1
|
Yu D, Lu Z, Chong Y. Integrins as a bridge between bacteria and cells: key targets for therapeutic wound healing. BURNS & TRAUMA 2024; 12:tkae022. [PMID: 39015251 PMCID: PMC11250365 DOI: 10.1093/burnst/tkae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 12/17/2023] [Accepted: 04/22/2024] [Indexed: 07/18/2024]
Abstract
Integrins are heterodimers composed of α and β subunits that are bonded through non-covalent interactions. Integrins mediate the dynamic connection between extracellular adhesion molecules and the intracellular actin cytoskeleton. Integrins are present in various tissues and organs where these heterodimers participate in diverse physiological and pathological responses at the molecular level in living organisms. Wound healing is a crucial process in the recovery from traumatic diseases and comprises three overlapping phases: inflammation, proliferation and remodeling. Integrins are regulated during the entire wound healing process to enhance processes such as inflammation, angiogenesis and re-epithelialization. Prolonged inflammation may result in failure of wound healing, leading to conditions such as chronic wounds. Bacterial colonization of a wound is one of the primary causes of chronic wounds. Integrins facilitate the infectious effects of bacteria on the host organism, leading to chronic inflammation, bacterial colonization, and ultimately, the failure of wound healing. The present study investigated the role of integrins as bridges for bacteria-cell interactions during wound healing, evaluated the role of integrins as nodes for bacterial inhibition during chronic wound formation, and discussed the challenges and prospects of using integrins as therapeutic targets in wound healing.
Collapse
Affiliation(s)
- Dong Yu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
| | - Zhaoyu Lu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
| | - Yang Chong
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
| |
Collapse
|
2
|
Liu YS, Chen WL, Zeng YW, Li ZH, Zheng HL, Pan N, Zhao LY, Wang S, Chen SH, Jiang MH, Jin CC, Mi YC, Cai ZH, Fang XZ, Liu YJ, Liu L, Wang GL. Isaridin E Protects against Sepsis by Inhibiting Von Willebrand Factor-Induced Endothelial Hyperpermeability and Platelet-Endothelium Interaction. Mar Drugs 2024; 22:283. [PMID: 38921594 PMCID: PMC11204489 DOI: 10.3390/md22060283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Endothelial hyperpermeability is pivotal in sepsis-associated multi-organ dysfunction. Increased von Willebrand factor (vWF) plasma levels, stemming from activated platelets and endothelium injury during sepsis, can bind to integrin αvβ3, exacerbating endothelial permeability. Hence, targeting this pathway presents a potential therapeutic avenue for sepsis. Recently, we identified isaridin E (ISE), a marine-derived fungal cyclohexadepsipeptide, as a promising antiplatelet and antithrombotic agent with a low bleeding risk. ISE's influence on septic mortality and sepsis-induced lung injury in a mouse model of sepsis, induced by caecal ligation and puncture, is investigated in this study. ISE dose-dependently improved survival rates, mitigating lung injury, thrombocytopenia, pulmonary endothelial permeability, and vascular inflammation in the mouse model. ISE markedly curtailed vWF release from activated platelets in septic mice by suppressing vesicle-associated membrane protein 8 and soluble N-ethylmaleide-sensitive factor attachment protein 23 overexpression. Moreover, ISE inhibited healthy human platelet adhesion to cultured lipopolysaccharide (LPS)-stimulated human umbilical vein endothelial cells (HUVECs), thereby significantly decreasing vWF secretion and endothelial hyperpermeability. Using cilengitide, a selective integrin αvβ3 inhibitor, it was found that ISE can improve endothelial hyperpermeability by inhibiting vWF binding to αvβ3. Activation of the integrin αvβ3-FAK/Src pathway likely underlies vWF-induced endothelial dysfunction in sepsis. In conclusion, ISE protects against sepsis by inhibiting endothelial hyperpermeability and platelet-endothelium interactions.
Collapse
Affiliation(s)
- Yao-Sheng Liu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (Y.-S.L.); (Y.-W.Z.); (Z.-H.L.); (L.-Y.Z.); (S.W.); (C.-C.J.); (Y.-C.M.); (Z.-H.C.); (X.-Z.F.)
| | - Wen-Liang Chen
- Scientific Research Center, the Medical Interdisciplinary Science Research Center of Western Guangdong, College of Women and Children, the Second Affiliated Hospital of Guangdong Medical University, Zhanjiang 524023, China;
| | - Yu-Wei Zeng
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (Y.-S.L.); (Y.-W.Z.); (Z.-H.L.); (L.-Y.Z.); (S.W.); (C.-C.J.); (Y.-C.M.); (Z.-H.C.); (X.-Z.F.)
| | - Zhi-Hong Li
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (Y.-S.L.); (Y.-W.Z.); (Z.-H.L.); (L.-Y.Z.); (S.W.); (C.-C.J.); (Y.-C.M.); (Z.-H.C.); (X.-Z.F.)
| | - Hao-Lin Zheng
- Division of Biosciences, University College London, London WC1E 6BT, UK;
| | - Ni Pan
- Department of Pharmacy, The Second Clinical College, Guangzhou Medical University, Guangzhou 510261, China;
| | - Li-Yan Zhao
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (Y.-S.L.); (Y.-W.Z.); (Z.-H.L.); (L.-Y.Z.); (S.W.); (C.-C.J.); (Y.-C.M.); (Z.-H.C.); (X.-Z.F.)
| | - Shu Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (Y.-S.L.); (Y.-W.Z.); (Z.-H.L.); (L.-Y.Z.); (S.W.); (C.-C.J.); (Y.-C.M.); (Z.-H.C.); (X.-Z.F.)
| | - Sen-Hua Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (S.-H.C.); (M.-H.J.)
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Ming-Hua Jiang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (S.-H.C.); (M.-H.J.)
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Chen-Chen Jin
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (Y.-S.L.); (Y.-W.Z.); (Z.-H.L.); (L.-Y.Z.); (S.W.); (C.-C.J.); (Y.-C.M.); (Z.-H.C.); (X.-Z.F.)
| | - Yu-Chen Mi
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (Y.-S.L.); (Y.-W.Z.); (Z.-H.L.); (L.-Y.Z.); (S.W.); (C.-C.J.); (Y.-C.M.); (Z.-H.C.); (X.-Z.F.)
| | - Zhao-Hui Cai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (Y.-S.L.); (Y.-W.Z.); (Z.-H.L.); (L.-Y.Z.); (S.W.); (C.-C.J.); (Y.-C.M.); (Z.-H.C.); (X.-Z.F.)
| | - Xin-Zhe Fang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (Y.-S.L.); (Y.-W.Z.); (Z.-H.L.); (L.-Y.Z.); (S.W.); (C.-C.J.); (Y.-C.M.); (Z.-H.C.); (X.-Z.F.)
| | - Yong-Jun Liu
- Guangdong Provincial Clinical Research Center of Critical Care Medicine, Guangzhou 510080, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (S.-H.C.); (M.-H.J.)
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Guan-Lei Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (Y.-S.L.); (Y.-W.Z.); (Z.-H.L.); (L.-Y.Z.); (S.W.); (C.-C.J.); (Y.-C.M.); (Z.-H.C.); (X.-Z.F.)
| |
Collapse
|
3
|
Lichota A, Gwozdzinski K, Kowalczyk E, Kowalczyk M, Sienkiewicz M. Contribution of staphylococcal virulence factors in the pathogenesis of thrombosis. Microbiol Res 2024; 283:127703. [PMID: 38537329 DOI: 10.1016/j.micres.2024.127703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/17/2024]
Abstract
Staphylococci are responsible for many infections in humans, starting with skin and soft tissue infections and finishing with invasive diseases such as endocarditis, sepsis and pneumonia, which lead to high mortality. Patients with sepsis often demonstrate activated clotting pathways, decreased levels of anticoagulants, decreased fibrinolysis, activated endothelial surfaces and activated platelets. This results in disseminated intravascular coagulation and formation of a microthrombus, which can lead to a multiorgan failure. This review describes various staphylococcal virulence factors that contribute to vascular thrombosis, including deep vein thrombosis in infected patients. The article presents mechanisms of action of different factors released by bacteria in various host defense lines, which in turn can lead to formation of blood clots in the vessels.
Collapse
Affiliation(s)
- Anna Lichota
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Medical University of Lodz, Lodz, Poland.
| | | | - Edward Kowalczyk
- Department of Pharmacology and Toxicology, Medical University of Lodz, Lodz, Poland
| | | | - Monika Sienkiewicz
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
4
|
Yu D, Lu Z, Nie F, Chong Y. Integrins regulation of wound healing processes: insights for chronic skin wound therapeutics. Front Cell Infect Microbiol 2024; 14:1324441. [PMID: 38505290 PMCID: PMC10949986 DOI: 10.3389/fcimb.2024.1324441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/21/2024] [Indexed: 03/21/2024] Open
Abstract
Integrins are heterodimers composed of non-covalently associated alpha and beta subunits that mediate the dynamic linkage between extracellular adhesion molecules and the intracellular actin cytoskeleton. Integrins are present in various tissues and organs and are involved in different physiological and pathological molecular responses in vivo. Wound healing is an important process in the recovery from traumatic diseases and consists of three overlapping phases: inflammation, proliferation, and remodeling. Integrin regulation acts throughout the wound healing process to promote wound healing. Prolonged inflammation may lead to failure of wound healing, such as wound chronicity. One of the main causes of chronic wound formation is bacterial colonization of the wound. In this review, we review the role of integrins in the regulation of wound healing processes such as angiogenesis and re-epithelialization, as well as the role of integrins in mediating bacterial infections during wound chronicity, and the challenges and prospects of integrins as therapeutic targets for infected wound healing.
Collapse
Affiliation(s)
- Dong Yu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhaoyu Lu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Fengsong Nie
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yang Chong
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
5
|
Negrón O, Weggeman M, Grimbergen J, Clark EG, Abrahams S, Hur WS, Koopman J, Flick MJ. Fibrinogen γ' promotes host survival during Staphylococcus aureus septicemia in mice. J Thromb Haemost 2023; 21:2277-2290. [PMID: 37001817 PMCID: PMC10528022 DOI: 10.1016/j.jtha.2023.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Staphylococcus aureus is a common gram-positive bacterium that is the causative agent for several human diseases, including sepsis. A key virulence mechanism is pathogen binding to host fibrinogen through the C-terminal region of the γ-chain. Previous work demonstrated that FggΔ5 mice expressing mutant fibrinogen γΔ5 lacking a S. aureus binding motif had significantly improved survival following S. aureus septicemia. Fibrinogen γ' is a human splice variant that represents about 10% to 15% of the total fibrinogen in plasma and circulates as a fibrinogen γ'-γ heterodimer (phFibγ'-γ). The fibrinogen γ'-chain is also expected to lack S. aureus binding function. OBJECTIVE Determine if human fibrinogen γ'-γ confers host protection during S. aureus septicemia. METHODS Analyses of survival and the host response following S. aureus septicemia challenge in FggΔ5 mice and mice reconstituted with purified phFibγ'-γ or phFibγ-γ. RESULTS Reconstitution of fibrinogen-deficient or wildtype mice with purified phFibγ'-γ prior to infection provided a significant prolongation in host survival relative to mice reconstituted with purified phFibγ-γ, which was superior to that observed with heterozygous FggΔ5 mice. Improved survival could not be accounted for by quantitative differences in fibrinogen-dependent adhesion or clumping, but phFibγ'-γ-containing mixtures generated notably smaller bacterial aggregates. Importantly, administration of phFibγ'-γ after infection also provided a therapeutic benefit by prolonging host survival relative to administration of phFibγ-γ. CONCLUSION These findings provide the proof-of-concept that changing the ratio of naturally occurring fibrinogen variants in blood could offer significant therapeutic potential against bacterial infection and potentially other diseases.
Collapse
Affiliation(s)
- Oscar Negrón
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | - Emily G Clark
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sara Abrahams
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Woosuk S Hur
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Matthew J Flick
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
6
|
Mechanisms and Implications of Bacterial Invasion across the Human Skin Barrier. Microbiol Spectr 2022; 10:e0274421. [PMID: 35532353 PMCID: PMC9241919 DOI: 10.1128/spectrum.02744-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Atopic dermatitis (AD) is associated with a deficiency of skin lipids, increased populations of Staphylococcus aureus in the microbiome, and structural defects in the stratum corneum (SC), the outermost layer of human skin. However, the pathogenesis of AD is ambiguous, as it is unclear whether observed changes are the result of AD or contribute to the pathogenesis of the disease. Previous studies have shown that S. aureus is capable of permeating across isolated human SC tissue when lipids are depleted to levels consistent with AD conditions. In this study, we expand upon this discovery to determine the mechanisms and implications of bacterial penetration into the SC barrier. Specifically, we establish if bacteria are permeating intercellularly or employing a combination of both inter- and intracellular travel. The mechanical implications of bacterial invasion, lipid depletion, and media immersion are also evaluated using a newly developed, physiologically relevant, temperature-controlled drip chamber. Results reveal for the first time that S. aureus can be internalized by corneocytes, indicating transcellular movement through the tissue during permeation, consistent with previous theoretical models. S. aureus also degrades the mechanical integrity of human SC, particularly when the tissue is partially depleted of lipids. These observed mechanical changes are likely the cause of broken or ruptured tissue seen as exudative lesions in AD flares. This work further highlights the necessity of lipids in skin microbial barrier function. IMPORTANCE Millions of people suffer from the chronic inflammatory skin disease atopic dermatitis (AD), whose symptoms are associated with a deficiency of skin lipids that exhibit antimicrobial functions and increased populations of the opportunistic pathogen Staphylococcus aureus. However, the pathogenesis of AD is ambiguous, and it remains unclear if these observed changes are merely the result of AD or contribute to the pathogenesis of the disease. In this article, we demonstrate the necessity of skin lipids in preventing S. aureus from penetrating the outermost barrier of human skin, thereby causing a degradation in tissue integrity. This bacterial permeation into the viable epidermis could act as an inflammatory trigger of the disease. When coupled with delipidated AD tissue conditions, bacterial permeation can also explain increased tissue fragility, potentially causing lesion formation in AD patients that results in further enhancing bacterial permeability across the stratum corneum and the development of chronic conditions.
Collapse
|
7
|
Diversity and pathogenesis of Staphylococcus aureus from bovine mastitis: current understanding and future perspectives. BMC Vet Res 2022; 18:115. [PMID: 35331225 PMCID: PMC8944054 DOI: 10.1186/s12917-022-03197-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/03/2022] [Indexed: 11/10/2022] Open
Abstract
Staphylococcus aureus is a leading cause of bovine mastitis worldwide. Despite some improved understanding of disease pathogenesis, progress towards new methods for the control of intramammary infections (IMI) has been limited, particularly in the field of vaccination. Although herd management programs have helped to reduce the number of clinical cases, S. aureus mastitis remains a major disease burden. This review summarizes the past 16 years of research on bovine S. aureus population genetics, and molecular pathogenesis that have been conducted worldwide. We describe the diversity of S. aureus associated with bovine mastitis and the geographical distribution of S. aureus clones in different continents. We also describe studies investigating the evolution of bovine S. aureus and the importance of host-adaptation in its emergence as a mastitis pathogen. The available information on the prevalence of virulence determinants and their functional relevance during the pathogenesis of bovine mastitis are also discussed. Although traits such as biofilm formation and innate immune evasion are critical for the persistence of bacteria, the current understanding of the key host-pathogen interactions that determine the outcome of S. aureus IMI is very limited. We suggest that greater investment in research into the genetic and molecular basis of bovine S. aureus pathogenesis is essential for the identification of novel therapeutic and vaccine targets.
Collapse
|
8
|
Kember M, Grandy S, Raudonis R, Cheng Z. Non-Canonical Host Intracellular Niche Links to New Antimicrobial Resistance Mechanism. Pathogens 2022; 11:pathogens11020220. [PMID: 35215166 PMCID: PMC8876822 DOI: 10.3390/pathogens11020220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 12/04/2022] Open
Abstract
Globally, infectious diseases are one of the leading causes of death among people of all ages. The development of antimicrobials to treat infectious diseases has been one of the most significant advances in medical history. Alarmingly, antimicrobial resistance is a widespread phenomenon that will, without intervention, make currently treatable infections once again deadly. In an era of widespread antimicrobial resistance, there is a constant and pressing need to develop new antibacterial drugs. Unraveling the underlying resistance mechanisms is critical to fight this crisis. In this review, we summarize some emerging evidence of the non-canonical intracellular life cycle of two priority antimicrobial-resistant bacterial pathogens: Pseudomonas aeruginosa and Staphylococcus aureus. The bacterial factors that modulate this unique intracellular niche and its implications in contributing to resistance are discussed. We then briefly discuss some recent research that focused on the promises of boosting host immunity as a combination therapy with antimicrobials to eradicate these two particular pathogens. Finally, we summarize the importance of various strategies, including surveillance and vaccines, in mitigating the impacts of antimicrobial resistance in general.
Collapse
|
9
|
Nader D, Fletcher N, Curley GF, Kerrigan SW. SARS-CoV-2 uses major endothelial integrin αvβ3 to cause vascular dysregulation in-vitro during COVID-19. PLoS One 2021; 16:e0253347. [PMID: 34161337 PMCID: PMC8221465 DOI: 10.1371/journal.pone.0253347] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
The unprecedented global COVID-19 pandemic has prompted a desperate international effort to accelerate the development of anti-viral candidates. For unknown reasons, COVID-19 infections are associated with adverse cardiovascular complications, implicating that vascular endothelial cells are essential in viral propagation. The etiological pathogen, SARS-CoV-2, has a higher reproductive number and infection rate than its predecessors, indicating it possesses novel characteristics that infers enhanced transmissibility. A unique K403R spike protein substitution encodes an Arg-Gly-Asp (RGD) motif, introducing a potential role for RGD-binding host integrins. Integrin αVβ3 is widely expressed across the host, particularly in the endothelium, which acts as the final barrier before microbial entry into the bloodstream. This mutagenesis creates an additional binding site, which may be sufficient to increase SARS-CoV-2 pathogenicity. Here, we investigate how SARS-CoV-2 passes from the epithelium to endothelium, the effects of αVβ3 antagonist, Cilengitide, on viral adhesion, vasculature permeability and leakage, and also report on a simulated interaction between the viral and host protein in-silico.
Collapse
Affiliation(s)
- Danielle Nader
- Cardiovascular Infection Research Group, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Nicola Fletcher
- School of Veterinary Medicine, Veterinary Science Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Gerard F. Curley
- Department of Anaesthesia and Critical Care Medicine, RCSI University of Medicine and Health Sciences, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Steven W. Kerrigan
- Cardiovascular Infection Research Group, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- * E-mail:
| |
Collapse
|
10
|
Nader D, Yousef F, Kavanagh N, Ryan BK, Kerrigan SW. Targeting Internalized Staphylococcus aureus Using Vancomycin-Loaded Nanoparticles to Treat Recurrent Bloodstream Infections. Antibiotics (Basel) 2021; 10:antibiotics10050581. [PMID: 34068975 PMCID: PMC8156000 DOI: 10.3390/antibiotics10050581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/29/2021] [Accepted: 05/11/2021] [Indexed: 12/29/2022] Open
Abstract
The bacterial pathogen Staphylococcus aureus is a leading cause of bloodstream infections, where patients often suffer from relapse despite antibiotic therapy. Traditional anti-staphylococcal drugs display reduced effectivity against internalised bacteria, but nanoparticles conjugated with antibiotics can overcome these challenges. In the present study, we aimed to characterise the internalisation and re-emergence of S. aureus from human endothelial cells and construct a new formulation of nanoparticles that target intracellular bacteria. Using an in vitro infection model, we demonstrated that S. aureus invades and persists within endothelial cells, mediated through bacterial extracellular surface adhesion, Fibronectin-binding protein A/B. After internalising, S. aureus localises to vacuoles as determined by transmission electron microscopy. Viable S. aureus emerges from endothelial cells after 48 h, supporting the notion that intracellular persistence contributes to infection relapses during bloodstream infections. Poly lactic-co-glycolic acid nanoparticles were formulated using a water-in-oil double emulsion method, which loaded 10% vancomycin HCl with 82.85% ± 12 encapsulation efficiency. These non-toxic nanoparticles were successfully taken up by cells and demonstrated a biphasic controlled release of 91 ± 4% vancomycin. They significantly reduced S. aureus intracellular growth within infected endothelial cells, which suggests future potential applications for targeting internalised bacteria and reducing mortality associated with bacteraemia.
Collapse
Affiliation(s)
- Danielle Nader
- Cardiovascular Infection Research Group, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, 123 St. Stephens Green, Dublin 2, Ireland; (F.Y.); (N.K.)
- Correspondence: (D.N.); (S.W.K.); Tel.: +353-1-402-2104 (S.W.K.)
| | - Fajer Yousef
- Cardiovascular Infection Research Group, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, 123 St. Stephens Green, Dublin 2, Ireland; (F.Y.); (N.K.)
| | - Nicola Kavanagh
- Cardiovascular Infection Research Group, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, 123 St. Stephens Green, Dublin 2, Ireland; (F.Y.); (N.K.)
| | - Benedict K. Ryan
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, 123 St. Stephens Green, Dublin 2, Ireland;
| | - Steven W. Kerrigan
- Cardiovascular Infection Research Group, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, 123 St. Stephens Green, Dublin 2, Ireland; (F.Y.); (N.K.)
- Correspondence: (D.N.); (S.W.K.); Tel.: +353-1-402-2104 (S.W.K.)
| |
Collapse
|
11
|
Ludwig BS, Kessler H, Kossatz S, Reuning U. RGD-Binding Integrins Revisited: How Recently Discovered Functions and Novel Synthetic Ligands (Re-)Shape an Ever-Evolving Field. Cancers (Basel) 2021; 13:1711. [PMID: 33916607 PMCID: PMC8038522 DOI: 10.3390/cancers13071711] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Integrins have been extensively investigated as therapeutic targets over the last decades, which has been inspired by their multiple functions in cancer progression, metastasis, and angiogenesis as well as a continuously expanding number of other diseases, e.g., sepsis, fibrosis, and viral infections, possibly also Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2). Although integrin-targeted (cancer) therapy trials did not meet the high expectations yet, integrins are still valid and promising targets due to their elevated expression and surface accessibility on diseased cells. Thus, for the future successful clinical translation of integrin-targeted compounds, revisited and innovative treatment strategies have to be explored based on accumulated knowledge of integrin biology. For this, refined approaches are demanded aiming at alternative and improved preclinical models, optimized selectivity and pharmacological properties of integrin ligands, as well as more sophisticated treatment protocols considering dose fine-tuning of compounds. Moreover, integrin ligands exert high accuracy in disease monitoring as diagnostic molecular imaging tools, enabling patient selection for individualized integrin-targeted therapy. The present review comprehensively analyzes the state-of-the-art knowledge on the roles of RGD-binding integrin subtypes in cancer and non-cancerous diseases and outlines the latest achievements in the design and development of synthetic ligands and their application in biomedical, translational, and molecular imaging approaches. Indeed, substantial progress has already been made, including advanced ligand designs, numerous elaborated pre-clinical and first-in-human studies, while the discovery of novel applications for integrin ligands remains to be explored.
Collapse
Affiliation(s)
- Beatrice S. Ludwig
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), Technical University Munich, 81675 Munich, Germany;
| | - Horst Kessler
- Department of Chemistry, Institute for Advanced Study, Technical University Munich, 85748 Garching, Germany;
| | - Susanne Kossatz
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), Technical University Munich, 81675 Munich, Germany;
- Department of Chemistry, Institute for Advanced Study, Technical University Munich, 85748 Garching, Germany;
| | - Ute Reuning
- Clinical Research Unit, Department of Obstetrics and Gynecology, University Hospital Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany
| |
Collapse
|
12
|
Mathelié-Guinlet M, Viela F, Alfeo MJ, Pietrocola G, Speziale P, Dufrêne YF. Single-Molecule Analysis Demonstrates Stress-Enhanced Binding between Staphylococcus aureus Surface Protein IsdB and Host Cell Integrins. NANO LETTERS 2020; 20:8919-8925. [PMID: 33237786 DOI: 10.1021/acs.nanolett.0c04015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Binding of Staphylococcus aureus surface proteins to endothelial cell integrins plays essential roles in host cell adhesion and invasion, eventually leading to life-threatening diseases. The staphylococcal protein IsdB binds to β3-containing integrins through a mechanism that has never been thoroughly investigated. Here, we identify and characterize at the nanoscale a previously undescribed stress-dependent adhesion between IsdB and integrin αVβ3. The strength of single IsdB-αVβ3 interactions is moderate (∼100 pN) under low stress, but it increases dramatically under high stress (∼1000-2000 pN) to exceed the forces traditionally reported for the binding between integrins and Arg-Gly-Asp (RGD) sequences. We suggest a mechanism where high mechanical stress induces conformational changes in the integrin from a low-affinity, weak binding state to a high-affinity, strong binding state. This single-molecule study highlights that direct adhesin-integrin interactions represent potential targets to fight staphylococcal infections.
Collapse
Affiliation(s)
- Marion Mathelié-Guinlet
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Felipe Viela
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Mariangela Jessica Alfeo
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Viale Taramelli 3/b, 27100 Pavia, Italy
| | - Giampiero Pietrocola
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Viale Taramelli 3/b, 27100 Pavia, Italy
| | - Pietro Speziale
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Viale Taramelli 3/b, 27100 Pavia, Italy
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
13
|
Nader D, Curley GF, Kerrigan SW. A new perspective in sepsis treatment: could RGD-dependent integrins be novel targets? Drug Discov Today 2020; 25:2317-2325. [PMID: 33035665 PMCID: PMC7537604 DOI: 10.1016/j.drudis.2020.09.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/31/2020] [Accepted: 09/30/2020] [Indexed: 12/20/2022]
Abstract
Sepsis is a life-threatening condition caused by the response of the body to an infection, and has recently been regarded as a global health priority because of the lack of effective treatments available. Vascular endothelial cells have a crucial role in sepsis and are believed to be a major target of pathogens during the early stages of infection. Accumulating evidence suggests that common sepsis pathogens, including bacteria, fungi, and viruses, all contain a critical integrin recognition motif, Arg-Gly-Asp (RGD), in their major cell wall-exposed proteins that might act as ligands to crosslink to vascular endothelial cells, triggering systemic dysregulation resulting in sepsis. In this review, we discuss the potential of anti-integrin therapy in the treatment of sepsis and septic shock.
Collapse
Affiliation(s)
- Danielle Nader
- Cardiovascular Infection Research Group, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland; Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Gerard F Curley
- Department of Anaesthesia and Critical Care Medicine, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin, Ireland
| | - Steven W Kerrigan
- Cardiovascular Infection Research Group, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland; Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland.
| |
Collapse
|
14
|
Watkins KE, Unnikrishnan M. Evasion of host defenses by intracellular Staphylococcus aureus. ADVANCES IN APPLIED MICROBIOLOGY 2020; 112:105-141. [PMID: 32762866 DOI: 10.1016/bs.aambs.2020.05.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Staphylococcus aureus is one of the leading causes of hospital and community-acquired infections worldwide. The increasing occurrence of antibiotic resistant strains and the high rates of recurrent staphylococcal infections have placed several treatment challenges on healthcare systems. In recent years, it has become evident that S. aureus is a facultative intracellular pathogen, able to invade and survive in a range of cell types. The ability to survive intracellularly provides this pathogen with yet another way to evade antibiotics and immune responses during infection. Intracellular S. aureus have been strongly linked to several recurrent infections, including severe bone infections and septicemias. S. aureus is armed with an array of virulence factors as well as an intricate network of regulators that enable it to survive, replicate and escape from a number of immune and nonimmune host cells. It is able to successfully manipulate host cell pathways and use it as a niche to multiply, disseminate, as well as persist during an infection. This bacterium is also known to adapt to the intracellular environment by forming small colony variants, which are metabolically inactive. In this review we will discuss the clinical evidence, the molecular pathways involved in S. aureus intracellular persistence, and new treatment strategies for targeting intracellular S. aureus.
Collapse
|
15
|
Karer M, Kussmann M, Ratzinger F, Obermueller M, Reischer V, Winkler H, Kriz R, Burgmann H, Jilma B, Lagler H. Different Types of Coagulase Are Associated With 28-Day Mortality in Patients With Staphylococcus aureus Bloodstream Infections. Front Cell Infect Microbiol 2020; 10:236. [PMID: 32509602 PMCID: PMC7248564 DOI: 10.3389/fcimb.2020.00236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/24/2020] [Indexed: 11/13/2022] Open
Abstract
Background:Staphylococcus aureus (S. aureus), a leading cause of bacteremia and infective endocarditis, exploits the human coagulation system by using a wide range of specific virulence factors. However, the impact of these host-pathogen interactions on the outcome of patients with Staphylococcus aureus bacteremia (SAB) remains unclear. Methods: A total of 178 patients with S. aureus bacteremia were included and analyzed regarding bacterial factors (coa gene size, vWbp, clfA, clfB, fnbA, fnbB, fib) and clinical parameters. A stepwise multivariate Cox regression model and a Partitioning Around Medoids (PAM) cluster algorithm were used for statistical analysis. Results: Patients' risk factors for 28-day mortality were creatinine (OR 1.49, p < 0.001), age (OR 1.9, p < 0.002), fibrinogen (OR 0.44, p < 0.004), albumin (OR 0.63, p < 0.02), hemoglobin (OR 0.59, p < 0.03), and CRP (OR 1.72, p < 0.04). Five distinct bacterial clusters with different mortality rates were unveiled, whereof two showed a 2-fold increased mortality and an accumulation of specific coagulase gene sizes, 547-base pairs and 660-base pairs. Conclusions: Based on the data obtained in the present study an association of coagulase gene size and fib regarding 28-day mortality was observed in patients with S. aureus bloodstream infections. Further animal and prospective clinical studies are needed to confirm our preliminary findings.
Collapse
Affiliation(s)
- Matthias Karer
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria.,Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Manuel Kussmann
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Franz Ratzinger
- Division of Medical and Chemical Laboratory Diagnostics, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.,Ihr Labor, Medical Diagnostics Laboratories, Vienna, Austria
| | - Markus Obermueller
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Veronika Reischer
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Heidemarie Winkler
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Richard Kriz
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Heinz Burgmann
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Heimo Lagler
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Assessment of a pro-healing stent in an animal model of early neoatherosclerosis. Sci Rep 2020; 10:8227. [PMID: 32427835 PMCID: PMC7237429 DOI: 10.1038/s41598-020-64940-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 04/23/2020] [Indexed: 12/01/2022] Open
Abstract
Background: Neoatherosclerosis represents an accelerated manifestation of atherosclerosis in nascent neointima after stenting, associated with adverse events. We investigated whether improved reendothelialization using RGD-coated stents results in diminished vascular permeability and reduced foam cell formation compared to standard DES in atherosclerotic rabbits. Methods and Results: Neointimal foam cell formation was induced in rabbits (n = 7). Enhanced endothelial integrity in RGD-coated stents resulted in decreased vascular permeability relative to DES, which was further confirmed by SEM and TEM. Cell culture experiments examined the effect of everolimus on endothelial integrity. Increasing concentrations of everolimus resulted in a dose-dependent decrease of endothelial cell junctions and foam cell transformation of monocytes, confirming the relevance of endothelial integrity in preventing permeability of LDL. Conclusion: Incomplete endothelial integrity was confirmed as a key factor of neointimal foam cell formation following stent implantation. Pro-healing stent coatings may facilitate reendothelialization and reduce the risk of neoatherosclerosis.
Collapse
|
17
|
Liesenborghs L, Meyers S, Vanassche T, Verhamme P. Coagulation: At the heart of infective endocarditis. J Thromb Haemost 2020; 18:995-1008. [PMID: 31925863 DOI: 10.1111/jth.14736] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022]
Abstract
Infective endocarditis is a life-threatening and enigmatic disease with a mortality of 30% and a pathophysiology that is poorly understood. However, at its core, an endocarditis lesion is mainly a fibrin and platelet blood clot infested with bacteria, clinging at the cardiac valves. Infective endocarditis therefore serves as a paradigm of immunothrombosis gone wrong. Immunothrombosis refers to the entanglement of the coagulation system with innate immunity and the role of coagulation in the isolation and clearance of invading pathogens. However, in the case of infective endocarditis, instead of containing the infection, immunothrombosis inadvertently creates the optimal shelter from the immune system and allows some bacteria to grow almost unimpeded. In every step of the disease, the coagulation system is heavily involved. It mediates the initial adhesion of bacteria to the leaflets, fuels the growth and maturation of a vegetation, and facilitates complications such as embolization and valve destruction. In addition, the number one cause of infective endocarditis, Staphylococcus aureus, has proven to be a true manipulator of immunothrombosis and thrives in the fibrin rich environment of an endocarditis vegetation. Considering its central role in infective endocarditis, the coagulation system is an attractive therapeutic target for this deadly disease. There is, however, a very delicate balance at play and the use of antithrombotic drugs in patients with endocarditis is often accompanied with a high bleeding risk.
Collapse
Affiliation(s)
- Laurens Liesenborghs
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Severien Meyers
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Thomas Vanassche
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Peter Verhamme
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Host-Targeted Therapeutics against Multidrug Resistant Intracellular Staphylococcus aureus. Antibiotics (Basel) 2019; 8:antibiotics8040241. [PMID: 31795127 PMCID: PMC6963206 DOI: 10.3390/antibiotics8040241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus is a facultative intracellular pathogen that invades and replicates within many types of human cells. S. aureus has shown to rapidly overcome traditional antibiotherapy by developing multidrug resistance. Furthermore, intracellular S. aureus is protected from the last-resort antibiotics—vancomycin, daptomycin, and linezolid—as they are unable to achieve plasma concentrations sufficient for intracellular killing. Therefore, there is an urgent need to develop novel anti-infective therapies against S. aureus infections. Here, we review the current state of the field and highlight the exploitation of host-directed approaches as a promising strategy going forward.
Collapse
|
19
|
Viela F, Speziale P, Pietrocola G, Dufrêne YF. Mechanostability of the Fibrinogen Bridge between Staphylococcal Surface Protein ClfA and Endothelial Cell Integrin α Vβ 3. NANO LETTERS 2019; 19:7400-7410. [PMID: 31532212 DOI: 10.1021/acs.nanolett.9b03080] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Binding of the Staphylococcus aureus surface protein clumping factor A (ClfA) to endothelial cell integrin αVβ3 plays a crucial role during sepsis, by causing endothelial cell apoptosis and loss of barrier integrity. ClfA uses the blood plasma protein fibrinogen (Fg) to bind to αVβ3 but how this is achieved at the molecular level is not known. Here we investigate the mechanical strength of the three-component ClfA-Fg-αVβ3 interaction on living bacteria, by means of single-molecule experiments. We find that the ClfA-Fg-αVβ3 ternary complex is extremely stable, being able to sustain forces (∼800 pN) that are much stronger than those of classical bonds between integrins and the Arg-Gly-Asp (RGD) tripeptide sequence (∼100 pN). Adhesion forces between single bacteria and αVβ3 are strongly inhibited by an anti-αVβ3 antibody, the RGD peptide, and the cyclic RGD peptide cilengitide, showing that formation of the complex involves RGD-dependent binding sites and can be efficiently inhibited by αVβ3 blockers. Collectively, our experiments favor a binding mechanism involving the extraordinary elasticity of Fg. In the absence of mechanical stress, RGD572-574 sequences in the Aα chains mediate weak binding to αVβ3, whereas under high mechanical stress exposure of cryptic Aα chain RGD95-97 sequences leads to extremely strong binding to the integrin. Our results identify an unexpected and previously undescribed force-dependent binding mechanism between ClfA and αVβ3 on endothelial cells, which could represent a potential target to fight staphylococcal bloodstream infections.
Collapse
Affiliation(s)
- Felipe Viela
- Louvain Institute of Biomolecular Science and Technology, UCLouvain , Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve , Belgium
| | - Pietro Speziale
- Department of Molecular Medicine, Unit of Biochemistry , University of Pavia , Viale Taramelli 3/b , 27100 Pavia , Italy
- Department of Industrial and Information Engineering , University of Pavia , 27100 Pavia , Italy
| | - Giampiero Pietrocola
- Department of Molecular Medicine, Unit of Biochemistry , University of Pavia , Viale Taramelli 3/b , 27100 Pavia , Italy
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain , Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve , Belgium
- Walloon Excellence in Life sciences and Biotechnology (WELBIO) , 1300 Wavre , Belgium
| |
Collapse
|
20
|
Inhibition of Vascular Endothelial Cell Leak Following Escherichia coli Attachment in an Experimental Model of Sepsis. Crit Care Med 2019; 46:e805-e810. [PMID: 29782355 DOI: 10.1097/ccm.0000000000003219] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVES The vascular endothelium is a major target of sepsis-induced events, and endothelial activation accounts for much of the pathology of sepsis. Urinary tract infections and pneumonia caused by Escherichia coli are among of the most common infections causing sepsis in both community and hospital settings. Currently, there are no approved drugs on the market to treat the underlying pathophysiology of sepsis. The aim of this study is to elucidate the molecular mechanism by which E. coli induces endothelial injury as a result of attachment. DESIGN Laboratory research using a hemodynamic perfusion ex vivo model. SETTING Research Laboratories of Royal College of Surgeons in Ireland and Beaumont Hospital. PATIENTS Ex vivo human vascular endothelial cells. INTERVENTIONS Addition of αVβ3 antagonist, cilengitide. MEASUREMENTS AND MAIN RESULTS Clinical strains of E. coli isolated from patients with sepsis bound to sheared human endothelial cells under static and hemodynamic shear conditions. Binding was dependent on E. coli cell membrane protein outer membrane protein A attaching directly to endothelial cell integrin αVβ3. Attachment resulted in disturbances in endothelial barrier integrity, as determined by loss of tight junction protein staining, permeability changes, and ultimately cell death by apoptosis. Using a low concentration of the αVβ3 antagonist cilengitide or using a strain deficient in outer membrane protein A resulted in a significant reduction in endothelial dysfunction following infection. CONCLUSIONS Inhibition of E. coli binding to endothelial cell αVβ3 by cilengitide prevents endothelial dysfunction and may, therefore, present as a novel early therapeutic for the treatment of sepsis.
Collapse
|
21
|
Tribelli PM, Luqman A, Nguyen MT, Madlung J, Fan SH, Macek B, Sass P, Bitschar K, Schittek B, Kretschmer D, Götz F. Staphylococcus aureus Lpl protein triggers human host cell invasion via activation of Hsp90 receptor. Cell Microbiol 2019; 22:e13111. [PMID: 31515903 DOI: 10.1111/cmi.13111] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/02/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022]
Abstract
Staphylococcus aureus is a facultative intracellular pathogen. Recently, it has been shown that the protein part of the lipoprotein-like lipoproteins (Lpls), encoded by the lpl cluster comprising of 10 lpls paralogue genes, increases pathogenicity, delays the G2/M phase transition, and also triggers host cell invasion. Here, we show that a recombinant Lpl1 protein without the lipid moiety binds directly to the isoforms of the human heat shock proteins Hsp90α and Hsp90ß. Synthetic peptides covering the Lpl1 sequence caused a twofold to fivefold increase of S. aureus invasion in HaCaT cells. Antibodies against Hsp90 decrease S. aureus invasion in HaCaT cells and in primary human keratinocytes. Additionally, inhibition of ATPase function of Hsp90 or silencing Hsp90α expression by siRNA also decreased the S. aureus invasion in HaCaT cells. Although the Hsp90ß is constitutively expressed, the Hsp90α isoform is heat-inducible and appears to play a major role in Lpl1 interaction. Pre-incubation of HaCaT cells at 39°C increased both the Hsp90α expression and S. aureus invasion. Lpl1-Hsp90 interaction induces F-actin formation, thus, triggering an endocytosis-like internalisation. Here, we uncovered a new host cell invasion principle on the basis of Lpl-Hsp90 interaction.
Collapse
Affiliation(s)
- Paula M Tribelli
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany.,Departamento de Química Biológica, FCEyN-UBA, Buenos Aires, Argentina.,IQUIBICEN-CONICET, Buenos Aires, Argentina
| | - Arif Luqman
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany.,Institut Teknologi Sepuluh Nopember, Biology Department, Surabaya, Indonesia
| | - Minh-Thu Nguyen
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany.,Division of Microbiology, Paul-Ehrlich Institute, Langen, Germany
| | - Johannes Madlung
- Proteome Center Tübingen, University of Tübingen, Tübingen, Germany
| | - Sook-Ha Fan
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - Boris Macek
- Proteome Center Tübingen, University of Tübingen, Tübingen, Germany
| | - Peter Sass
- Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | | | - Birgit Schittek
- Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Dorothee Kretschmer
- Department of Infection Biology, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - Friedrich Götz
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| |
Collapse
|
22
|
Kerrigan SW, Devine T, Fitzpatrick G, Thachil J, Cox D. Early Host Interactions That Drive the Dysregulated Response in Sepsis. Front Immunol 2019; 10:1748. [PMID: 31447831 PMCID: PMC6691039 DOI: 10.3389/fimmu.2019.01748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/10/2019] [Indexed: 01/18/2023] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. While many individual cells and systems in the body are involved in driving the excessive and sometimes sustained host response, pathogen engagement with endothelial cells and platelets early in sepsis progression, are believed to be key. Significant progress has been made in establishing key molecular interactions between platelets and pathogens and endothelial cells and pathogens. This review will explore the growing number of compensatory connections between bacteria and viruses with platelets and endothelial cells and how a better understanding of these interactions are informing the field of potential novel ways to treat the dysregulated host response during sepsis.
Collapse
Affiliation(s)
- Steven W Kerrigan
- Cardiovascular Infection Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland.,School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tatyana Devine
- Cardiovascular Infection Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland.,Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Glenn Fitzpatrick
- Cardiovascular Infection Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland.,School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jecko Thachil
- Department of Haematology, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Dermot Cox
- Cardiovascular Infection Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland.,Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
23
|
The MSCRAMM Family of Cell-Wall-Anchored Surface Proteins of Gram-Positive Cocci. Trends Microbiol 2019; 27:927-941. [PMID: 31375310 DOI: 10.1016/j.tim.2019.06.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/10/2019] [Accepted: 06/19/2019] [Indexed: 01/21/2023]
Abstract
The microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) are a family of proteins that are defined by the presence of two adjacent IgG-like folded subdomains. These promote binding to ligands by mechanisms that involve major conformational changes exemplified by the binding to fibrinogen by the 'dock-lock-latch' mechanism or to collagen by the 'collagen hug'. Clumping factors A and B are two such MSCRAMMs that have several important roles in the pathogenesis of Staphylococcus aureus infections. MSCRAMM architecture, ligand binding, and roles in infection and colonization are examined with a focus on recent developments with clumping factors.
Collapse
|
24
|
Iwamoto K, Moriwaki M, Miyake R, Hide M. Staphylococcus aureus in atopic dermatitis: Strain-specific cell wall proteins and skin immunity. Allergol Int 2019; 68:309-315. [PMID: 30878567 DOI: 10.1016/j.alit.2019.02.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 12/21/2022] Open
Abstract
Atopic dermatitis (AD) is a common chronic skin disease. The presence of the bacterium Staphylococcus aureus (S. aureus) is frequently detected on skin affected with AD. In this review, we focused on the characteristics of S. aureus strains isolated from AD skin, particularly the proteins on the cell surface that modulates the interactions between Langerhans cell, keratinocyte, and S. aureus. The skin microbiome plays an important role in maintaining homeostasis of the skin, and colonization of S. aureus in AD is considered to be deeply involved in the clinical manifestation and pathogenesis of skin flares. Colonizing S. aureus strains in AD harbor different surface proteins at the strain level, which are indicated as clonal complexes. Moreover, the cell wall proteins of S. aureus affect skin adhesion and induce altered immune responses. S. aureus from AD skin (AD strain) exhibits internalization into keratinocytes and induces imbalanced Th1/Th2 adaptive immune responses via Langerhans cells. AD strain-derived cell wall proteins and secreted virulence factors are expected to represent therapeutic targets. In addition, the microbiome on the AD skin surface is associated with skin immunity; thus, microbiome-based immunotherapy, whose mechanism of action completely differs from that of typical steroid ointments, are expected to be developed in the future.
Collapse
Affiliation(s)
- Kazumasa Iwamoto
- Department of Dermatology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Masaya Moriwaki
- Department of Dermatology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryu Miyake
- Department of Dermatology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Michihiro Hide
- Department of Dermatology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
25
|
Staphylococcus aureus clumping factor A is a force-sensitive molecular switch that activates bacterial adhesion. Proc Natl Acad Sci U S A 2018; 115:5564-5569. [PMID: 29735708 PMCID: PMC6003445 DOI: 10.1073/pnas.1718104115] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The Staphylococcus aureus surface protein clumping factor A (ClfA) binds to the blood plasma protein fibrinogen (Fg) via molecular interactions that are poorly understood. Here, we unravel the forces guiding the interaction between ClfA and immobilized Fg, showing that it is dramatically enhanced by tensile loading. Our findings favor a model whereby ClfA interacts with Fg via two distinct binding sites, the adhesive function of which is tightly regulated by mechanical force. Reminiscent of a catch bond mechanism, this force-enhanced adhesion explains the ability of ClfA to promote S. aureus colonization of host tissues and biomedical devices under physical stress. Clumping factor A (ClfA), a cell-wall–anchored protein from Staphylococcus aureus, is a virulence factor in various infections and facilitates the colonization of protein-coated biomaterials. ClfA promotes bacterial adhesion to the blood plasma protein fibrinogen (Fg) via molecular forces that have not been studied so far. A unique, yet poorly understood, feature of ClfA is its ability to favor adhesion to Fg at high shear stress. Unraveling the strength and dynamics of the ClfA–Fg interaction would help us better understand how S. aureus colonizes implanted devices and withstands physiological shear stress. By means of single-molecule experiments, we show that ClfA behaves as a force-sensitive molecular switch that potentiates staphylococcal adhesion under mechanical stress. The bond between ClfA and immobilized Fg is weak (∼0.1 nN) at low tensile force, but is dramatically enhanced (∼1.5 nN) by mechanical tension, as observed with catch bonds. Strong bonds, but not weak ones, are inhibited by a peptide mimicking the C-terminal segment of the Fg γ-chain. These results point to a model whereby ClfA interacts with Fg via two distinct binding sites, the adhesive function of which is regulated by mechanical tension. This force-activated mechanism is of biological significance because it explains at the molecular level the ability of ClfA to promote bacterial attachment under high physiological shear stress.
Collapse
|
26
|
Prystopiuk V, Feuillie C, Herman-Bausier P, Viela F, Alsteens D, Pietrocola G, Speziale P, Dufrêne YF. Mechanical Forces Guiding Staphylococcus aureus Cellular Invasion. ACS NANO 2018; 12:3609-3622. [PMID: 29633832 DOI: 10.1021/acsnano.8b00716] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Staphylococcus aureus can invade various types of mammalian cells, thereby enabling it to evade host immune defenses and antibiotics. The current model for cellular invasion involves the interaction between the bacterial cell surface located fibronectin (Fn)-binding proteins (FnBPA and FnBPB) and the α5β1 integrin in the host cell membrane. While it is believed that the extracellular matrix protein Fn serves as a bridging molecule between FnBPs and integrins, the fundamental forces involved are not known. Using single-cell and single-molecule experiments, we unravel the molecular forces guiding S. aureus cellular invasion, focusing on the prototypical three-component FnBPA-Fn-integrin interaction. We show that FnBPA mediates bacterial adhesion to soluble Fn via strong forces (∼1500 pN), consistent with a high-affinity tandem β-zipper, and that the FnBPA-Fn complex further binds to immobilized α5β1 integrins with a strength much higher than that of the classical Fn-integrin bond (∼100 pN). The high mechanical stability of the Fn bridge favors an invasion model in which Fn binding by FnBPA leads to the exposure of cryptic integrin-binding sites via allosteric activation, which in turn engage in a strong interaction with integrins. This activation mechanism emphasizes the importance of protein mechanobiology in regulating bacterial-host adhesion. We also find that Fn-dependent adhesion between S. aureus and endothelial cells strengthens with time, suggesting that internalization occurs within a few minutes. Collectively, our results provide a molecular foundation for the ability of FnBPA to trigger host cell invasion by S. aureus and offer promising prospects for the development of therapeutic approaches against intracellular pathogens.
Collapse
Affiliation(s)
- Valeria Prystopiuk
- Institute of Life Sciences , Université catholique de Louvain , Croix du Sud, 4-5, bte L7.07.06 , B-1348 Louvain-la-Neuve , Belgium
| | - Cécile Feuillie
- Institute of Life Sciences , Université catholique de Louvain , Croix du Sud, 4-5, bte L7.07.06 , B-1348 Louvain-la-Neuve , Belgium
| | - Philippe Herman-Bausier
- Institute of Life Sciences , Université catholique de Louvain , Croix du Sud, 4-5, bte L7.07.06 , B-1348 Louvain-la-Neuve , Belgium
| | - Felipe Viela
- Institute of Life Sciences , Université catholique de Louvain , Croix du Sud, 4-5, bte L7.07.06 , B-1348 Louvain-la-Neuve , Belgium
| | - David Alsteens
- Institute of Life Sciences , Université catholique de Louvain , Croix du Sud, 4-5, bte L7.07.06 , B-1348 Louvain-la-Neuve , Belgium
| | | | | | - Yves F Dufrêne
- Institute of Life Sciences , Université catholique de Louvain , Croix du Sud, 4-5, bte L7.07.06 , B-1348 Louvain-la-Neuve , Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) , 4000 Liège , Belgium
| |
Collapse
|
27
|
Ryan AJ, Kearney CJ, Shen N, Khan U, Kelly AG, Probst C, Brauchle E, Biccai S, Garciarena CD, Vega-Mayoral V, Loskill P, Kerrigan SW, Kelly DJ, Schenke-Layland K, Coleman JN, O'Brien FJ. Electroconductive Biohybrid Collagen/Pristine Graphene Composite Biomaterials with Enhanced Biological Activity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706442. [PMID: 29504165 DOI: 10.1002/adma.201706442] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/18/2017] [Indexed: 05/14/2023]
Abstract
Electroconductive substrates are emerging as promising functional materials for biomedical applications. Here, the development of biohybrids of collagen and pristine graphene that effectively harness both the biofunctionality of the protein component and the increased stiffness and enhanced electrical conductivity (matching native cardiac tissue) obtainable with pristine graphene is reported. As well as improving substrate physical properties, the addition of pristine graphene also enhances human cardiac fibroblast growth while simultaneously inhibiting bacterial attachment (Staphylococcus aureus). When embryonic-stem-cell-derived cardiomyocytes (ESC-CMs) are cultured on the substrates, biohybrids containing 32 wt% graphene significantly increase metabolic activity and cross-striated sarcomeric structures, indicative of the improved substrate suitability. By then applying electrical stimulation to these conductive biohybrid substrates, an enhancement of the alignment and maturation of the ESC-CMs is achieved. While this in vitro work has clearly shown the potential of these materials to be translated for cardiac applications, it is proposed that these graphene-based biohybrid platforms have potential for a myriad of other applications-particularly in electrically sensitive tissues, such as neural and neural and musculoskeletal tissues.
Collapse
Affiliation(s)
- Alan J Ryan
- Tissue Engineering Research Group (TERG), Department of Anatomy, School of Pharmacy and Department of MCT, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Trinity College Dublin, Ireland and Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Ireland
| | - Cathal J Kearney
- Tissue Engineering Research Group (TERG), Department of Anatomy, School of Pharmacy and Department of MCT, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Trinity College Dublin, Ireland and Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Ireland
| | - Nian Shen
- Department of Women's Health, Research Institute for Women's Health, Eberhard-Karls-University Tübingen, 72076, Tübingen, Germany
| | - Umar Khan
- Department of Life Sciences, PEM Centre, School of Science, Sligo Institute of Technology, Sligo Ash Lane, Sligo, Ireland
| | - Adam G Kelly
- Advanced Materials and Bioengineering Research (AMBER) Centre, Trinity College Dublin, Ireland and Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Christopher Probst
- Department of Cell and Tissue Engineering, Fraunhofer-Institute for Interfacial Engineering and Biotechnology (IGB), 70569, Stuttgart, Germany
| | - Eva Brauchle
- Department of Women's Health, Research Institute for Women's Health, Eberhard-Karls-University Tübingen, 72076, Tübingen, Germany
- Department of Cell and Tissue Engineering, Fraunhofer-Institute for Interfacial Engineering and Biotechnology (IGB), 70569, Stuttgart, Germany
| | - Sonia Biccai
- Advanced Materials and Bioengineering Research (AMBER) Centre, Trinity College Dublin, Ireland and Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Carolina D Garciarena
- Tissue Engineering Research Group (TERG), Department of Anatomy, School of Pharmacy and Department of MCT, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Victor Vega-Mayoral
- Advanced Materials and Bioengineering Research (AMBER) Centre, Trinity College Dublin, Ireland and Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Peter Loskill
- Department of Women's Health, Research Institute for Women's Health, Eberhard-Karls-University Tübingen, 72076, Tübingen, Germany
- Department of Cell and Tissue Engineering, Fraunhofer-Institute for Interfacial Engineering and Biotechnology (IGB), 70569, Stuttgart, Germany
| | - Steve W Kerrigan
- Tissue Engineering Research Group (TERG), Department of Anatomy, School of Pharmacy and Department of MCT, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Daniel J Kelly
- Advanced Materials and Bioengineering Research (AMBER) Centre, Trinity College Dublin, Ireland and Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Ireland
| | - Katja Schenke-Layland
- Department of Women's Health, Research Institute for Women's Health, Eberhard-Karls-University Tübingen, 72076, Tübingen, Germany
- Department of Cell and Tissue Engineering, Fraunhofer-Institute for Interfacial Engineering and Biotechnology (IGB), 70569, Stuttgart, Germany
- Department of Medicine/Cardiology, Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Jonathan N Coleman
- Advanced Materials and Bioengineering Research (AMBER) Centre, Trinity College Dublin, Ireland and Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group (TERG), Department of Anatomy, School of Pharmacy and Department of MCT, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Trinity College Dublin, Ireland and Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Ireland
| |
Collapse
|
28
|
Liesenborghs L, Verhamme P, Vanassche T. Staphylococcus aureus, master manipulator of the human hemostatic system. J Thromb Haemost 2018; 16:441-454. [PMID: 29251820 DOI: 10.1111/jth.13928] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Indexed: 12/15/2022]
Abstract
The coagulation system does not only offer protection against bleeding, but also aids in our defense against invading microorganisms. The hemostatic system and innate immunity are strongly entangled, which explains why so many infections are complicated by either bleeding or thrombosis. Staphylococcus aureus (S. aureus), currently the most deadly infectious agent in the developed world, causes devastating intravascular infections such as sepsis and infective endocarditis. During these infections S. aureus comes in close contact with the host hemostatic system and proves to be a master in manipulating coagulation. The coagulases of S. aureus directly induce coagulation by activating prothrombin. S. aureus also manipulates fibrinolysis by triggering plasminogen activation via staphylokinase. Furthermore, S. aureus binds and activates platelets and interacts with key coagulation proteins such as fibrin(ogen), fibronectin and von Willebrand factor. By manipulating the coagulation system S. aureus gains a significant advantage over the host defense mechanisms. Studying the interplay between S. aureus and the hemostatic system can therefore lead to new innovative therapies for battling S. aureus infections.
Collapse
Affiliation(s)
- L Liesenborghs
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KULeuven - University Hospitals Leuven, Leuven, Belgium
| | - P Verhamme
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KULeuven - University Hospitals Leuven, Leuven, Belgium
| | - T Vanassche
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KULeuven - University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
29
|
Josse J, Laurent F, Diot A. Staphylococcal Adhesion and Host Cell Invasion: Fibronectin-Binding and Other Mechanisms. Front Microbiol 2017; 8:2433. [PMID: 29259603 PMCID: PMC5723312 DOI: 10.3389/fmicb.2017.02433] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/23/2017] [Indexed: 02/02/2023] Open
Abstract
Opportunistic bacteria from the genus Staphylococcus can cause life-threatening infections such as pneumonia, endocarditis, bone and joint infections, and sepsis. This pathogenicity is closely related to their capacity to bind directly to the extracellular matrix or to host cells. Adhesion is indeed the first step in the formation of biofilm or the invasion of host cells, which protect the bacteria from the host immune system and facilitate chronic infection. Adhesion relies on the expression of a repertoire of surface proteins called adhesins, notably microbial surface components recognizing adhesive matrix molecules. In this short review, we discuss the main pathway (FnBP-Fn-α5β1 integrin), as well as alternatives, through which Staphylococcus aureus adheres to and then invades non-professional phagocytic cells. We then examine the corresponding mechanisms for coagulase negative staphylococci. There is currently a little understanding of the molecular mechanisms that lead to internalization. Filling this gap in the literature would therefore be an important step toward limiting the duration of staphylococci infections in clinical practice.
Collapse
Affiliation(s)
- Jérôme Josse
- International Center for Infectiology Research, INSERM U1111, CNRS UMR5308, ENS Lyon, Lyon 1 University, Lyon, France
| | - Frédéric Laurent
- International Center for Infectiology Research, INSERM U1111, CNRS UMR5308, ENS Lyon, Lyon 1 University, Lyon, France.,Institute for Infectious Agents, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France.,French National Reference Centre for Staphylococci, Lyon, France.,Microbiology-Mycology Department, Institut des Sciences Pharmaceutiques et Biologiques de Lyon, Lyon, France
| | - Alan Diot
- International Center for Infectiology Research, INSERM U1111, CNRS UMR5308, ENS Lyon, Lyon 1 University, Lyon, France
| |
Collapse
|
30
|
Garciarena CD, McHale TM, Martin-Loeches I, Kerrigan SW. Pre-emptive and therapeutic value of blocking bacterial attachment to the endothelial alphaVbeta3 integrin with cilengitide in sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2017; 21:246. [PMID: 28946901 PMCID: PMC5613315 DOI: 10.1186/s13054-017-1838-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 09/07/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Carolina D Garciarena
- Cardiovascular Infection Research Group, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Tony M McHale
- Cardiovascular Infection Research Group, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | | | - Steve W Kerrigan
- Cardiovascular Infection Research Group, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin 2, Ireland. .,Cardiovascular Infection Research Group, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
31
|
Ma Y, Ai G, Zhang C, Zhao M, Dong X, Han Z, Wang Z, Zhang M, Liu Y, Gao W, Li S, Gu Y. Novel Linear Peptides with High Affinity to αvβ3 Integrin for Precise Tumor Identification. Theranostics 2017; 7:1511-1523. [PMID: 28529634 PMCID: PMC5436510 DOI: 10.7150/thno.18401] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 01/12/2017] [Indexed: 02/06/2023] Open
Abstract
Development of alternative linear peptides for targeting αvβ3 integrin has attracted much attention, as the traditional peptide ligand, cyclic RGD, is limited by inferior water-solubility and complex synthesis. Using pharmacophore-based virtual screening and high-throughput molecular docking, we identified two novel linear small peptides RWr and RWrNM with high affinity and specificity to αvβ3 integrin. The competitive binding with cyclic RGD (c(RGDyK)) and cellular uptake related to the integrin expression levels verified their affinity to αvβ3 integrin. The intermolecular interaction measurement and dynamics simulation demonstrated the high binding affinity and stability, especially for RWrNM. In vivo peptide-guided tumor imaging and targeted therapy further confirmed their specificity. Results indicated that the newly identified small linear peptide RWrNM, with high affinity and specificity to αvβ3 integrin, better water-solubility, and simplified synthetic process, could overcome limitations of the current cyclic RGD peptides, paving the way for diverse use in diagnosis and therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Yueqing Gu
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 24 Tongjia Road, 210009 (China)
| |
Collapse
|
32
|
Inhibition of Murine Pulmonary Microvascular Endothelial Cell Apoptosis Promotes Recovery of Barrier Function under Septic Conditions. Mediators Inflamm 2017; 2017:3415380. [PMID: 28250575 PMCID: PMC5303866 DOI: 10.1155/2017/3415380] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/25/2016] [Accepted: 12/20/2016] [Indexed: 12/13/2022] Open
Abstract
Sepsis is characterized by injury of the pulmonary microvasculature and the pulmonary microvascular endothelial cells (PMVEC), leading to barrier dysfunction and acute respiratory distress syndrome (ARDS). Our recent work identified a strong correlation between PMVEC apoptosis and microvascular leak in septic mice in vivo, but the specific role of apoptosis in septic PMVEC barrier dysfunction remains unclear. Thus, we hypothesize that PMVEC apoptosis is likely required for PMVEC barrier dysfunction under septic conditions in vitro. Septic stimulation (mixture of tumour necrosis factor α, interleukin 1β, and interferon γ [cytomix]) of isolated murine PMVEC resulted in a significant loss of barrier function as early as 4 h after stimulation, which persisted until 24 h. PMVEC apoptosis, as reflected by caspase activation, DNA fragmentation, and loss of membrane polarity, was first apparent at 8 h after cytomix. Pretreatment of PMVEC with the pan-caspase inhibitor Q-VD significantly decreased septic PMVEC apoptosis and was associated with reestablishment of PMVEC barrier function at 16 and 24 h after stimulation but had no effect on septic PMVEC barrier dysfunction over the first 8 h. Collectively, our data suggest that early septic murine PMVEC barrier dysfunction driven by proinflammatory cytokines is not mediated through apoptosis, but PMVEC apoptosis contributes to late septic PMVEC barrier dysfunction.
Collapse
|