
Collapse
Affiliation(s)
- Christoffer Soendergaard
- Department of Gastroenterology 54O3, Medical Section, Herlev Hospital, University of Copenhagen, Herlev Ringvej 75, 2730, Herlev, Denmark. .,Department of Histology and Bioimaging, Novo Nordisk A/S, Maaloev, Denmark.
| | | | - Jakob Benedict Seidelin
- Department of Gastroenterology 54O3, Medical Section, Herlev Hospital, University of Copenhagen, Herlev Ringvej 75, 2730, Herlev, Denmark
| | - Hermann Pelzer
- Department of Research Bioanalysis, Novo Nordisk A/S, Maaloev, Denmark
| | - Ole Haagen Nielsen
- Department of Gastroenterology 54O3, Medical Section, Herlev Hospital, University of Copenhagen, Herlev Ringvej 75, 2730, Herlev, Denmark
| |
Collapse
|
23
|
Gan GH, Yang LM, Wang J. Thrombotic mechanism and anticoagulant therapy in inflammatory bowel disease patients. Shijie Huaren Xiaohua Zazhi 2016; 24:236-241. [DOI: 10.11569/wcjd.v24.i2.236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Thromboembolism (TE) in inflammatory bowel disease (IBD) is an increasingly noted extra-intestinal manifestation with high morbidity (about 1%-8%), and the incidence rate can reach 41% by mucosal biopsy. Although TE is a life-threatening complication of IBD, this complication is often overlooked. To date, the mechanism behind this prothrombotic state encountered in IBD patients is not fully understood, and it is multifactorial and related to the inflammatory state. In this review, we provide an overview of the current understanding of thrombotic mechanism and anticoagulant therapy in IBD. While controlling the activity of the disease with appropriate therapy, thromboembolism prophylaxis should be considered.
Collapse
|
24
|
Andersson C, Kvist PH, McElhinney K, Baylis R, Gram LK, Pelzer H, Lauritzen B, Holm TL, Hogan S, Wu D, Turpin B, Miller W, Palumbo JS. Factor XIII Transglutaminase Supports the Resolution of Mucosal Damage in Experimental Colitis. PLoS One 2015; 10:e0128113. [PMID: 26098308 PMCID: PMC4476663 DOI: 10.1371/journal.pone.0128113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/23/2015] [Indexed: 02/07/2023] Open
Abstract
The thrombin-activated transglutaminase factor XIII (FXIII) that covalently crosslinks and stablizes provisional fibrin matrices is also thought to support endothelial and epithelial barrier function and to control inflammatory processes. Here, gene-targeted mice lacking the FXIII catalytic A subunit were employed to directly test the hypothesis that FXIII limits colonic pathologies associated with experimental colitis. Wildtype (WT) and FXIII-/- mice were found to be comparable in their initial development of mucosal damage following exposure to dextran sulfate sodium (DSS) challenge. However, unlike FXIII-sufficient mice, FXIII-deficient cohorts failed to efficiently resolve colonic inflammatory pathologies and mucosal damage following withdrawal of DSS. Consistent with prior evidence of ongoing coagulation factor activation and consumption in individuals with active colitis, plasma FXIII levels were markedly decreased in colitis-challenged WT mice. Treatment of colitis-challenged mice with recombinant human FXIII-A zymogen significantly mitigated weight loss, intestinal bleeding, and diarrhea, regardless of whether cohorts were FXIII-sufficient or were genetically devoid of FXIII. Similarly, both qualitative and quantitative microscopic analyses of colonic tissues revealed that exogenous FXIII improved the resolution of multiple colitis disease parameters in both FXIII-/- and WT mice. The most striking differences were seen in the resolution of mucosal ulceration, the most severe histopathological manifestation of DSS-induced colitis. These findings directly demonstrate that FXIII is a significant determinant of mucosal healing and clinical outcome following inflammatory colitis induced mucosal injury and provide a proof-of-principle that clinical interventions supporting FXIII activity may be a means to limit colitis pathology and improve resolution of mucosal damage.
Collapse
Affiliation(s)
| | - Peter H. Kvist
- Novo Nordisk A/S, Biopharmaceutical Research Unit, Copenhagen, Denmark
| | - Kathryn McElhinney
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Richard Baylis
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Luise K. Gram
- Novo Nordisk A/S, Biopharmaceutical Research Unit, Copenhagen, Denmark
| | - Hermann Pelzer
- Novo Nordisk A/S, Biopharmaceutical Research Unit, Copenhagen, Denmark
| | - Brian Lauritzen
- Novo Nordisk A/S, Biopharmaceutical Research Unit, Copenhagen, Denmark
| | - Thomas L. Holm
- Novo Nordisk A/S, Biopharmaceutical Research Unit, Copenhagen, Denmark
| | - Simon Hogan
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - David Wu
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Brian Turpin
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Whitney Miller
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Joseph S. Palumbo
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- * E-mail:
| |
Collapse
|
25
|
Giannotta M, Tapete G, Emmi G, Silvestri E, Milla M. Thrombosis in inflammatory bowel diseases: what's the link? Thromb J 2015; 13:14. [PMID: 25866483 PMCID: PMC4393581 DOI: 10.1186/s12959-015-0044-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/26/2015] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease affects more than 2 million people in Europe, with almost 20% of patients being diagnosed in pediatric age. Patients with inflammatory bowel disease are at increased risk of thromboembolic complications which may affect patients’ morbidity and mortality. The risk of the most common thromboembolic events, such as deep venous thrombosis and pulmonary embolism, are estimated to be three-fold increased compared to controls, but many other districts can be affected. Moreover, patients with ulcerative colitis and Crohn’s disease experience thromboembolic events at a younger age compared to general population. Many factors have been investigated as determinants of the pro-thrombotic tendency such as acquired risk factors or genetic and immune abnormalities, but a unique cause has not been found. Many efforts have been focused on the study of abnormalities in the coagulation cascade, its natural inhibitors and the fibrinolytic system components and both quantitative and qualitative alterations have been demonstrated. Recently the role of platelets and microvascular endothelium has been reviewed, as the possible link between the inflammatory and hemostatic process.
Collapse
Affiliation(s)
- Martina Giannotta
- Gastroenterology Department, AOU Careggi Regional Referral Center for Inflammatory Bowel Disease, Florence, Italy
| | - Gherardo Tapete
- Gastroenterology Department, AOU Careggi Regional Referral Center for Inflammatory Bowel Disease, Florence, Italy
| | - Giacomo Emmi
- Department of Experimental and Clinical Medicine, University of Florence and Patologia Medica Unit, AOU Careggi, Florence, Italy
| | - Elena Silvestri
- Department of Experimental and Clinical Medicine, University of Florence and Patologia Medica Unit, AOU Careggi, Florence, Italy
| | - Monica Milla
- Gastroenterology Department, AOU Careggi Regional Referral Center for Inflammatory Bowel Disease, Florence, Italy
| |
Collapse
|
26
|
Dickneite G, Herwald H, Korte W, Allanore Y, Denton CP, Matucci Cerinic M. Coagulation factor XIII: a multifunctional transglutaminase with clinical potential in a range of conditions. Thromb Haemost 2015; 113:686-97. [PMID: 25652913 DOI: 10.1160/th14-07-0625] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 11/27/2014] [Indexed: 12/28/2022]
Abstract
Coagulation factor XIII (FXIII), a plasma transglutaminase, is best known as the final enzyme in the coagulation cascade, where it is responsible for cross-linking of fibrin. However, a growing body of evidence has demonstrated that FXIII targets a wide range of additional substrates that have important roles in health and disease. These include antifibrinolytic proteins, with cross-linking of α2-antiplasmin to fibrin, and potentially fibrinogen, being the principal mechanism(s) whereby plasmin-mediated clot degradation is minimised. FXIII also acts on endothelial cell VEGFR-2 and αvβ3 integrin, which ultimately leads to downregulation of the antiangiogenic protein thrombospondin-1, promoting angiogenesis and neovascularisation. Under infectious disease conditions, FXIII cross-links bacterial surface proteins to fibrinogen, resulting in immobilisation and killing, while during wound healing, FXIII induces cross-linking of the provisional matrix. The latter process has been shown to influence the interaction of leukocytes with the provisional extracellular matrix and promote wound healing. Through these actions, there are good rationales for evaluating the therapeutic potential of FXIII in diseases in which tissue repair is dysregulated or perturbed, including systemic sclerosis (scleroderma), invasive bacterial infections, and tissue repair, for instance healing of venous leg ulcers or myocardial injuries. Adequate levels of FXIII are also required in patients undergoing surgery to prevent or treat perioperative bleeding, and its augmentation in patients with/at risk for perioperative bleeding may also have potential clinical benefit. While there are preclinical and/or clinical data to support the use of FXIII in a range of settings, further clinical evaluation in these underexplored applications is warranted.
Collapse
Affiliation(s)
- Gerhard Dickneite
- Prof. Dr Gerhard Dickneite, Preclinical R&D, CSL Behring, PO Box 1230, 35002 Marburg, Germany, Tel.: +49 6421 392306, Fax: +49 6421 394663, E-mail:
| | | | | | | | | | | |
Collapse
|
27
|
Owczarek D, Cibor D, Głowacki MK, Rodacki T, Mach T. Inflammatory bowel disease: epidemiology, pathology and risk factors for hypercoagulability. World J Gastroenterol 2014; 20:53-63. [PMID: 24415858 PMCID: PMC3886032 DOI: 10.3748/wjg.v20.i1.53] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/19/2013] [Accepted: 12/05/2013] [Indexed: 02/06/2023] Open
Abstract
Hypercoagulability observed in patients with inflammatory bowel diseases (IBD) may lead to thromboembolic events (TE), which affect the venous and arterial systems alike and are an important factor in patients' morbidity and mortality. The risk of TE in IBD patients has been demonstrated to be approximately three-fold higher as compared to the general population. The pathogenesis of thrombosis in IBD patients is multifactorial and not fully explained. The most commonly listed factors include genetic and immune abnormalities, disequilibrium between procoagulant and anticoagulant factors, although recently, the role of endothelial damage as an IBD-triggering factor is underlined. Several studies report that the levels of some coagulation enzymes, including fibrinogen, factors V, VII, VIII, active factor XI, tissue factor, prothrombin fragment 1 + 2 and the thrombin-antithrombin complex, are altered in IBD patients. It has been demonstrated that there is a significant decrease of tissue plasminogen activator level, a marked increase of plasminogen activator inhibitor type 1 and thrombin-activable fibrinolysis inhibitor, a significantly lower level of antithrombin III and tissue factor pathway inhibitor. IBD patients have been also observed to produce an increased amount of various anticoagulant antibodies. Hyperhomocysteinemia, which is a potential risk factor for TE was also observed in some IBD patients. Further studies are necessary to assess the role of coagulation abnormalities in IBD etiology and to determine indications for thromboprophylactic treatment in patients at high risk of developing TE.
Collapse
|