1
|
Wu B, Wang J, Chen Y, Fu Y. Inflammation-Targeted Drug Delivery Strategies via Albumin-Based Systems. ACS Biomater Sci Eng 2024; 10:743-761. [PMID: 38194444 DOI: 10.1021/acsbiomaterials.3c01744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Albumin, being the most abundant serum protein, has the potential to significantly enhance the physicochemical properties of therapeutic payloads, thereby improving their pharmacological effects. Apart from its passive transport via the enhanced permeability and retention effect, albumin can actively accumulate in tumor microenvironments or inflammatory tissues via receptor-mediated processes. This unique property makes albumin a promising scaffold for targeted drug delivery. This review focuses on exploring different delivery strategies that combine albumin with drug payloads to achieve targeted therapy for inflammatory diseases. Also, albumin-derived therapeutic products on the market or undergoing clinical trials in the past decade have been summarized to gain insight into the future development of albumin-based drug delivery systems. Given the involvement of inflammation in numerous diseases, drug delivery systems utilizing albumin demonstrate remarkable advantages, including enhanced properties, improved in vivo behavior and efficacy. Albumin-based drug delivery systems have been demonstrated in clinical trials, while more advanced strategies for improving the capacity of drug delivery systems with the help of albumin remain to be discovered. This could pave the way for biomedical applications in more effective and precise treatments.
Collapse
Affiliation(s)
- Bangqing Wu
- Department of Pharmacy, Guiyang Public Health Clinical Center, Guiyang 550004, China
| | - Jingwen Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yi Chen
- Department of Pharmacy, Guiyang Public Health Clinical Center, Guiyang 550004, China
| | - Yao Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Ullah A, Kwon HT, Lim SI. Albumin: A Multi-talented Clinical and Pharmaceutical Player. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0104-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Spada A, Emami J, Tuszynski JA, Lavasanifar A. The Uniqueness of Albumin as a Carrier in Nanodrug Delivery. Mol Pharm 2021; 18:1862-1894. [PMID: 33787270 DOI: 10.1021/acs.molpharmaceut.1c00046] [Citation(s) in RCA: 241] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Albumin is an appealing carrier in nanomedicine because of its unique features. First, it is the most abundant protein in plasma, endowing high biocompatibility, biodegradability, nonimmunogenicity, and safety for its clinical application. Second, albumin chemical structure and conformation allows interaction with many different drugs, potentially protecting them from elimination and metabolism in vivo, thus improving their pharmacokinetic properties. Finally, albumin can interact with receptors overexpressed in many diseased tissues and cells, providing a unique feature for active targeting of the disease site without the addition of specific ligands to the nanocarrier. For this reason, albumin, characterized by an extended serum half-life of around 19 days, has the potential of promoting half-life extension and targeted delivery of drugs. Therefore, this article focuses on the importance of albumin as a nanodrug delivery carrier for hydrophobic drugs, taking advantage of the passive as well as active targeting potential of this nanocarrier. Particular attention is paid to the breakthrough NAB-Technology, with emphasis on the advantages of Nab-Paclitaxel (Abraxane), compared to the solvent-based formulations of Paclitaxel, i.e., CrEL-paclitaxel (Taxol) in a clinical setting. Finally, the role of albumin in carrying anticancer compounds is depicted, with a particular focus on the albumin-based formulations that are currently undergoing clinical trials. The article sheds light on the power of an endogenous substance, such as albumin, as a drug delivery system, signifies the importance of the drug vehicle in drug performance in the biological systems, and highlights the possible future trends in the use of this drug delivery system.
Collapse
Affiliation(s)
- Alessandra Spada
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada.,DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin 10129, Italy.,Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Jaber Emami
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada.,Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jack A Tuszynski
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada.,DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin 10129, Italy
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
4
|
Uhler R, Popa-Wagner R, Kröning M, Brehm A, Rennert P, Seifried A, Peschke M, Krieger M, Kohla G, Kannicht C, Wiedemann P, Hafner M, Rosenlöcher J. Glyco-engineered HEK 293-F cell lines for the production of therapeutic glycoproteins with human N-glycosylation and improved pharmacokinetics. Glycobiology 2021; 31:859-872. [PMID: 33403396 DOI: 10.1093/glycob/cwaa119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/25/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022] Open
Abstract
N-glycosylated proteins produced in human embryonic kidney 293 (HEK 293) cells often carry terminal N-acetylgalactosamine (GalNAc) and only low levels of sialylation. On therapeutic proteins, such N-glycans often trigger rapid clearance from the patient bloodstream via efficient binding to asialoglycoprotein receptor (ASGP-R) and mannose receptor (MR). This currently limits the use of HEK 293 cells for therapeutic protein production. To eliminate terminal GalNAc, we knocked-out GalNAc transferases B4GALNT3 and B4GALNT4 by CRISPR/Cas9 in FreeStyle 293-F cells. The resulting cell line produced a coagulation factor VII-albumin fusion protein without GalNAc but with increased sialylation. This glyco-engineered protein bound less efficiently to both the ASGP-R and MR in vitro and it showed improved recovery, terminal half-life and area under the curve in pharmacokinetic rat experiments. By overexpressing sialyltransferases ST6GAL1 and ST3GAL6 in B4GALNT3 and B4GALNT4 knock-out cells, we further increased factor VII-albumin sialylation; for ST6GAL1 even to the level of human plasma-derived factor VII. Simultaneous knock-out of B4GALNT3 and B4GALNT4, and overexpression of ST6GAL1 further lowered factor VII-albumin binding to ASGP-R and MR. This novel glyco-engineered cell line is well-suited for the production of factor VII-albumin and presumably other therapeutic proteins with fully human N-glycosylation and superior pharmacokinetic properties.
Collapse
Affiliation(s)
- Rico Uhler
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany.,Octapharma Biopharmaceuticals GmbH, 69120 Heidelberg, Germany
| | | | - Mario Kröning
- Octapharma Biopharmaceuticals GmbH, 12489 Berlin, Germany
| | - Anja Brehm
- Octapharma Biopharmaceuticals GmbH, 12489 Berlin, Germany
| | - Paul Rennert
- Octapharma Biopharmaceuticals GmbH, 12489 Berlin, Germany
| | | | | | - Markus Krieger
- Octapharma Biopharmaceuticals GmbH, 69120 Heidelberg, Germany
| | - Guido Kohla
- Octapharma Biopharmaceuticals GmbH, 12489 Berlin, Germany
| | - Christoph Kannicht
- Octapharma Biopharmaceuticals GmbH, 69120 Heidelberg, Germany.,Octapharma Biopharmaceuticals GmbH, 12489 Berlin, Germany
| | - Philipp Wiedemann
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany.,Institute for Medical Technology, University Heidelberg and the Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | | |
Collapse
|
5
|
Interspecies comparison of simultaneous thrombin and plasmin generation. Sci Rep 2020; 10:3885. [PMID: 32127577 PMCID: PMC7054422 DOI: 10.1038/s41598-020-60436-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/27/2020] [Indexed: 01/08/2023] Open
Abstract
Animal models of hemostasis are often extrapolated to humans; however, only a few studies have compared coagulation and fibrinolysis across species. Simultaneous thrombin (TG) and plasmin (PG) generation is useful to assessing coagulation and fibrinolysis within the same sample. In this study, we performed simultaneous TG and PG analysis in blood plasma samples from humans and 6 species commonly evaluated in pre-clinical research. TG and PG were investigated in male and female donor platelet-poor plasmas (PPP) obtained from 28 healthy humans, 10 baboons, 12 rhesus monkeys, 20 Yorkshire pigs, 20 Sprague-Dawley rats, 10 New Zealand White rabbits and 14 Hartley guinea pigs. The continuous generation of the 7-amino-4-methylcoumarin (AMC) from substrates specific to thrombin or plasmin was monitored. The thrombin and plasmin concentration peak heights (PH) and production rates (PR) were calculated. TG and PG parameters from baboon and rhesus macaque plasma approximated that of humans. The other species differed significantly from both human and non-human primates. For example, swine and rat plasmas demonstrated similar TG, but swine plasmas did not generate plasmin. TG and PG parameters from Guinea pig samples were extremely low, while rabbit plasmas showed variable PG curves demonstrating one or two peaks with low and high PR values, respectively. Correlations between PH and PR values were significant with the exceptions of human PG, baboon TG, rat TG and Guinea pig PG. These findings are informative to pre-clinical animal species selection and optimization of coagulation and fibrinolysis translational research.
Collapse
|
6
|
Tan H, Su W, Zhang W, Wang P, Sattler M, Zou P. Recent Advances in Half-life Extension Strategies for Therapeutic Peptides and Proteins. Curr Pharm Des 2019; 24:4932-4946. [PMID: 30727869 DOI: 10.2174/1381612825666190206105232] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/26/2019] [Indexed: 12/16/2022]
Abstract
Peptides and proteins are two classes of molecules with attractive possibilities for therapeutic applications. However, the bottleneck for the therapeutic application of many peptides and proteins is their short halflives in vivo, typically just a few minutes to hours. Half-life extension strategies have been extensively studied and many of them have been proven to be effective in the generation of long-acting therapeutics with improved pharmacokinetic and pharmacodynamic properties. In this review, we summarize the recent advances in half-life extension strategies, illustrate their potential applications and give some examples, highlighting the strategies that have been used in approved drugs and for drugs in clinical trials. Meanwhile, several novel strategies that are still in the process of discovery or at a preclinical stage are also introduced. In these strategies, the two most frequently used half-life extension methods are the reduction in the rate of renal clearance or the exploitation of the recycling mechanism of FcRn by binding to the albumin or IgG-Fc. Here, we discuss half-life extension strategies of recombinant therapeutic protein via genetic fusion, rather than chemical conjugation such as PEGylation. With the rapid development of genetic engineering and protein engineering, novel strategies for half-life extension have been emerged consistently. Some of these will be evaluated in clinical trials and may become viable alternatives to current strategies for making next-generation biodrugs.
Collapse
Affiliation(s)
- Huanbo Tan
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Wencheng Su
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Wenyu Zhang
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Pengju Wang
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Michael Sattler
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Institute of Structural Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Center for Integrated Protein Science Munich at Chair Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Garching, Germany
| | - Peijian Zou
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Institute of Structural Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Center for Integrated Protein Science Munich at Chair Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Garching, Germany
| |
Collapse
|
7
|
Shapiro AD, Mitchell IS, Nasr S. The future of bypassing agents for hemophilia with inhibitors in the era of novel agents. J Thromb Haemost 2018; 16:2362-2374. [PMID: 30264916 DOI: 10.1111/jth.14296] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Indexed: 01/19/2023]
Abstract
Bypassing agents are presently the standard of care for the treatment of bleeding episodes in patients with hemophilia and high-titer inhibitors and are also used for bleed prevention. Only two bypassing agents are available to patients, and these products trace their lineage to the 1970s (activated prothrombin complex concentrates) and the 1980s (recombinant factor VIIa). Given the limited repertoire of available products, clinicians have relied on experience, empirical observation, registry data and individualized care to improve clinical outcomes on a case-by-case basis. Research over the past two decades has culminated in a greatly improved understanding of human coagulation; resulting from this, new products have been developed that offer treatment options and mechanisms of actions that differ from current bypassing agents. The most advanced in clinical development is emicizumab, a bispecific antibody that mimics the function of FVIIIa in the intrinsic Xase complex and is indicated for once-weekly or every-other-week prophylactic dosing in inhibitor patients. Other non-traditional products in clinical development include fitusiran and antibodies directed against tissue factor pathway inhibitor. As non-factor-based therapies become more widely utilized over time, the use of bypassing agents may be expected to decrease; however, bypassing agents will remain essential for the foreseeable future. As such, clinical development of bypassing agents continues, with some products (e.g. eptacog beta) under regulatory review. In this review we examine the optimal use of bypassing agents and their mechanism of action. We also discuss newer products and how these might theoretically be administered in conjunction with traditional bypassing agents.
Collapse
Affiliation(s)
- A D Shapiro
- Indiana Hemophilia and Thrombosis Center, Inc., Indianapolis, IN, USA
| | | | - S Nasr
- GLOVAL, LLC, Broomfield, CO, USA
| |
Collapse
|
8
|
Corrêa de Freitas MC, Bomfim ADS, Mizukami A, Picanço-Castro V, Swiech K, Covas DT. Production of coagulation factor VII in human cell lines Sk-Hep-1 and HKB-11. Protein Expr Purif 2017; 137:26-33. [PMID: 28651975 DOI: 10.1016/j.pep.2017.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/24/2017] [Accepted: 06/21/2017] [Indexed: 01/19/2023]
Abstract
Recombinant factor VII (rFVII) is the main therapeutic choice for hemophilia patients who have developed inhibitory antibodies against conventional treatments (FVIII and FIX). Because of the post-translational modifications, rFVII needs to be produced in mammalian cell lines. In this study, for the first time, we have shown efficient rFVII production in HepG2, Sk-Hep-1, and HKB-11 cell lines. Experiments in static conditions for a period of 96 h showed that HepG2-FVII produced the highest amounts of rhFVII, with an average of 1843 ng/mL. Sk-hep-1-FVII cells reached a maximum protein production of 1432 ng/mL and HKB-11-FVII cells reached 1468 ng/mL. Sk-Hep-1-rFVII and HKB-11-rFVII were selected for the first step of scale-up. Over 10 days of spinner flask culture, HKB-11 and SK-Hep-1 cells showed a cumulative production of rFVII of 152 μg and 202.6 μg in 50 mL, respectively. Thus, these human cell lines can be used for an efficient production of recombinant FVII. With more investment in basic research, human cell lines can be optimized for the commercial production of different bio therapeutic proteins.
Collapse
Affiliation(s)
- Marcela Cristina Corrêa de Freitas
- Center for Cell-based Therapy and Regional Blood Center of Ribeirão Preto, Laboratory of Biotechnology, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Medical Clinic, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Aline de Sousa Bomfim
- Center for Cell-based Therapy and Regional Blood Center of Ribeirão Preto, Laboratory of Biotechnology, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Clinical, Toxicological and Food Science Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Amanda Mizukami
- Center for Cell-based Therapy and Regional Blood Center of Ribeirão Preto, Laboratory of Biotechnology, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Medical Clinic, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Virgínia Picanço-Castro
- Center for Cell-based Therapy and Regional Blood Center of Ribeirão Preto, Laboratory of Biotechnology, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Kamilla Swiech
- Center for Cell-based Therapy and Regional Blood Center of Ribeirão Preto, Laboratory of Biotechnology, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Dimas Tadeu Covas
- Center for Cell-based Therapy and Regional Blood Center of Ribeirão Preto, Laboratory of Biotechnology, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Medical Clinic, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
9
|
Lamberth K, Reedtz-Runge SL, Simon J, Klementyeva K, Pandey GS, Padkjær SB, Pascal V, León IR, Gudme CN, Buus S, Sauna ZE. Post hoc assessment of the immunogenicity of bioengineered factor VIIa demonstrates the use of preclinical tools. Sci Transl Med 2017; 9:9/372/eaag1286. [DOI: 10.1126/scitranslmed.aag1286] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/12/2016] [Accepted: 12/05/2016] [Indexed: 12/20/2022]
|
10
|
Amiral J, Dunois C, Amiral C, Seghatchian J. The various assays for measuring activity states of factor VIIa in plasma and therapeutic products: Diagnostic value and analytical usefulness in various pathophysiological states. Transfus Apher Sci 2016; 56:91-97. [PMID: 28089408 DOI: 10.1016/j.transci.2016.12.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The key coagulation factor FVII, and its activated form FVIIa, present a major interest for their role at the initiation phase of blood coagulation, and because they can activate all blood coagulation cascade, through the extrinsic, but also the intrinsic pathway. Blood activation initiated through FVII is first presented, as it is understood nowadays. Measurement of FVII and FVIIa were of main interest for epidemiological studies, but FVIIa contribution to assay results was only deduced. The introduction of specific FVIIa assays, functional or immunoassays, allowed measuring directly FVIIa without any interference of non-activated FVII, or other coagulation factors or their activated forms. The various methods available, and their characteristics are presented, with a special focus on two assays developed by our group for FVIIa (a clotting one and a chromogenic one). The FVIIa clotting assay shows evident superiority for measuring its activity in plasma, in pathophysiological conditions. The normal range is <2.5ng/ml, which represents less than 0.5% of the FVII protein. FVIIa is elevated in some pathological states. The chromogenic assay is of interest for assigning the potency of FVIIa concentrates, as it has a higher dynamic range. Both assays are fully automatable on laboratory instruments, and standardized in a satisfactory manner thanks to the use of the FVIIa concentrate WHO International Standard (NIBSC). The various applications and usefulness of FVIIa laboratory assays are discussed, for the measurement of therapeutic products, or for following recoveries in treated patients, including hemophiliacs with inhibitors, patients with severe bleeding risk (liver diseases, surgery, trauma, …), and lastly for measurement of its activity in therapeutic products.
Collapse
Affiliation(s)
- Jean Amiral
- Hyphen BioMed, Sysmex Group, Neuville sur Oise, France.
| | - Claire Dunois
- Hyphen BioMed, Sysmex Group, Neuville sur Oise, France
| | - Cédric Amiral
- Hyphen BioMed, Sysmex Group, Neuville sur Oise, France
| | - Jerard Seghatchian
- International Consultancy in Blood Components Quality/Safety Improvement, Audit/Inspection and DDR Strategies, London, UK.
| |
Collapse
|
11
|
Meeks SL, Batsuli G. Hemophilia and inhibitors: current treatment options and potential new therapeutic approaches. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2016; 2016:657-662. [PMID: 27913543 PMCID: PMC6142469 DOI: 10.1182/asheducation-2016.1.657] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The immune response to infused factor concentrates remains a major source of morbidity and mortality in the treatment of patients with hemophilia A and B. This review focuses on current treatment options and novel therapies currently in clinical trials. After a brief review of immune tolerance regimens, the focus of the discussion is on preventing bleeding in patients with hemophilia and inhibitors. Recombinant factor VIIa and activated prothrombin complex concentrates are the mainstays in treating bleeds in patients with inhibitors. Both agents have been shown to reduce bleeding episodes to a similar degree when infused prophylactically; however, individual patients may respond better to one agent over the other at any given time. The international immune tolerance trial revealed that a high-dose factor VIII regimen provided significantly better bleeding protection than the low-dose regimen. Given the high cost of treatment and the potential for a high-dose immune tolerance regimen to prevent bleeding in some patients, we discuss how we treat patients to maximize the prevention of bleeds while minimizing cost. Novel approaches to treatment of these patients are in development. These include agents that mimic factor VIII or augment thrombin generation by bypassing the inhibitor, as well as agents that inhibit the natural anticoagulants.
Collapse
Affiliation(s)
- Shannon L Meeks
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA
| | - Glaivy Batsuli
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA
| |
Collapse
|
12
|
Mahlangu J, Paz P, Hardtke M, Aswad F, Schroeder J. TRUST
trial:
BAY
86‐6150 use in haemophilia with inhibitors and assessment for immunogenicity. Haemophilia 2016; 22:873-879. [DOI: 10.1111/hae.12994] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2016] [Indexed: 01/07/2023]
Affiliation(s)
- J. Mahlangu
- Haemophilia Comprehensive Care Centre Department of Molecular Medicine and Haematology Faculty of Health Sciences University of the Witwatersrand and National Health Laboratory Service Johannesburg South Africa
| | - P. Paz
- Global Biologics Research Lead Discovery Bayer San Francisco CA USA
| | - M. Hardtke
- Global Clinical Development Bayer Pharma AG Berlin Germany
| | - F. Aswad
- Global Biologics Research Lead Discovery Bayer San Francisco CA USA
| | - J. Schroeder
- Global Clinical Development Bayer Pharma AG Berlin Germany
| |
Collapse
|
13
|
Ragni MV. New and Emerging Agents for the Treatment of Hemophilia: Focus on Extended Half-Life Recombinant Clotting Proteins. Drugs 2016; 75:1587-600. [PMID: 26310188 DOI: 10.1007/s40265-015-0451-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hemophilia A and B are X-linked disorders caused by deficient or defective clotting factor VIII (FVIII) or IX factor (FIX) proteins, and characterized by spontaneous or traumatic bleeding into joints and muscles. Previous use of plasma and plasma-derived clotting factors that lacked appropriate viral inactivation steps in manufacturing led to significant morbidity associated with transfusion-transmitted HIV and hepatitis C virus (HCV). The development of recombinant proteins revolutionized their treatment, and, with no new HIV or HCV infection via clotting proteins for nearly 30 years, greatly improved their lifespan, which now approaches that of the general population, and with the same risks for aging complications. Novel long-acting factor proteins are being licensed to extend FVIII and FIX half-life, thereby reducing infusion frequency and potentially bleed frequency and associated morbidity. Further, novel therapeutics which take advantage of new technologies, including siRNA, monoclonal antibody, and small peptide inhibition technologies, have the potential to simplify treatment and improve outcomes for those with inhibitors.
Collapse
Affiliation(s)
- Margaret V Ragni
- Division Hematology/Oncology, Department of Medicine, Hemophilia Center of Western Pennsylvania, University of Pittsburgh, 3636 Boulevard of the Allies, Pittsburgh, PA, 15213-4306, USA.
| |
Collapse
|
14
|
Entering new areas in known fields: recombinant fusion protein linking recombinant factor VIIa with recombinant albumin (rVIIa-FP) – advancing the journey. Thromb Res 2016; 141 Suppl 3:S9-S12. [DOI: 10.1016/s0049-3848(16)30416-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Zah E, Lin MY, Silva-Benedict A, Jensen MC, Chen YY. T Cells Expressing CD19/CD20 Bispecific Chimeric Antigen Receptors Prevent Antigen Escape by Malignant B Cells. Cancer Immunol Res 2016; 4:498-508. [PMID: 27059623 DOI: 10.1158/2326-6066.cir-15-0231] [Citation(s) in RCA: 426] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 03/06/2016] [Indexed: 01/29/2023]
Abstract
The adoptive transfer of T cells expressing anti-CD19 chimeric antigen receptors (CARs) has shown remarkable curative potential against advanced B-cell malignancies, but multiple trials have also reported patient relapses due to the emergence of CD19-negative leukemic cells. Here, we report the design and optimization of single-chain, bispecific CARs that trigger robust cytotoxicity against target cells expressing either CD19 or CD20, two clinically validated targets for B-cell malignancies. We determined the structural parameters required for efficient dual-antigen recognition, and we demonstrate that optimized bispecific CARs can control both wild-type B-cell lymphoma and CD19(-) mutants with equal efficiency in vivo To our knowledge, this is the first bispecific CAR capable of preventing antigen escape by performing true OR-gate signal computation on a clinically relevant pair of tumor-associated antigens. The CD19-OR-CD20 CAR is fully compatible with existing T-cell manufacturing procedures and implementable by current clinical protocols. These results present an effective solution to the challenge of antigen escape in CD19 CAR T-cell therapy, and they highlight the utility of structure-based rational design in the development of receptors with higher-level complexity. Cancer Immunol Res; 4(6); 498-508. ©2016 AACR
Collapse
Affiliation(s)
- Eugenia Zah
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California
| | - Meng-Yin Lin
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California
| | - Anne Silva-Benedict
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington. Department of Oncology and Hematology, St. Luke's Regional Cancer Center, Duluth, Minnesota
| | - Michael C Jensen
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington. Division of Pediatric Hematology-Oncology, University of Washington School of Medicine, Seattle, Washington. Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Yvonne Y Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
16
|
Casini A, de Moerloose P. Factor concentrates for rare congenital coagulation disorders: where are we now? Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2016.1108188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Mahlangu JN, Weldingh KN, Lentz SR, Kaicker S, Karim FA, Matsushita T, Recht M, Tomczak W, Windyga J, Ehrenforth S, Knobe K. Changes in the amino acid sequence of the recombinant human factor VIIa analog, vatreptacog alfa, are associated with clinical immunogenicity. J Thromb Haemost 2015; 13:1989-98. [PMID: 26362483 DOI: 10.1111/jth.13141] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/10/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND Vatreptacog alfa, a recombinant human factor VIIa (rFVIIa) analog developed to improve the treatment of bleeds in hemophilia patients with inhibitors, differs from native FVIIa by three amino acid substitutions. In a randomized, double-blind, crossover, confirmatory phase III trial (adept(™) 2), 8/72 (11%) hemophilia A or B patients with inhibitors treated for acute bleeds developed anti-drug antibodies (ADAs) to vatreptacog alfa. OBJECTIVES To characterize the formation of anti-vatreptacog alfa ADAs in hemophilia patients with inhibitors. METHODS/PATIENTS This was a post hoc analysis of adept(™) 2. Immunoglobulin isotype determination, specificity analysis of rFVIIa cross-reactive antibodies, epitope mapping of rFVIIa single mutant analogs and pharmacokinetic (PK) profiling were performed to characterize the ADAs. RESULTS Immunoglobulin isotyping indicated that the ADAs were of the immunoglobulin G subtype. In epitope mapping, none of the rFVIIa single mutant analogs (V158D, E296V or M298Q) contained the complete antibody epitope, confirming that the antibodies were specific for vatreptacog alfa. In two patients, for whom PK profiling was performed both before and after the development of ADAs, vatreptacog alfa showed a prolonged elimination phase following ADA development. During the follow-up evaluation, the rFVIIa cross-reactivity disappeared after the last vatreptacog alfa exposure, despite continued exposure to rFVIIa as part of standard care. CONCLUSIONS Results from the vatreptacog alfa phase III trial demonstrate that the specific changes made, albeit relatively small, to the FVIIa molecule alter its clinical immunogenicity.
Collapse
Affiliation(s)
- J N Mahlangu
- Haemophilia Comprehensive Care Centre, Faculty of Health Sciences, University of the Witwatersrand and National Health Laboratory Service, Johannesburg, South Africa
| | | | - S R Lentz
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - S Kaicker
- Maimonides Medical Centre, New York, NY, USA
| | - F A Karim
- Haemophilia Centre, National Blood Centre, Kuala Lumpur, Malaysia
| | - T Matsushita
- Department of Transfusion Medicine, Nagoya University Hospital, Nagoya, Japan
| | - M Recht
- Hemophilia Center, Oregon Health and Science University, Portland, OR, USA
| | - W Tomczak
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - J Windyga
- Department of Disorders of Haemostasis and Internal Medicine, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | | | - K Knobe
- Novo Nordisk A/S, Bagsvaerd, Denmark
| |
Collapse
|
18
|
Abstract
The evolution of care in hemophilia is a remarkable story. Over the last 60 years, advances in protein purification, protein chemistry, donor screening, viral inactivation, gene sequencing, gene cloning, and recombinant protein production have dramatically enhanced the treatment and lives of patients with hemophilia. Recent efforts have produced enhanced half-life (EHL) clotting factors to better support prophylaxis and decrease the frequency of infusions. Medical needs remain in the areas of alternate modes of administration to decrease the need for venous access, better treatment, and prophylaxis for patients who form antibodies to clotting factors, and ultimately a cure of the underlying genetic defect. In this brief review, the authors summarize data on EHL clotting factors, introduce agents whose mode of action is not clotting factor replacement, and list current gene therapy efforts.
Collapse
Affiliation(s)
- Marcus E Carr
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA ; Worldwide Research and Development, Pfizer, Inc., Cambridge, MA, USA
| | - Bartholomew J Tortella
- Drexel University College of Medicine, Philadelphia, PA, USA ; Global Innovative Pharma, Pfizer, Inc., Collegeville, PA, USA
| |
Collapse
|
19
|
Abstract
The purpose of making a "biobetter" biologic is to improve on the salient characteristics of a known biologic for which there is, minimally, clinical proof of concept or, maximally, marketed product data. There already are several examples in which second-generation or biobetter biologics have been generated by improving the pharmacokinetic properties of an innovative drug, including Neulasta(®) [a PEGylated, longer-half-life version of Neupogen(®) (filgrastim)] and Aranesp(®) [a longer-half-life version of Epogen(®) (epoetin-α)]. This review describes the use of protein fusion technologies such as Fc fusion proteins, fusion to human serum albumin, fusion to carboxy-terminal peptide, and other polypeptide fusion approaches to make biobetter drugs with more desirable pharmacokinetic profiles.
Collapse
Affiliation(s)
- William R Strohl
- Janssen BioTherapeutics, Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson, SH31-21757, 1400 Welsh and McKean Roads, PO Box 776, Spring House, PA, 19477, USA,
| |
Collapse
|
20
|
Kumar SR. Industrial production of clotting factors: Challenges of expression, and choice of host cells. Biotechnol J 2015; 10:995-1004. [PMID: 26099845 DOI: 10.1002/biot.201400666] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/25/2015] [Accepted: 06/01/2015] [Indexed: 12/20/2022]
Abstract
The development of recombinant forms of blood coagulation factors as safer alternatives to plasma derived factors marked a major advance in the treatment of common coagulation disorders. These are complex proteins, mostly enzymes or co-enzymes, involving multiple post-translational modifications, and therefore are difficult to express. This article reviews the nature of the expression challenges for the industrial production of these factors, vis-à-vis the translational and post-translational bottlenecks, as well as the choice of host cell lines for high-fidelity production. For achieving high productivities of vitamin K dependent proteins, which include factors II (prothrombin), VII, IX and X, and protein C, host cell limitation of γ-glutamyl carboxylation is a major bottleneck. Despite progress in addressing this, involvement of yet unidentified protein(s) impedes a complete cell engineering solution. Human factor VIII expresses at very low levels due to limitations at several steps in the protein secretion pathway. Protein and cell engineering, vector improvement and alternate host cells promise improvement in the productivity. Production of Von Willebrand factor is constrained by its large size, complex structure, and the need for extensive glycosylation and disulfide-bonded oligomerization. All the licensed therapeutic factors are produced in CHO, BHK or HEK293 cells. While HEK293 is a recent adoption, BHK cells appear to be disfavored.
Collapse
|
21
|
The role of albumin receptors in regulation of albumin homeostasis: Implications for drug delivery. J Control Release 2015; 211:144-62. [PMID: 26055641 DOI: 10.1016/j.jconrel.2015.06.006] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/02/2015] [Accepted: 06/04/2015] [Indexed: 12/20/2022]
Abstract
Albumin is the most abundant protein in blood and acts as a molecular taxi for a plethora of small insoluble substances such as nutrients, hormones, metals and toxins. In addition, it binds a range of medical drugs. It has an unusually long serum half-life of almost 3weeks, and although the structure and function of albumin has been studied for decades, a biological explanation for the long half-life has been lacking. Now, recent research has unravelled that albumin-binding cellular receptors play key roles in the homeostatic regulation of albumin. Here, we review our current understanding of albumin homeostasis with a particular focus on the impact of the cellular receptors, namely the neonatal Fc receptor (FcRn) and the cubilin-megalin complex, and we discuss their importance on uses of albumin in drug delivery.
Collapse
|
22
|
Abstract
Hemophilia, when severe, leads to spontaneous life-threatening bleeding episodes. Current therapy requires frequent intravenous infusions. Most patients must limit their physical activities to avoid bleeding when the factor activity levels are below normal. In 2014, new therapeutic factor VIII and IX products were approved in Canada and the U.S. Over the next couple of years, other new factor products will likely be approved. These new factors have been engineered to have improved pharmacokinetic properties, including extended half-life in circulation, thus providing major therapeutic advances for patients with hemophilia. In the completed clinical trials, over 700 patients have successfully used these longer acting products regularly for more than one year. These promising new therapies should allow patients with hemophilia to use fewer infusions to prevent spontaneous bleeding or to treat bleeding episodes, and to provide appropriate clotting factor levels for different physical activities.
Collapse
Affiliation(s)
- J S Powell
- Division of Hematology and Oncology, University of California Davis Medical Center, Sacramento, CA, USA
| |
Collapse
|
23
|
Enhanced Pharmacokinetics of Factor VIIa as a Monomeric Fc Fusion. Thromb Res 2015; 135:970-6. [DOI: 10.1016/j.thromres.2014.12.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 11/17/2022]
|
24
|
Margaritis P. Fc-based half-life extension of human FVIIa – a new player for hemophilia treatment? Thromb Res 2015; 135:775-6. [DOI: 10.1016/j.thromres.2015.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/21/2015] [Accepted: 02/24/2015] [Indexed: 11/25/2022]
|
25
|
Shetty S, Ghosh K. Novel therapeutic approaches for haemophilia. Haemophilia 2014; 21:152-161. [DOI: 10.1111/hae.12615] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2014] [Indexed: 01/11/2023]
Affiliation(s)
- S. Shetty
- Department of Thrombosis and Haemostasis National Institute of Immunohaematology (ICMR) KEM Hospital Mumbai India
| | - K. Ghosh
- Department of Thrombosis and Haemostasis National Institute of Immunohaematology (ICMR) KEM Hospital Mumbai India
| |
Collapse
|
26
|
Powell JS. Lasting power of new clotting proteins. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2014; 2014:355-363. [PMID: 25696879 DOI: 10.1182/asheducation-2014.1.355] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Hemophilia is a genetic disease caused by a deficiency of one of the coagulation proteins. The term usually refers to either hemophilia A, factor VIII (FVIII), with an incidence of ∼1 in 5000 male births, or hemophilia B, factor IX (FIX), with an incidence of ∼1 in 30 000 male births. When severe, the disease leads to spontaneous life-threatening bleeding episodes. Current therapy requires frequent intravenous infusions of therapeutic factor concentrates. Most patients administer the infusions at home every few days and must limit their physical activities to avoid bleeding when the factor activity levels are below normal. In March 2014, a new therapeutic FIX preparation was approved for clinical use in Canada and the United States and, in June 2014, a new FVIII preparation was approved for clinical use in the United States. Over the next couple of years, other new factor products for FIX, FVIIa, and FVIII, which are currently in late stages of clinical trials, will likely also be approved. These new factors have been engineered to extend their half-life in circulation, thus providing major therapeutic advances for patients with hemophilia primarily by allowing treatment with fewer infusions per month. In the clinical trials so far, >500 patients have successfully used these extended half-life products regularly for >1 year to prevent spontaneous bleeding, to treat successfully any bleeding episodes, and to provide effective coagulation for major surgery. Essentially all infusions were well tolerated and effective. These promising new therapies should allow patients to use fewer infusions to maintain appropriate clotting factor activity levels in all clinical settings.
Collapse
Affiliation(s)
- Jerry S Powell
- Division of Hematology and Oncology, University of California Davis Medical Center, Sacramento, CA
| |
Collapse
|
27
|
Mannucci PM. Half-life extension technologies for haemostatic agents. Thromb Haemost 2014; 113:165-76. [PMID: 25274414 DOI: 10.1160/th14-04-0332] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 08/27/2014] [Indexed: 12/18/2022]
Abstract
The use of plasma-derived and recombinant coagulation factors for the treatment of haemophilia A and B is well established and permits patients to live a relatively normal life. In order to improve treatment options, several products are in development, which have a prolonged duration of action, thus enabling less frequent prophylactic dosing and aiming to reduce the burden of treatment. Several innovative approaches are being pursued to extend the half-life of factor VIIa, factor VIII and factor IX, utilising technologies such as Fc fusion, recombinant albumin fusion and addition of polyethyleneglycol (PEG) (PEGylation). These methods prolong the time in the circulation by reducing degradation and elimination. This review summarises the technologies and products in development and their stages of development, and also discusses their pros and cons.
Collapse
Affiliation(s)
- Pier Mannuccio Mannucci
- Pier Mannuccio Mannucci, Scientific Director, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, IRCCS Cà Grande Maggiore Policlinico Hospital Foundation, Milan, Italy, Tel.: +39 02 55038377, Fax: +39 02 50320723, E-mail:
| |
Collapse
|
28
|
Recombinant fusion protein linking factor VIIa with albumin (rVIIaFP): Tissue distribution in rats. Thromb Res 2014; 134:495-502. [DOI: 10.1016/j.thromres.2014.05.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/17/2014] [Accepted: 05/22/2014] [Indexed: 11/21/2022]
|
29
|
Miguelino MG, Powell JS. Clinical utility and patient perspectives on the use of extended half-life rFIXFc in the management of hemophilia B. Patient Prefer Adherence 2014; 8:1073-83. [PMID: 25143713 PMCID: PMC4133029 DOI: 10.2147/ppa.s54951] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Hemophilia B is an X-linked genetic disease caused by mutation of the gene for coagulation protein factor IX (FIX), with an incidence of approximately once every 30,000 male births in all populations and ethnic groups. When severe, the disease leads to spontaneous life threatening bleeding episodes. When untreated, most patients die from bleeding complications before 25 years of age. Current therapy requires frequent intravenous infusions of therapeutic recombinant or plasma-derived protein concentrates containing FIX. Most patients administer the infusions at home every few days, and must limit their physical activities to avoid abnormal bleeding when the FIX activity levels are below normal. After completing the pivotal Phase III clinical trial, a new therapeutic FIX preparation that has been engineered for an extended half-life in circulation, received regulatory approval in March 2014 in Canada and the US. This new FIX represents a major therapeutic advance for patients with hemophilia B. The half-life is prolonged due to fusion of the native FIX molecule with the normal constant region of immunoglobulin G. This fusion molecule then follows the normal immunoglobulin recirculation pathways through endothelial cells, resulting in prolonged times in circulation. In the clinical trials, over 150 patients successfully used eftrenonacog alfa regularly for more than 1 year to prevent spontaneous bleeding, to successfully treat any bleeding episodes, and to provide effective coagulation for major surgery. All infusions were well tolerated and effective, with no inhibitors detected and no safety concerns. This promising therapy should allow patients to use fewer infusions to maintain appropriate FIX activity levels in all clinical settings.
Collapse
Affiliation(s)
- Maricel G Miguelino
- Division of Hematology and Oncology, University of California Davis Medical Center, Sacramento, CA, USA
| | - Jerry S Powell
- Division of Hematology and Oncology, University of California Davis Medical Center, Sacramento, CA, USA
- Correspondence: Jerry S Powell, Division of Hematology and Oncology, Suite 3016, University of California Davis Medical Center, 4501 X Street, Sacramento, CA 95817, USA, Tel +1 916 734 3772, Fax +1 916 734 7946, Email
| |
Collapse
|