1
|
Le Chapelain O, Jadoui S, Gros A, Barbaria S, Benmeziane K, Ollivier V, Dupont S, Solo Nomenjanahary M, Mavouna S, Rogozarski J, Mawhin MA, Caligiuri G, Delbosc S, Porteu F, Nieswandt B, Mangin PH, Boulaftali Y, Ho-Tin-Noé B. The localization, origin, and impact of platelets in the tumor microenvironment are tumor type-dependent. J Exp Clin Cancer Res 2024; 43:84. [PMID: 38493157 PMCID: PMC10944607 DOI: 10.1186/s13046-024-03001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND How platelets interact with and influence the tumor microenvironment (TME) remains poorly characterized. METHODS We compared the presence and participation of platelets in the TME of two tumors characterized by highly different TME, PyMT AT-3 mammary tumors and B16F1 melanoma. RESULTS We show that whereas firmly adherent platelets continuously line tumor vessels of both AT-3 and B16F1 tumors, abundant extravascular stromal clusters of platelets from thrombopoietin-independent origin were present only in AT-3 mammary tumors. We further show that platelets influence the angiogenic and inflammatory profiles of AT-3 and B16F1 tumors, though with very different outcomes according to tumor type. Whereas thrombocytopenia increased bleeding in both tumor types, it further caused severe endothelial degeneration associated with massive vascular leakage, tumor swelling, and increased infiltration of cytotoxic cells, only in AT-3 tumors. CONCLUSIONS These results indicate that while platelets are integral components of solid tumors, their localization and origin in the TME, as well as their impact on its shaping, are tumor type-dependent.
Collapse
Affiliation(s)
- Ophélie Le Chapelain
- Faculté de Pharmacie de Paris, Université Paris Cité, Inserm UMR-S 1144 -Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, Paris, 75006, France
| | - Soumaya Jadoui
- Université Paris Cité, INSERM UMR 1148, LVTS, Paris, F-75018, France
| | - Angèle Gros
- Université Paris Cité, INSERM UMR 1148, LVTS, Paris, F-75018, France
| | - Samir Barbaria
- Université Paris Cité, INSERM UMR 1148, LVTS, Paris, F-75018, France
| | | | - Véronique Ollivier
- Faculté de Pharmacie de Paris, Université Paris Cité, Inserm UMR-S 1144 -Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, Paris, 75006, France
- Université Paris Cité, INSERM UMR 1148, LVTS, Paris, F-75018, France
| | - Sébastien Dupont
- Faculté de Pharmacie de Paris, Université Paris Cité, Inserm UMR-S 1144 -Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, Paris, 75006, France
| | - Mialitiana Solo Nomenjanahary
- Faculté de Pharmacie de Paris, Université Paris Cité, Inserm UMR-S 1144 -Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, Paris, 75006, France
| | - Sabrina Mavouna
- Faculté de Pharmacie de Paris, Université Paris Cité, Inserm UMR-S 1144 -Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, Paris, 75006, France
| | - Jasmina Rogozarski
- Faculté de Pharmacie de Paris, Université Paris Cité, Inserm UMR-S 1144 -Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, Paris, 75006, France
| | - Marie-Anne Mawhin
- Université Paris Cité, INSERM UMR 1148, LVTS, Paris, F-75018, France
| | | | - Sandrine Delbosc
- Université Paris Cité, INSERM UMR 1148, LVTS, Paris, F-75018, France
| | | | - Bernhard Nieswandt
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Pierre H Mangin
- Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, Etablissement Français du Sang Grand-Est, Unité Mixte de Recherche-S1255, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, F-67065, France
| | - Yacine Boulaftali
- Université Paris Cité, INSERM UMR 1148, LVTS, Paris, F-75018, France
| | - Benoit Ho-Tin-Noé
- Faculté de Pharmacie de Paris, Université Paris Cité, Inserm UMR-S 1144 -Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, Paris, 75006, France.
| |
Collapse
|
2
|
Amoafo EB, Entsie P, Kang Y, Canobbio I, Liverani E. Platelet P2Y 12 signalling pathway in the dysregulated immune response during sepsis. Br J Pharmacol 2024; 181:532-546. [PMID: 37525937 PMCID: PMC10830899 DOI: 10.1111/bph.16207] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/04/2023] [Accepted: 07/19/2023] [Indexed: 08/02/2023] Open
Abstract
Sepsis is a complicated pathological condition in response to severe infection. It is characterized by a strong systemic inflammatory response, where multiple components of the immune system are involved. Currently, there is no treatment for sepsis. Blood platelets are known for their role in haemostasis, but they also participate in inflammation through cell-cell interaction and the secretion of inflammatory mediators. Interestingly, an increase in platelet activation, secretion, and aggregation with other immune cells (such as monocytes, T-lymphocytes and neutrophils) has been detected in septic patients. Therefore, antiplatelet therapy in terms of P2Y12 antagonists has been evaluated as a possible treatment for sepis. It was found that blocking P2Y12 receptors decreased platelet marker expression and limited attachment to immune cells in some studies, but not in others. This review addresses the role of platelets in sepsis and discusses whether antagonizing P2Y12 signalling pathways can alter the disease outcome. Challenges in studying P2Y12 antagonists in sepsis also are discussed. LINKED ARTICLES: This article is part of a themed issue on Platelet purinergic receptor and non-thrombotic disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.4/issuetoc.
Collapse
Affiliation(s)
- Emmanuel Boadi Amoafo
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, USA
| | - Philomena Entsie
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, USA
| | - Ying Kang
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, USA
| | - Ilaria Canobbio
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Elisabetta Liverani
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
3
|
Manole CG, Soare C, Ceafalan LC, Voiculescu VM. Platelet-Rich Plasma in Dermatology: New Insights on the Cellular Mechanism of Skin Repair and Regeneration. Life (Basel) 2023; 14:40. [PMID: 38255655 PMCID: PMC10817627 DOI: 10.3390/life14010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
The skin's recognised functions may undergo physiological alterations due to ageing, manifesting as varying degrees of facial wrinkles, diminished tautness, density, and volume. Additionally, these functions can be disrupted (patho)physiologically through various physical and chemical injuries, including surgical trauma, accidents, or chronic conditions like ulcers associated with diabetes mellitus, venous insufficiency, or obesity. Advancements in therapeutic interventions that boost the skin's innate regenerative abilities could significantly enhance patient care protocols. The application of Platelet-Rich Plasma (PRP) is widely recognized for its aesthetic and functional benefits to the skin. Yet, the endorsement of PRP's advantages often borders on the dogmatic, with its efficacy commonly ascribed solely to the activation of fibroblasts by the factors contained within platelet granules. PRP therapy is a cornerstone of regenerative medicine which involves the autologous delivery of conditioned plasma enriched by platelets. This is achieved by centrifugation, removing erythrocytes while retaining platelets and their granules. Despite its widespread use, the precise sequences of cellular activation, the specific cellular players, and the molecular machinery that drive PRP-facilitated healing are still enigmatic. There is still a paucity of definitive and robust studies elucidating these mechanisms. In recent years, telocytes (TCs)-a unique dermal cell population-have shown promising potential for tissue regeneration in various organs, including the dermis. TCs' participation in neo-angiogenesis, akin to that attributed to PRP, and their role in tissue remodelling and repair processes within the interstitia of several organs (including the dermis), offer intriguing insights. Their potential to contribute to, or possibly orchestrate, the skin regeneration process following PRP treatment has elicited considerable interest. Therefore, pursuing a comprehensive understanding of the cellular and molecular mechanisms at work, particularly those involving TCs, their temporal involvement in structural recovery following injury, and the interconnected biological events in skin wound healing and regeneration represents a compelling field of study.
Collapse
Affiliation(s)
- Catalin G. Manole
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Ultrastructural Pathology Laboratory, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Cristina Soare
- Department of Oncological Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Laura Cristina Ceafalan
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Cell Biology, Neurosciences and Experimental Myology Laboratory, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Vlad M. Voiculescu
- Department of Oncological Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
4
|
de Sousa DMB, Benedetti A, Altendorfer B, Mrowetz H, Unger MS, Schallmoser K, Aigner L, Kniewallner KM. Immune-mediated platelet depletion augments Alzheimer's disease neuropathological hallmarks in APP-PS1 mice. Aging (Albany NY) 2023; 15:630-649. [PMID: 36734880 PMCID: PMC9970308 DOI: 10.18632/aging.204502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
In Alzheimer's disease (AD), platelets become dysfunctional and might contribute to amyloid beta deposition. Here, we depleted platelets in one-year-old APP Swedish PS1 dE9 (APP-PS1) transgenic mice for five days, using intraperitoneal injections of an anti-CD42b antibody, and assessed changes in cerebral amyloidosis, plaque-associated neuritic dystrophy and gliosis. In APP-PS1 female mice, platelet depletion shifted amyloid plaque size distribution towards bigger plaques and increased neuritic dystrophy in the hippocampus. In platelet-depleted females, plaque-associated Iba1+ microglia had lower amounts of fibrillar amyloid beta cargo and GFAP+ astrocytic processes showed a higher overlap with thioflavin S+ amyloid plaques. In contrast to the popular hypothesis that platelets foster plaque pathology, our data suggest that platelets might limit plaque growth and attenuate plaque-related neuritic dystrophy at advanced stages of amyloid plaque pathology in APP-PS1 female mice. Whether the changes in amyloid plaque pathology are due to a direct effect on amyloid beta deposition or are a consequence of altered glial function needs to be further elucidated.
Collapse
Affiliation(s)
- Diana M. Bessa de Sousa
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Ariane Benedetti
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria,Institute of Experimental Neuroregeneration, Paracelsus Medical University, Salzburg, Austria
| | - Barbara Altendorfer
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Heike Mrowetz
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Michael S. Unger
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Katharina Schallmoser
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria,Department of Transfusion Medicine, University Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Kathrin Maria Kniewallner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
5
|
Platelet-Derived Mitochondria Attenuate 5-FU-Induced Injury to Bone-Associated Mesenchymal Stem Cells. Stem Cells Int 2023; 2023:7482546. [PMID: 36756493 PMCID: PMC9902133 DOI: 10.1155/2023/7482546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/27/2022] [Accepted: 11/25/2022] [Indexed: 02/03/2023] Open
Abstract
Background Myelosuppression is a common condition during chemotherapy. Bone-associated mesenchymal stem cells (BA-MSCs) play an essential role in the composition of the hematopoietic microenvironment and support hematopoietic activity. However, chemotherapy-induced damage to BA-MSCs is rarely studied. Recent studies have shown that platelets promote the wound-healing capability of MSCs by mitochondrial transfer. Therefore, this study is aimed at investigating the chemotherapy-induced damage to BA-MSCs and the therapeutic effect of platelet-derived mitochondria. Material/Methods. We established in vivo and in vitro BA-MSC chemotherapy injury models using the chemotherapy agent 5-fluorouracil (5-FU). Changes in the mitochondrial dynamics were detected by transmission electron microscopy, and the expression of mitochondrial fusion and fission genes was analyzed by qRT-PCR. In addition, mitochondrial functions were also explored by flow cytometry and luminometer. Platelet-derived mitochondria were incubated with 5-FU-damaged BA-MSCs to repair the injury, and BA-MSC functional changes were examined to assess the therapy efficacy. The mechanism of treatment was explored by studying the expression of mitochondrial fission and fusion genes and hematopoietic regulatory factor genes in BA-MSCs. Results Stimulation with 5-FU increased the apoptosis and suppressed cell cycle progression of BA-MSCs both in vivo and in vitro. In addition, 5-FU chemotherapy inhibited the hematopoietic regulatory ability and disrupted the mitochondrial dynamics and functions of BA-MSCs. The mitochondrial membrane potential and ATP content of 5-FU-injured BA-MSCs were decreased. Interestingly, when platelet-derived mitochondria were transferred to BA-MSCs, the 5-FU-induced apoptosis was alleviated, and the hematopoietic regulatory ability of 5-FU-injured BA-MSCs was effectively improved by upregulating the expression of mitochondrial fusion genes and hematopoietic regulatory factor genes. Conclusion BA-MSCs were severely damaged by 5-FU chemotherapy both in vivo and in vitro. Meanwhile, platelet-derived mitochondria could attenuate the 5-FU-induced injury to BA-MSCs, which provides future research directions for exploring the treatment strategies for chemotherapy-injured BA-MSCs and establishes a research basis for related fields.
Collapse
|
6
|
Smeda M, Stojak M, Przyborowski K, Sternak M, Suraj-Prazmowska J, Kus K, Derszniak K, Jasztal A, Kij A, Kurpinska A, Kieronska-Rudek A, Wojnar-Lason K, Buczek E, Mohaissen T, Chlopicki S. Direct Thrombin Inhibitor Dabigatran Compromises Pulmonary Endothelial Integrity in a Murine Model of Breast Cancer Metastasis to the Lungs; the Role of Platelets and Inflammation-Associated Haemostasis. Front Pharmacol 2022; 13:834472. [PMID: 35295330 PMCID: PMC8918823 DOI: 10.3389/fphar.2022.834472] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Activation of the coagulation cascade favours metastatic spread, but antithrombotic therapy might also have detrimental effects on cancer progression. In this study, we characterized the effects of dabigatran, a direct reversible thrombin inhibitor, on the pulmonary endothelial barrier and metastatic spread in a murine model of breast cancer metastasis. Dabigatran etexilate (100 mg kg−1) was administered to mice twice daily by oral gavage. Pulmonary metastasis, pulmonary endothelium permeability in vivo, and platelet reactivity were evaluated after intravenous injection of 4T1 breast cancer cells into BALB/c mice. The effect of dabigatran on platelet-dependent protection of pulmonary endothelial barrier in the presence of an inflammatory stimulus was also verified in vitro using human lung microvascular endothelial cell (HLMVEC) cultures. Dabigatran-treated mice harbored more metastases in their lungs and displayed increased pulmonary endothelium permeability after cancer cell injection. It was not associated with altered lung fibrin deposition, changes in INFγ, or complement activation. In the in vitro model of the pulmonary endothelial barrier, dabigatran inhibited platelet-mediated protection of pulmonary endothelium. In a murine model of breast cancer metastasis, dabigatran treatment promoted pulmonary metastasis by the inhibition of platelet-dependent protection of pulmonary endothelial barrier integrity.
Collapse
Affiliation(s)
- Marta Smeda
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
- *Correspondence: Marta Smeda, ; Stefan Chlopicki,
| | - Marta Stojak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Kamil Przyborowski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Magdalena Sternak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Joanna Suraj-Prazmowska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Kamil Kus
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Katarzyna Derszniak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Agnieszka Kij
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Anna Kurpinska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Anna Kieronska-Rudek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
- Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Kamila Wojnar-Lason
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
- Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Elzbieta Buczek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Tasnim Mohaissen
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
- Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
- Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
- *Correspondence: Marta Smeda, ; Stefan Chlopicki,
| |
Collapse
|
7
|
Platelets in COVID-19 disease: friend, foe, or both? Pharmacol Rep 2022; 74:1182-1197. [PMID: 36463349 PMCID: PMC9726679 DOI: 10.1007/s43440-022-00438-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 12/07/2022]
Abstract
Immuno-thrombosis of COVID-19 results in the activation of platelets and coagulopathy. Antiplatelet therapy has been widely used in COVID-19 patients to prevent thrombotic events. However, recent analysis of clinical trials does not support the major effects of antiplatelet therapy on mortality in hospitalized COVID-19 patients, despite the indisputable evidence for an increased risk of thrombotic complications in COVID-19 disease. This apparent paradox calls for an explanation. Platelets have an important role in sensing and orchestrating host response to infection, and several platelet functions related to host defense response not directly related to their well-known hemostatic function are emerging. In this paper, we aim to review the evidence supporting the notion that platelets have protective properties in maintaining endothelial barrier integrity in the course of an inflammatory response, and this role seems to be of particular importance in the lung. It might, thus, well be that the inhibition of platelet function, if affecting the protective aspect of platelet activity, might diminish clinical benefits resulting from the inhibition of the pro-thrombotic phenotype of platelets in immuno-thrombosis of COVID-19. A better understanding of the platelet-dependent mechanisms involved in the preservation of the endothelial barrier is necessary to design the antiplatelet therapeutic strategies that inhibit the pro-thrombotic activity of platelets without effects on the vaso-protective function of platelets safeguarding the pulmonary endothelial barrier during multicellular host defense in pulmonary circulation.
Collapse
|