1
|
Tripathi M, Singh BK, Liehn EA, Lim SY, Tikno K, Castano-Mayan D, Rattanasopa C, Nilcham P, Abdul Ghani SAB, Wu Z, Azhar SH, Zhou J, Hernández-Resèndiz S, Crespo-Avilan GE, Sinha RA, Farah BL, Moe KT, De Silva DA, Angeli V, Singh MK, Singaraja RR, Hausenloy DJ, Yen PM. Caffeine prevents restenosis and inhibits vascular smooth muscle cell proliferation through the induction of autophagy. Autophagy 2022; 18:2150-2160. [PMID: 35012409 PMCID: PMC9466618 DOI: 10.1080/15548627.2021.2021494] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Caffeine is among the most highly consumed substances worldwide, and it has been associated with decreased cardiovascular risk. Although caffeine has been shown to inhibit the proliferation of vascular smooth muscle cells (VSMCs), the mechanism underlying this effect is unknown. Here, we demonstrated that caffeine decreased VSMC proliferation and induced macroautophagy/autophagy in an in vivo vascular injury model of restenosis. Furthermore, we studied the effects of caffeine in primary human and mouse aortic VSMCs and immortalized mouse aortic VSMCs. Caffeine decreased cell proliferation, and induced autophagy flux via inhibition of MTOR signaling in these cells. Genetic deletion of the key autophagy gene Atg5, and the Sqstm1/p62 gene encoding a receptor protein, showed that the anti-proliferative effect by caffeine was dependent upon autophagy. Interestingly, caffeine also decreased WNT-signaling and the expression of two WNT target genes, Axin2 and Ccnd1 (cyclin D1). This effect was mediated by autophagic degradation of a key member of the WNT signaling cascade, DVL2, by caffeine to decrease WNT signaling and cell proliferation. SQSTM1/p62, MAP1LC3B-II and DVL2 were also shown to interact with each other, and the overexpression of DVL2 counteracted the inhibition of cell proliferation by caffeine. Taken together, our in vivo and in vitro findings demonstrated that caffeine reduced VSMC proliferation by inhibiting WNT signaling via stimulation of autophagy, thus reducing the vascular restenosis. Our findings suggest that caffeine and other autophagy-inducing drugs may represent novel cardiovascular therapeutic tools to protect against restenosis after angioplasty and/or stent placement.
Collapse
Affiliation(s)
- Madhulika Tripathi
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 169857, Singapore,Contact Madhulika Tripathi Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore169857
| | - Brijesh Kumar Singh
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 169857, Singapore
| | - Elisa A. Liehn
- National Heart Research Institute Singapore, National Heart Center, Singapore, Singapore-,Insitute for Molecular Medicine, University of Southern Denmark, Odense, J.B. Winsløws Vej 25, 5230, Odense, Denmark,Department for Cardiology, Angiology and Intensive Care, Aachen, Germany
| | - Sheau Yng Lim
- Immunology Translational Research Program, Department of Microbiology & Immunology, Immunology Programme, Life Sciences Institute, Singapore- 117456
| | - Keziah Tikno
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 169857, Singapore
| | - David Castano-Mayan
- Translational Laboratories in Genetic Medicine, A*star Institute, and Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chutima Rattanasopa
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 169857, Singapore,Translational Laboratories in Genetic Medicine, A*star Institute, and Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Pakhwan Nilcham
- Department for Cardiology, Angiology and Intensive Care, Aachen, Germany
| | | | - Zihao Wu
- Translational Laboratories in Genetic Medicine, A*star Institute, and Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Syaza Hazwany Azhar
- Immunology Translational Research Program, Department of Microbiology & Immunology, Immunology Programme, Life Sciences Institute, Singapore- 117456
| | - Jin Zhou
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 169857, Singapore
| | - Sauri Hernández-Resèndiz
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 169857, Singapore,National Heart Research Institute Singapore, National Heart Center, Singapore, Singapore-
| | - Gustavo E. Crespo-Avilan
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 169857, Singapore,National Heart Research Institute Singapore, National Heart Center, Singapore, Singapore-
| | - Rohit Anthony Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh, India
| | - Benjamin Livingston Farah
- Department of Anatomical Pathology, Division of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Kyaw Thu Moe
- Newcastle University Medicine Malaysia, Newcastle University, 79200 Gelang Patah, Johor,Malaysia
| | - Deidre Anne De Silva
- Department of Neurology, National Neuroscience Institute, Department of Neurology, Singapore General Hospital, Outram Road, Singapore, 169608
| | - Veronique Angeli
- Immunology Translational Research Program, Department of Microbiology & Immunology, Immunology Programme, Life Sciences Institute, Singapore- 117456
| | - Manvendra K. Singh
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 169857, Singapore,National Heart Research Institute Singapore, National Heart Center, Singapore, Singapore-
| | - Roshni R. Singaraja
- Translational Laboratories in Genetic Medicine, A*star Institute, and Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Yong Loo Lin School of Medicine, National University, Singapore-117597
| | - Derek J. Hausenloy
- National Heart Research Institute Singapore, National Heart Center, Singapore, Singapore-,The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, 7 Chenies Mews, Bloomsbury, London WC1E 6HX, United Kingdom,Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, 500 Liufeng Road, Wufeng District, Taichung City, Taiwan,Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Paul Michael Yen
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 169857, Singapore,Endocrinology, Diabetes, and Metabolism Division, Duke University School of Medicine, Durham, NC, USA,Paul M. Yen Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore 169857
| |
Collapse
|
2
|
Abstract
Tissue factor (TF), an initiator of extrinsic coagulation pathway, is positively correlated with venous thromboembolism (VTE) of tumor patients. Beyond thrombosis, TF plays a vital role in tumor progression. TF is highly expressed in cancer tissues and circulating tumor cell (CTC), and activates factor VIIa (FVIIa), which increases tumor cells proliferation, angiogenesis, epithelial-mesenchymal transition (EMT) and cancer stem cells(CSCs) activity. Furthermore, TF and TF-positive microvesicles (TF+MVs) activate the coagulation system to promote the clots formation with non-tumor cell components (e.g., platelets, leukocytes, fibrin), which makes tumor cells adhere to clots to form CTC clusters. Then, tumor cells utilize clots to cause its reducing fluid shear stress (FSS), anoikis resistance, immune escape, adhesion, extravasation and colonization. Herein, we review in detail that how TF signaling promotes tumor metastasis, and how TF-targeted therapeutic strategies are being in the preclinical and clinical trials.
Collapse
|
3
|
Zhao X, Huang J, Mo Z, Wei J, Zhong C, Teng H. Aralia armata (Wall.) Seem Improves Intimal Hyperplasia after Vascular Injury by Downregulating the Wnt3 α/Dvl-1/ β-Catenin Pathway. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6682525. [PMID: 34337044 PMCID: PMC8292040 DOI: 10.1155/2021/6682525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/02/2021] [Accepted: 06/27/2021] [Indexed: 11/29/2022]
Abstract
The aim of the study is to examine the mechanism of Aralia armata (Wall.) Seem (AAS) in improving intimal hyperplasia after vascular injury in rats. Rats with femoral artery injury were randomly divided into three groups: the model group, AAS low-dose group (40 mg/kg), and AAS high-dose group (80 mg/kg). The sham operation group was used as a control group. HE staining was used to observe the changes in femoral artery vessels. Immunohistochemistry was adopted to detect α-SMA, PCNA, GSK-3β, and β-catenin proteins in femoral artery tissue. The CCK-8 test and wound healing assay were employed to analyze the effect of AAS on proliferation and migration of vascular smooth muscle cells (VSMCs) cultured in vitro. Western blotting (WB) and polymerase chain reaction (PCR) assays were used to evaluate the molecular mechanism. AAS reduced the stenosis of blood vessels and the protein expressions of α-SMA, PCNA, GSK-3β, and β-catenin compared to the model group. In addition, AAS (0-15 μg/mL) effectively inhibited the proliferation and migration of VSMCs. Moreover, the results of WB and PCR showed that AAS could inhibit the activation of β-catenin induced by 15% FBS and significantly decrease the expression levels of Wnt3α, Dvl-1, GSK-3β, β-catenin, and cyclin D1 in the upstream and downstream of the pathway. AAS could effectively inhibit the proliferation and migration of neointima after vascular injury in rats by regulating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xiangpei Zhao
- Department of Technology, Guangxi International Zhuang Medicine Hospital, Nanning 530201, China
| | - Jinchang Huang
- Department of Academic Affairs, Ruikang Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nanning 530200, China
| | - Zhenyu Mo
- Department of Academic Affairs, Ruikang Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nanning 530200, China
| | - Jiangcun Wei
- Department of Technology, Guangxi International Zhuang Medicine Hospital, Nanning 530201, China
| | - Chuanmei Zhong
- Department of Technology, Guangxi International Zhuang Medicine Hospital, Nanning 530201, China
| | - Hongli Teng
- Department of Technology, Guangxi International Zhuang Medicine Hospital, Nanning 530201, China
| |
Collapse
|
4
|
Wei Q, Wang J, Shi W, Zhang B, Jiang H, Du M, Mei H, Hu Y. Improved in vivo detection of atherosclerotic plaques with a tissue factor-targeting magnetic nanoprobe. Acta Biomater 2019; 90:324-336. [PMID: 30954623 DOI: 10.1016/j.actbio.2019.04.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 03/22/2019] [Accepted: 04/03/2019] [Indexed: 11/19/2022]
Abstract
Rupture of atherosclerotic plaques causes acute cardiovascular and cerebrovascular pathology. Tissue factor (TF) is a key factor that affects the development of atherosclerotic plaques and the formation of thrombus and thus constitutes a potential target for the detection of atherosclerotic plaques. In this study, the conjugation of the fusion protein 'enhanced green fluorescent protein with the first epidermal growth factor domain' (EGFP-EGF1) and superparamagnetic iron oxide nanoparticles (EGFP-EGF1-SPIONs) was explored for molecular imaging of TF-positive atherosclerotic plaques. EGFP-EGF1-SPIONs showed improved accuracy, superior contrast effects, and better cytocompatibility compared with common contrast agents in the detection of atherosclerotic plaques of apolipoprotein E knockout (ApoE-/-) mice using magnetic resonance imaging. In conclusion, EGFP-EGF1-SPION is a promising TF-targeting nanoprobe to precisely and specifically detect atherosclerotic plaques, which may improve molecular imaging diagnosis of cardiovascular and cerebrovascular events for the comprehensive evaluation of atherosclerosis. STATEMENT OF SIGNIFICANCE: Traditional methods can only display the status of atherosclerosis, but not forecast the progress of lesions efficiently. It remains challenging to evaluate the plaques specifically and sensitively. In this study, we constructed a tissue factor-targeted magnetic nanoprobe to specifically detect plaques by magnetic resonance imaging in vivo, which will improve the diagnostic technology for atherosclerotic plaques and offer molecular level guidance to treat atherosclerosis. Furthermore, this strategy has critical clinical significance on prevention, diagnosis and therapeutic evaluation of cardio-cerebral vascular events.
Collapse
Affiliation(s)
- Qiuzhe Wei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, PR China; Targeted Biotherapy Key Laboratory of Ministry of Education, Wuhan, Hubei, PR China
| | - Jing Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Wei Shi
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, PR China; Targeted Biotherapy Key Laboratory of Ministry of Education, Wuhan, Hubei, PR China; Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Bo Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, PR China; Targeted Biotherapy Key Laboratory of Ministry of Education, Wuhan, Hubei, PR China
| | - Huiwen Jiang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, PR China
| | - Mengyi Du
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, PR China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, PR China; Targeted Biotherapy Key Laboratory of Ministry of Education, Wuhan, Hubei, PR China; Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China.
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, PR China; Targeted Biotherapy Key Laboratory of Ministry of Education, Wuhan, Hubei, PR China; Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China.
| |
Collapse
|
5
|
Affiliation(s)
- Isabella Albanese
- Division of Cardiology and Division of Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Kashif Khan
- Division of Cardiology and Division of Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Bianca Barratt
- Division of Cardiology and Division of Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Hamood Al-Kindi
- Division of Cardiology and Division of Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Adel Schwertani
- Division of Cardiology and Division of Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Peña E, Arderiu G, Badimon L. Protein disulphide-isomerase A2 regulated intracellular tissue factor mobilisation in migrating human vascular smooth muscle cells. Thromb Haemost 2017; 113:891-902. [DOI: 10.1160/th14-09-0776] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 12/01/2014] [Indexed: 11/05/2022]
Abstract
SummaryProtein-disulphide isomerase family (PDI) are an ER-stress protein that controls TF-procoagulant activity but its role in HVSMC migration and coronary artery disease remains to be elucidated. We aimed to investigate whether in human coronary smooth muscle cells (HVSMC) the ER-stress protein-disulphide isomerase family A member 2 (PDIA2) regulates tissue factor (TF) polarisation during migration and atherosclerotic remodeling. PDIA2 and TF were analysed by confocal microscopy, silenced by small interfering RNAs (siRNA) and their function analysed by transwell and migration assays in vitro and in vivo. PDIA2and TF co-localise in the front edge of motile HVSMC. Silencing PDIA2, as well as silencing TF, reduces migration. PDIA2 silenced cells show increased TF-rich microparticle shedding. In vivo cell-loaded plug implants in nude mice of PDIA2 silenced HVSMC together with microvascular endothelial cells showed a significant impairment in mature microvessel formation. PDIA2 and TF are found in remodelled atherosclerotic plaques but not in healthy coronaries. In conclusion, we demonstrate that TF is chaperoned by PDIA2 to the HVSMC membrane and to the cell migratory front. Absence of PDIA2 impairs TF intracellular trafficking to its membrane docking favoring its uncontrolled release in microparticles. TF-regulated HVSMC migration and microvessel formation is under the control of the ER-protein PDIA2.
Collapse
|
7
|
|
8
|
Oligoubiquitination of tissue factor on Lys255 promotes Ser253-dephosphorylation and terminates TF release. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2846-2857. [PMID: 27599717 DOI: 10.1016/j.bbamcr.2016.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/25/2016] [Accepted: 09/02/2016] [Indexed: 11/24/2022]
Abstract
Restriction of tissue factor (TF) activity at the cell surface and TF release are critical for prevention of excessive coagulation. This study examined the regulation of TF dephosphorylation and its release through ubiquitination. A plasmid containing the sequence to express the tandem protein TF-tGFP was mutated to include an arginine-substitution at Lys255 within TF. MDA-MB-231 cell line, and HCAEC endothelial cells were transfected and subsequently activated with PAR2-agonist peptide. The wild-type and mutant TF-tGFP were immunoprecipitated from the cell lysates and the ubiquitination and phosphorylation state of TF examined. Analysis of the proteins showed that arginine-substitution of Lys255 within TF prevented its ubiquitination while the wild-type TF-tGFP was oligoubiquitinated. The TF-associated oligoubiquitin chain was estimated to contain up to 4 ubiquitin units, with the linkage formed between Lys63 of one ubiquitin unit, and the C-terminus of the next unit. The Lys255→Arg substitution of TF-tGFP prolonged the phosphorylation of Ser253 within TF, compared to the wild-type TF-tGFP, lengthened the presence of TF-tGFP at the cell surface and extended the duration of TF-tGFP release from cells following PAR2 activation. A biotinylated 19-mer peptide corresponding to the C-terminus of TF (TFc) was used as substrate to show that the ubiquitination of TF was mediated by the Ube2D family of E2-enzymes and involved Mdm2. Moreover, double-phosphorylation of TFc was prerequisite for ubiquitination, with subsequent dephosphorylation of Ser253 by phosphatase PP2A. In conclusion, oligoubiquitination of Lys255 within TF permits PP2A to bind and dephosphorylate Ser253 and occurs to terminate TF release and contain its activity.
Collapse
|
9
|
Williams H, Mill CAE, Monk BA, Hulin-Curtis S, Johnson JL, George SJ. Wnt2 and WISP-1/CCN4 Induce Intimal Thickening via Promotion of Smooth Muscle Cell Migration. Arterioscler Thromb Vasc Biol 2016; 36:1417-24. [PMID: 27199447 DOI: 10.1161/atvbaha.116.307626] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 05/04/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Increased vascular smooth muscle cell (VSMC) migration leads to intimal thickening which acts as a soil for atherosclersosis, as well as causing coronary artery restenosis after stenting and vein graft failure. Investigating factors involved in VSMC migration may enable us to reduce intimal thickening and improve patient outcomes. In this study, we determined whether Wnt proteins regulate VSMC migration and thereby intimal thickening. APPROACH AND RESULTS Wnt2 mRNA and protein expression were specifically increased in migrating mouse aortic VSMCs. Moreover, VSMC migration was induced by recombinant Wnt2 in vitro. Addition of recombinant Wnt2 protein increased Wnt1-inducible signaling pathway protein-1 (WISP-1) mRNA by ≈1.7-fold, via β-catenin/T-cell factor signaling, whereas silencing RNA knockdown of Wnt-2 reduced WISP-1 mRNA by ≈65%. Treatment with rWISP-1 significantly increased VSMC migration by ≈1.5-fold, whereas WISP-1 silencing RNA knockdown reduced migration by ≈40%. Wnt2 and WISP-1 effects were integrin-dependent and not additive, indicating that Wnt2 promoted VSMC migration via WISP-1. Additionally, Wnt2 and WISP-1 were significantly increased and colocated in human coronary arteries with intimal thickening. Reduced Wnt2 and WISP-1 levels in mouse carotid arteries from Wnt2(+/-) and WISP-1(-/-) mice, respectively, significantly suppressed intimal thickening in response to carotid artery ligation. In contrast, elevation of plasma WISP-1 via an adenovirus encoding WISP-1 significantly increased intimal thickening by ≈1.5-fold compared with mice receiving control virus. CONCLUSIONS Upregulation of Wnt2 expression enhanced WISP-1 and promoted VSMC migration and thereby intimal thickening. As novel regulators of VSMC migration and intimal thickening, Wnt2 or WISP-1 may provide a potential therapy for restenosis and vein graft failure.
Collapse
Affiliation(s)
- Helen Williams
- From the School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Carina A E Mill
- From the School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Bethan A Monk
- From the School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Sarah Hulin-Curtis
- From the School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Jason L Johnson
- From the School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Sarah J George
- From the School of Clinical Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
10
|
Abstract
Wnt signaling encompasses multiple and complex signaling cascades and is involved in many developmental processes such as tissue patterning, cell fate specification, and control of cell division. Consequently, accurate regulation of signaling activities is essential for proper embryonic development. Wnt signaling is mostly silent in the healthy adult organs but a reactivation of Wnt signaling is generally observed under pathological conditions. This has generated increasing interest in this pathway from a therapeutic point of view. In this review article, the involvement of Wnt signaling in cardiovascular development will be outlined, followed by its implication in myocardial infarct healing, cardiac hypertrophy, heart failure, arrhythmias, and atherosclerosis. The initial experiments not always offer consensus on the effects of activation or inactivation of the pathway, which may be attributed to (i) the type of cardiac disease, (ii) timing of the intervention, and (iii) type of cells that are targeted. Therefore, more research is needed to determine the exact implication of Wnt signaling in the conditions mentioned above to exploit it as a powerful therapeutic target.
Collapse
|
11
|
Abstract
Cancer-associated thrombosis remains a significant complication in the clinical management of cancer and interactions of the hemostatic system with cancer biology continue to be elucidated. Here, we review recent progress in our understanding of tissue factor (TF) regulation and procoagulant activation, TF signaling in cancer and immune cells, and the expanding roles of the coagulation system in stem cell niches and the tumor microenvironment. The extravascular functions of coagulant and anti-coagulant pathways have significant implications not only for tumor progression, but also for the selection of appropriate target specific anticoagulants in the therapy of cancer patients.
Collapse
Affiliation(s)
- Wolfram Ruf
- Center for Thrombosis and Hemostasis, University Medical Center, Mainz, Germany; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA.
| | - Andrea S Rothmeier
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Claudine Graf
- Center for Thrombosis and Hemostasis, University Medical Center, Mainz, Germany; 3(rd) Medical Department, University Medical Center, Mainz, Germany
| |
Collapse
|
12
|
Pu Y, Zhang S, Zhou R, Huang N, Li H, Wei W, Li L, Huang C, Yang J, Li Z. IL-17A up-regulates expression of endothelial tissue factor in liver cirrhosis via the ROS/p38 signal pathway. Biochem Biophys Res Commun 2016; 470:41-47. [DOI: 10.1016/j.bbrc.2015.12.093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 12/21/2015] [Indexed: 02/08/2023]
|
13
|
Abstract
Atherosclerosis is a silent chronic vascular pathology that is the cause of the majority of cardiovascular ischaemic events. The evolution of vascular disease involves a combination of endothelial dysfunction, extensive lipid deposition in the intima, exacerbated innate and adaptive immune responses, proliferation of vascular smooth muscle cells and remodelling of the extracellular matrix, resulting in the formation of an atherosclerotic plaque. High-risk plaques have a large acellular lipid-rich necrotic core with an overlying thin fibrous cap infiltrated by inflammatory cells and diffuse calcification. The formation of new fragile and leaky vessels that invade the expanding intima contributes to enlarge the necrotic core increasing the vulnerability of the plaque. In addition, biomechanical, haemodynamic and physical factors contribute to plaque destabilization. Upon erosion or rupture, these high-risk lipid-rich vulnerable plaques expose vascular structures or necrotic core components to the circulation, which causes the activation of tissue factor and the subsequent formation of a fibrin monolayer (coagulation cascade) and, concomitantly, the recruitment of circulating platelets and inflammatory cells. The interaction between exposed atherosclerotic plaque components, platelet receptors and coagulation factors eventually leads to platelet activation, aggregation and the subsequent formation of a superimposed thrombus (i.e. atherothrombosis) which may compromise the arterial lumen leading to the presentation of acute ischaemic syndromes. In this review, we will describe the progression of the atherosclerotic lesion along with the main morphological characteristics that predispose to plaque rupture, and discuss the multifaceted mechanisms that drive platelet activation and subsequent thrombus formation. Finally, we will consider the current scientific challenges and future research directions.
Collapse
Affiliation(s)
- L Badimon
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain; Cardiovascular Research Chair, UAB, Barcelona, Spain
| | | |
Collapse
|
14
|
Versteeg HH, Ruf W. New helpers in TF-dependent migration. J Thromb Haemost 2013; 11:1877-9. [PMID: 23941045 DOI: 10.1111/jth.12378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Indexed: 12/26/2022]
Affiliation(s)
- H H Versteeg
- Leiden University Medical Center, Leiden, the Netherlands
| | | |
Collapse
|