1
|
Haynes LM, Huttinger ZM, Yee A, Kretz CA, Siemieniak DR, Lawrence DA, Ginsburg D. Deep mutational scanning and massively parallel kinetics of plasminogen activator inhibitor-1 functional stability to probe its latency transition. J Biol Chem 2022; 298:102608. [PMID: 36257408 PMCID: PMC9667310 DOI: 10.1016/j.jbc.2022.102608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1), a member of the serine protease inhibitor superfamily of proteins, is unique among serine protease inhibitors for exhibiting a spontaneous conformational change to a latent or inactive state. The functional half-life for this transition at physiologic temperature and pH is ∼1 to 2 h. To better understand the molecular mechanisms underlying this transition, we now report on the analysis of a comprehensive PAI-1 variant library expressed on filamentous phage and selected for functional stability after 48 h at 37 °C. Of the 7201 possible single amino acid substitutions in PAI-1, we identified 439 that increased the functional stability of PAI-1 beyond that of the WT protein. We also found 1549 single amino acid substitutions that retained inhibitory activity toward the canonical target protease of PAI-1 (urokinase-like plasminogen activator), whereas exhibiting functional stability less than or equal to that of WT PAI-1. Missense mutations that increase PAI-1 functional stability are concentrated in highly flexible regions within the PAI-1 structure. Finally, we developed a method for simultaneously measuring the functional half-lives of hundreds of PAI-1 variants in a multiplexed, massively parallel manner, quantifying the functional half-lives for 697 single missense variants of PAI-1 by this approach. Overall, these findings provide novel insight into the mechanisms underlying the latency transition of PAI-1 and provide a database for interpreting human PAI-1 genetic variants.
Collapse
Affiliation(s)
- Laura M Haynes
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Zachary M Huttinger
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA; Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Andrew Yee
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Colin A Kretz
- Department of Medicine, McMaster University and the Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
| | - David R Siemieniak
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA; Howard Hughes Medical Institute
| | - Daniel A Lawrence
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - David Ginsburg
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA; Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA; Howard Hughes Medical Institute; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA; Departments of Human Genetics and Pediatrics, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
2
|
Arruda VR, Lillicrap D, Herzog RW. Immune complications and their management in inherited and acquired bleeding disorders. Blood 2022; 140:1075-1085. [PMID: 35793465 PMCID: PMC9461471 DOI: 10.1182/blood.2022016530] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023] Open
Abstract
Disorders of coagulation, resulting in serious risks for bleeding, may be caused by autoantibody formation or by mutations in genes encoding coagulation factors. In the latter case, antidrug antibodies (ADAs) may form against the clotting factor protein drugs used in replacement therapy, as is well documented in the treatment of the X-linked disease hemophilia. Such neutralizing antibodies against factors VIII or IX substantially complicate treatment. Autoantibody formation against factor VIII leads to acquired hemophilia. Although rare, antibody formation may occur in the treatment of other clotting factor deficiencies (eg, against von Willebrand factor [VWF]). The main strategies that have emerged to address these immune responses include (1) clinical immune tolerance induction (ITI) protocols; (2) immune suppression therapies (ISTs); and (3) the development of drugs that can improve hemostasis while bypassing the antibodies against coagulation factors altogether (some of these nonfactor therapies/NFTs are antibody-based, but they are distinct from traditional immunotherapy as they do not target the immune system). Choice of immune or alternative therapy and criteria for selection of a specific regimen for inherited and autoimmune bleeding disorders are explained. ITI serves as an important proof of principle that antigen-specific immune tolerance can be achieved in humans through repeated antigen administration, even in the absence of immune suppression. Finally, novel immunotherapy approaches that are still in the preclinical phase, such as cellular (for instance, regulatory T cell [Treg]) immunotherapies, gene therapy, and oral antigen administration, are discussed.
Collapse
Affiliation(s)
- Valder R Arruda
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics at The Children's Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA
| | - David Lillicrap
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada; and
| | - Roland W Herzog
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
3
|
Huttinger ZM, Haynes LM, Yee A, Kretz CA, Holding ML, Siemieniak DR, Lawrence DA, Ginsburg D. Deep mutational scanning of the plasminogen activator inhibitor-1 functional landscape. Sci Rep 2021; 11:18827. [PMID: 34552126 PMCID: PMC8458277 DOI: 10.1038/s41598-021-97871-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/31/2021] [Indexed: 11/09/2022] Open
Abstract
The serine protease inhibitor (SERPIN) plasminogen activator inhibitor-1 (PAI-1) is a key regulator of the fibrinolytic system, inhibiting the serine proteases tissue- and urokinase-type plasminogen activator (tPA and uPA, respectively). Missense variants render PAI-1 non-functional through misfolding, leading to its turnover as a protease substrate, or to a more rapid transition to the latent/inactive state. Deep mutational scanning was performed to evaluate the impact of amino acid sequence variation on PAI-1 inhibition of uPA using an M13 filamentous phage display system. Error prone PCR was used to construct a mutagenized PAI-1 library encompassing ~ 70% of potential single amino acid substitutions. The relative effects of 27% of all possible missense variants on PAI-1 inhibition of uPA were determined using high-throughput DNA sequencing. 826 missense variants demonstrated conserved inhibitory activity while 1137 resulted in loss of PAI-1 inhibitory function. The least evolutionarily conserved regions of PAI-1 were also identified as being the most tolerant of missense mutations. The results of this screen confirm previous low-throughput mutational studies, including those of the reactive center loop. These data provide a powerful resource for explaining structure-function relationships for PAI-1 and for the interpretation of human genomic sequence variants.
Collapse
Affiliation(s)
- Zachary M Huttinger
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.,Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Otolaryngology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Laura M Haynes
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Andrew Yee
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Colin A Kretz
- Department of Medicine, McMaster University and the Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
| | | | - David R Siemieniak
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.,Howard Hughes Medical Institute, Ann Arbor, MI, USA
| | - Daniel A Lawrence
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David Ginsburg
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA. .,Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA. .,Howard Hughes Medical Institute, Ann Arbor, MI, USA. .,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA. .,Departments of Human Genetics and Pediatrics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|