1
|
Yu N, Fang R, Ding Z, Xu X, Zhang J. Preparation and structural characterization of a sulfated octasaccharide with heparin-like anticoagulant activity. Carbohydr Polym 2025; 347:122782. [PMID: 39487001 DOI: 10.1016/j.carbpol.2024.122782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 11/04/2024]
Abstract
Heparins are sulfated polysaccharides with a heterogeneous mixture derived from animal tissues, subject to supply limitations and the risk of animal virus residues. Patients using heparin also face the risks of spontaneous bleeding and thrombocytopenia. Here we reported an efficient riclinoctaose-based approach for rapid chemical synthesis of a structurally defined heparin-like anticoagulant sulfated octasaccharide (SRO). We used sulfur trioxide-pyridine, sulfur trioxide-trimethylamine, and sulfur trioxide-triethylamine complexes as solvents for one-pot O-sulfation and determined the optimal conditions for synthesizing SRO. Sulfur trioxide-trimethylamine provided reasonable control over the degree of substitution between 1.85 and 1.88, revealing a single molecule with a theoretical molecular weight of 2952.96 g/mol. The structural features of the SRO were carried out by Fourier transform infrared spectroscopy and one- and two- dimensional 1H and 13C NMR analysis, revealing sulfation repeatedly present at the fixed positions of C-6/C-2/C-3 and reducing terminals. The anticoagulant activity of SRO was demonstrated by efficiently blocking coagulation in the blood of mice and human. SRO dose-dependently decreased ferric chloride-induced experimental thrombosis in mice. Like heparin, SRO specifically inhibits coagulation factor Xa, but significantly reduces the risk of bleeding compared to heparin. Therefore, we named it octaparin. These results support that octaparin is expected to replace animal-sourced heparin.
Collapse
Affiliation(s)
- Ning Yu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China; Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, 210094, China
| | - Rui Fang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China; Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, 210094, China
| | - Zhao Ding
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China; Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, 210094, China
| | - Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China; Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, 210094, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China; Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, 210094, China.
| |
Collapse
|
2
|
Bonifay A, Cointe S, Plantureux L, Lacroix R, Dignat-George F. Update on Tissue Factor Detection in Blood in 2024: A Narrative Review. Hamostaseologie 2024; 44:368-376. [PMID: 39442509 DOI: 10.1055/a-2381-6854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Tissue factor (TF) is a transmembrane protein essential for hemostasis. Different forms of active TF circulate in the blood, either as a component of blood cells and extracellular vesicles (EVs) or as a soluble plasma protein. Accumulating experimental and clinical evidence suggests that TF plays an important role in thrombosis. Many in-house and commercially available assays have been developed to measure TF-dependent procoagulant activity or antigen in blood and have shown promising results for the prediction of disease outcomes or the occurrence of thrombosis events in diseases such as cancer or infectious coagulopathies. This review addresses the different assays that have been published for measuring circulating TF antigen and/or activity in whole blood, cell-free plasma, and EVs and discusses the main preanalytical and analytical parameters that impact results and their interpretation, highlighting their strengths and limitations. In the recent decade, EVTF assays have been significantly developed. Among them, functional assays that use a blocking anti-TF antibody or immunocapture to measure EVTF activity have higher specificity and sensitivity than antigen assays. However, there is still a high variability between assays. Standardization and automatization are prerequisites for the measurement of EVTF in clinical laboratories.
Collapse
Affiliation(s)
- Amandine Bonifay
- Aix-Marseille University, C2VN, INSERM 1263, INRAE 1260, Marseille, France
- Department of Hematology, Biogénopôle, CHU La Timone, APHM, Marseille, France
| | - Sylvie Cointe
- Aix-Marseille University, C2VN, INSERM 1263, INRAE 1260, Marseille, France
- Department of Hematology, Biogénopôle, CHU La Timone, APHM, Marseille, France
| | - Léa Plantureux
- Aix-Marseille University, C2VN, INSERM 1263, INRAE 1260, Marseille, France
| | - Romaric Lacroix
- Aix-Marseille University, C2VN, INSERM 1263, INRAE 1260, Marseille, France
- Department of Hematology, Biogénopôle, CHU La Timone, APHM, Marseille, France
| | - Françoise Dignat-George
- Aix-Marseille University, C2VN, INSERM 1263, INRAE 1260, Marseille, France
- Department of Hematology, Biogénopôle, CHU La Timone, APHM, Marseille, France
| |
Collapse
|
3
|
Bonifay A, Mackman N, Hisada Y, Sachetto ATA, Hau C, Gray E, Hogwood J, Aharon A, Badimon L, Barile L, Baudar J, Beckmann L, Benedikter B, Bolis S, Bouriche T, Brambilla M, Burrello J, Camera M, Campello E, Ettelaie C, Faille D, Featherby S, Franco C, Guldenpfennig M, Hansen JB, Judicone C, Kim Y, Kristensen SR, Laakmann K, Langer F, Latysheva N, Lucien F, de Menezes EM, Mullier F, Norris P, Nybo J, Orbe J, Osterud B, Paramo JA, Radu CM, Roncal C, Samadi N, Snir O, Suades R, Wahlund C, Chareyre C, Abdili E, Martinod K, Thaler J, Dignat-George F, Nieuwland R, Lacroix R. Comparison of assays measuring extracellular vesicle tissue factor in plasma samples: communication from the ISTH SSC Subcommittee on Vascular Biology. J Thromb Haemost 2024; 22:2910-2921. [PMID: 38925490 DOI: 10.1016/j.jtha.2024.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/23/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Scientific and clinical interest in extracellular vesicles (EVs) is growing. EVs that expose tissue factor (TF) bind factor VII/VIIa and can trigger coagulation. Highly procoagulant TF-exposing EVs are detectable in the circulation in various diseases, such as sepsis, COVID-19, or cancer. Many in-house and commercially available assays have been developed to measure EV-TF activity and antigen, but only a few studies have compared some of these assays. OBJECTIVES The International Society on Thrombosis and Haemostasis Scientific and Standardization Committee Subcommittee on Vascular Biology initiated a multicenter study to compare the sensitivity, specificity, and reproducibility of these assays. METHODS Platelet-depleted plasma samples were prepared from blood of healthy donors. The plasma samples were spiked either with EVs from human milk or EVs from TF-positive and TF-negative cell lines. Plasma was also prepared from whole human blood with or without lipopolysaccharide stimulation. Twenty-one laboratories measured EV-TF activity and antigen in the prepared samples using their own assays representing 18 functional and 9 antigenic assays. RESULTS There was a large variability in the absolute values for the different EV-TF activity and antigen assays. Activity assays had higher specificity and sensitivity compared with antigen assays. In addition, there was a large intra-assay and interassay variability. Functional assays that used a blocking anti-TF antibody or immunocapture were the most specific and sensitive. Activity assays that used immunocapture had a lower coefficient of variation compared with assays that isolated EVs by high-speed centrifugation. CONCLUSION Based on this multicenter study, we recommend measuring EV-TF using a functional assay in the presence of an anti-TF antibody.
Collapse
Affiliation(s)
- Amandine Bonifay
- Aix-Marseille University, C2VN, INSERM 1263, INRAE1260, Marseille, France; Department of Hematology and Vascular Biology, CHU La Conception, APHM, Marseille, France
| | - Nigel Mackman
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yohei Hisada
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ana Teresa Azevedo Sachetto
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Chi Hau
- Laboratory of Experimental Clinical Chemistry, and Amsterdam Vesicle Center, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Elaine Gray
- National Institute for Biological Standards and Control, Potter's Bar, Hertfordshire, United Kingdom
| | - John Hogwood
- National Institute for Biological Standards and Control, Potter's Bar, Hertfordshire, United Kingdom
| | - Anat Aharon
- Hematology Research Laboratory, Department of Hematology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lina Badimon
- Cardiovascular ICCC Program, Research Institute Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain; Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Lucio Barile
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Justine Baudar
- Université Catholique de Louvain, CHU UCL NAMUR, Namur Thrombosis and Hemostasis Center (NTHC), Yvoir, Belgium
| | - Lennart Beckmann
- Department of Hematology and Oncology, University Cancer Center Hamburg (UCCH), University Medical Center Eppendorf, Hamburg, Germany
| | - Birke Benedikter
- Institute for Lung Research, Universities of Giessen and Marburg Lung Centre, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany; University Eye Clinic Maastricht, MHeNs School for Mental Health and Neuroscience, Maastricht University Medical Center + (MUMC+), Maastricht, the Netherlands
| | - Sara Bolis
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Tarik Bouriche
- Research and Technology Department, BioCytex, Marseille, France
| | | | - Jacopo Burrello
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Marina Camera
- Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elena Campello
- Department of Medicine, University of Padova, Padua, Italy
| | - Camille Ettelaie
- Biomedical Science, University of Hull/HYMS, Cottingham Road, Hull, United Kingdom
| | - Dorothée Faille
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France; Laboratoire d'Hématologie, AP-HP, Hôpital Bichat, Paris, France
| | - Sophie Featherby
- Biomedical Science, University of Hull/HYMS, Cottingham Road, Hull, United Kingdom
| | - Corentin Franco
- Research and Technology Department, BioCytex, Marseille, France
| | - Maite Guldenpfennig
- Université Catholique de Louvain, CHU UCL NAMUR, Namur Thrombosis and Hemostasis Center (NTHC), Yvoir, Belgium
| | - John-Bjarne Hansen
- Thrombosis Research Group (TREC), Institute of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway; Thrombosis Research Center (TREC), Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | | | - Yohan Kim
- epartment of Urology, Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| | - Soren Risom Kristensen
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Katrin Laakmann
- Institute for Lung Research, Universities of Giessen and Marburg Lung Centre, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Florian Langer
- Department of Hematology and Oncology, University Cancer Center Hamburg (UCCH), University Medical Center Eppendorf, Hamburg, Germany
| | - Nadezhda Latysheva
- Thrombosis Research Group (TREC), Institute of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Fabrice Lucien
- epartment of Urology, Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| | - Erika Marques de Menezes
- Vitalant Research Institute, San Francisco, California, USA; Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - François Mullier
- Université Catholique de Louvain, CHU UCL NAMUR, Namur Thrombosis and Hemostasis Center (NTHC), Yvoir, Belgium
| | - Philip Norris
- Vitalant Research Institute, San Francisco, California, USA; Department of Laboratory Medicine, University of California, San Francisco, California, USA; Department of Medicine, UCSF, San Francisco, California, USA
| | - Jette Nybo
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Josune Orbe
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, Cima Universidad de Navarra, Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain; RICORS-Cerebrovascular Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Bjarne Osterud
- Thrombosis Research Group (TREC), Institute of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Jose A Paramo
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain; Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, Cima Universidad de Navarra, Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Claudia M Radu
- Department of Medicine, University of Padova, Padua, Italy
| | - Carmen Roncal
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain; Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, Cima Universidad de Navarra, Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain; RICORS-Cerebrovascular Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Nazanin Samadi
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Omri Snir
- Thrombosis Research Group (TREC), Institute of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Rosa Suades
- Cardiovascular ICCC Program, Research Institute Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain; Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Casper Wahlund
- Thrombosis Research Group (TREC), Institute of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Corinne Chareyre
- Aix-Marseille University, C2VN, INSERM 1263, INRAE1260, Marseille, France
| | - Evelyne Abdili
- Department of Hematology and Vascular Biology, CHU La Conception, APHM, Marseille, France
| | - Kimberly Martinod
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Johannes Thaler
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Françoise Dignat-George
- Aix-Marseille University, C2VN, INSERM 1263, INRAE1260, Marseille, France; Department of Hematology and Vascular Biology, CHU La Conception, APHM, Marseille, France.
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, and Amsterdam Vesicle Center, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Romaric Lacroix
- Aix-Marseille University, C2VN, INSERM 1263, INRAE1260, Marseille, France; Department of Hematology and Vascular Biology, CHU La Conception, APHM, Marseille, France
| |
Collapse
|
4
|
Guerreiro EM, Kruglik SG, Swamy S, Latysheva N, Østerud B, Guigner JM, Sureau F, Bonneau S, Kuzmin AN, Prasad PN, Hansen JB, Hellesø OG, Snir O. Extracellular vesicles from activated platelets possess a phospholipid-rich biomolecular profile and enhance prothrombinase activity. J Thromb Haemost 2024; 22:1463-1474. [PMID: 38266680 DOI: 10.1016/j.jtha.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 12/12/2023] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Extracellular vesicles (EVs), in particular those derived from activated platelets, are associated with a risk of future venous thromboembolism. OBJECTIVES To study the biomolecular profile and function characteristics of EVs from control (unstimulated) and activated platelets. METHODS Biomolecular profiling of single or very few (1-4) platelet-EVs (control/stimulated) was performed by Raman tweezers microspectroscopy. The effects of such EVs on the coagulation system were comprehensively studied. RESULTS Raman tweezers microspectroscopy of platelet-EVs followed by biomolecular component analysis revealed for the first time 3 subsets of EVs: (i) protein rich, (ii) protein/lipid rich, and (iii) lipid rich. EVs from control platelets presented a heterogeneous biomolecular profile, with protein-rich EVs being the main subset (58.7% ± 3.5%). Notably, the protein-rich subset may contain a minor contribution from other extracellular particles, including protein aggregates. In contrast, EVs from activated platelets were more homogeneous, dominated by the protein/lipid-rich subset (>85%), and enriched in phospholipids. Functionally, EVs from activated platelets increased thrombin generation by 52.4% and shortened plasma coagulation time by 34.6% ± 10.0% compared with 18.6% ± 13.9% mediated by EVs from control platelets (P = .015). The increased procoagulant activity was predominantly mediated by phosphatidylserine. Detailed investigation showed that EVs from activated platelets increased the activity of the prothrombinase complex (factor Va:FXa:FII) by more than 6-fold. CONCLUSION Our study reports a novel quantitative biomolecular characterization of platelet-EVs possessing a homogenous and phospholipid-enriched profile in response to platelet activation. Such characteristics are accompanied with an increased phosphatidylserine-dependent procoagulant activity. Further investigation of a possible role of platelet-EVs in the pathogenesis of venous thromboembolism is warranted.
Collapse
Affiliation(s)
- Eduarda M Guerreiro
- Thrombosis Research Group, Institute of Clinical Medicine, Univesitet i Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Sergei G Kruglik
- Laboratoire Jean Perrin, Institut de Biologie Paris-Seine, Sorbonne Université, Centre National de la Recherche Scientifique, Paris, France.
| | - Samantha Swamy
- Thrombosis Research Group, Institute of Clinical Medicine, Univesitet i Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Nadezhda Latysheva
- Thrombosis Research Group, Institute of Clinical Medicine, Univesitet i Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Bjarne Østerud
- Thrombosis Research Group, Institute of Clinical Medicine, Univesitet i Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Jean-Michel Guigner
- L'Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Muséum National d'Histoire Naturelle, Paris, France
| | - Franck Sureau
- Laboratoire Jean Perrin, Institut de Biologie Paris-Seine, Sorbonne Université, Centre National de la Recherche Scientifique, Paris, France
| | - Stephanie Bonneau
- Laboratoire Jean Perrin, Institut de Biologie Paris-Seine, Sorbonne Université, Centre National de la Recherche Scientifique, Paris, France
| | - Andrey N Kuzmin
- Institute for Lasers, Photonics and Biophotonics and the Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Paras N Prasad
- Institute for Lasers, Photonics and Biophotonics and the Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - John-Bjarne Hansen
- Thrombosis Research Group, Institute of Clinical Medicine, Univesitet i Tromsø - The Arctic University of Norway, Tromsø, Norway; Thrombosis Research Center, Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Olav Gaute Hellesø
- Department of Physics and Technology, Univesitet i Tromsø- The Arctic University of Norway, Tromsø, Norway
| | - Omri Snir
- Thrombosis Research Group, Institute of Clinical Medicine, Univesitet i Tromsø - The Arctic University of Norway, Tromsø, Norway; Thrombosis Research Center, Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway.
| |
Collapse
|
5
|
Sun Y, Wang Z, Li J, Wang T, Tan Y. Proteomics analysis of plasm exosomes in early pregnancy among normal pregnant women and those with antiphospholipid syndrome. Heliyon 2024; 10:e29224. [PMID: 38655308 PMCID: PMC11035995 DOI: 10.1016/j.heliyon.2024.e29224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/15/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction Antiphospholipid syndrome (APS) is an autoimmune disorder associated with thrombosis and adverse obstetric outcomes. Early diagnosis and intervention can improve pregnancy outcomes to some extent, but current results are unsatisfactory. Exosomes, containing biomacromolecules relevant to reproduction, play essential roles in pregnancy. However, research progress on their involvement in APS remains limited. Objectives This study aims to investigate protein profile changes in plasma exosomes and identify potential biomarkers for obstetric APS. Methods We employed tandem mass tag (TMT) markers to analyze exosome protein profiles from 6 healthy early pregnant women and 6 early-stage APS patients. Quantitative proteomics analysis was conducted using the Maxquant search engine. Results Differential expression analysis identified 51 upregulated and 22 downregulated proteins in plasma exosomes from early pregnant women with APS, such as serpin peptidase inhibitor C1/A1/A7, apolipoprotein 1/2, orosomucoid 1/2 and apolipoprotein H. Kyoto Encyclopedia of Genes and Genomes analysis shows that differentially expressed proteins are enriched in the PPAR signaling pathway and staphylococcus aureus infection pathway. Enrichment analysis indicated associations with glycerolipid biosynthesis, vitamin transport, and negative regulation of very-low-density lipoprotein particle remodeling. Conclusion Our study highlights alterations in the protein profiles of plasma exosomes in APS pregnant patients and proposes potential biomarkers, offering insights for early diagnosis and treatment and improving reproductive outcomes.
Collapse
Affiliation(s)
- Yeli Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Zheng Wang
- Department of Integrated Traditional Chinese Medicine (TCM) & Western Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Junyuan Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Tongshuai Wang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yuan Tan
- Department of Integrated Traditional Chinese Medicine (TCM) & Western Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| |
Collapse
|
6
|
Schaubmayr W, Hochreiter B, Hunyadi-Gulyas E, Riegler L, Schmidt K, Tiboldi A, Moser B, Klein KU, Krenn K, Scharbert G, Mohr T, Schmid JA, Spittler A, Tretter V. The Proteome of Extracellular Vesicles Released from Pulmonary Microvascular Endothelium Reveals Impact of Oxygen Conditions on Biotrauma. Int J Mol Sci 2024; 25:2415. [PMID: 38397093 PMCID: PMC10889365 DOI: 10.3390/ijms25042415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
The lung can experience different oxygen concentrations, low as in hypoxia, high as under supplemental oxygen therapy, or oscillating during intermittent hypoxia as in obstructive sleep apnea or intermittent hypoxia/hyperoxia due to cyclic atelectasis in the ventilated patient. This study aimed to characterize the oxygen-condition-specific protein composition of extracellular vesicles (EVs) released from human pulmonary microvascular endothelial cells in vitro to decipher their potential role in biotrauma using quantitative proteomics with bioinformatic evaluation, transmission electron microscopy, flow cytometry, and non-activated thromboelastometry (NATEM). The release of vesicles enriched in markers CD9/CD63/CD81 was enhanced under intermittent hypoxia, strong hyperoxia and intermittent hypoxia/hyperoxia. Particles with exposed phosphatidylserine were increased under intermittent hypoxia. A small portion of vesicles were tissue factor-positive, which was enhanced under intermittent hypoxia and intermittent hypoxia/hyperoxia. EVs from treatment with intermittent hypoxia induced a significant reduction of Clotting Time in NATEM analysis compared to EVs isolated after normoxic exposure, while after intermittent hypoxia/hyperoxia, tissue factor in EVs seems to be inactive. Gene set enrichment analysis of differentially expressed genes revealed that EVs from individual oxygen conditions potentially induce different biological processes such as an inflammatory response under strong hyperoxia and intermittent hypoxia/hyperoxia and enhancement of tumor invasiveness under intermittent hypoxia.
Collapse
Affiliation(s)
- Wolfgang Schaubmayr
- Department of Anesthesia, General Intensive Care and Pain Medicine, Medical University of Vienna, 1090 Vienna, Austria (B.H.); (K.K.)
| | - Beatrix Hochreiter
- Department of Anesthesia, General Intensive Care and Pain Medicine, Medical University of Vienna, 1090 Vienna, Austria (B.H.); (K.K.)
| | - Eva Hunyadi-Gulyas
- Laboratory of Proteomics Research, HUN-REN Biological Research Centre, 6726 Szeged, Hungary;
| | - Louise Riegler
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Katy Schmidt
- Core Facility of Cell Imaging and Ultrastructure Research, University of Vienna, 1090 Vienna, Austria
| | - Akos Tiboldi
- Department of Anesthesia, General Intensive Care and Pain Medicine, Medical University of Vienna, 1090 Vienna, Austria (B.H.); (K.K.)
| | - Bernhard Moser
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Klaus U. Klein
- Department of Anesthesia, General Intensive Care and Pain Medicine, Medical University of Vienna, 1090 Vienna, Austria (B.H.); (K.K.)
| | - Katharina Krenn
- Department of Anesthesia, General Intensive Care and Pain Medicine, Medical University of Vienna, 1090 Vienna, Austria (B.H.); (K.K.)
| | - Gisela Scharbert
- Department of Anesthesia, General Intensive Care and Pain Medicine, Medical University of Vienna, 1090 Vienna, Austria (B.H.); (K.K.)
| | - Thomas Mohr
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Johannes A. Schmid
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, 1090 Vienna, Austria;
| | - Andreas Spittler
- Department of Surgery and Core Facility Flow Cytometry, Medical University of Vienna, 1090 Vienna, Austria;
| | - Verena Tretter
- Department of Anesthesia, General Intensive Care and Pain Medicine, Medical University of Vienna, 1090 Vienna, Austria (B.H.); (K.K.)
| |
Collapse
|
7
|
Wahlund CJ, Çaglayan S, Czarnewski P, Hansen JB, Snir O. Sustained and intermittent hypoxia differentially modulate primary monocyte immunothrombotic responses to IL-1β stimulation. Front Immunol 2023; 14:1240597. [PMID: 37753073 PMCID: PMC10518394 DOI: 10.3389/fimmu.2023.1240597] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023] Open
Abstract
Venous thromboembolism (VTE) is a leading cause of preventable deaths in hospitals, and its incidence is not decreasing despite extensive efforts in clinical and laboratory research. Venous thrombi are primarily formed in the valve pockets of deep veins, where activated monocytes play a crucial role in bridging innate immune activation and hemostatic pathways through the production of inflammatory cytokines, chemokines, and tissue factor (TF) - a principal initiator of coagulation. In the valve pocket inflammation and hypoxia (sustained/intermittent) coexist, however their combined effects on immunothrombotic processes are poorly understood. Inflammation is strongly associated with VTE, while the additional contribution of hypoxia remains largely unexplored. To investigate this, we modelled the intricate conditions of the venous valve pocket using a state-of-the-art hypoxia chamber with software-controlled oxygen cycling. We comprehensively studied the effects of sustained and intermittent hypoxia alone, and in combination with VTE-associated inflammatory stimuli on primary monocytes. TF expression and activity was measured in monocytes subjected to sustained and intermittent hypoxia alone, or in combination with IL-1β. Monocyte responses were further analyzed in detailed by RNA sequencing and validated by ELISA. Stimulation with IL-1β alone promoted both transcription and activity of TF. Interestingly, the stimulatory effect of IL-1β on TF was attenuated by sustained hypoxia, but not by intermittent hypoxia. Our transcriptome analysis further confirmed that sustained hypoxia limited the pro-inflammatory response induced by IL-1β, and triggered a metabolic shift in monocytes. Intermittent hypoxia alone had a modest effect on monocyte transcript. However, in combination with IL-1β intermittent hypoxia significantly altered the expression of 2207 genes and enhanced the IL-1β-stimulatory effects on several chemokine and interleukin genes (e.g., IL-19, IL-24, IL-32, MIF), as well as genes involved in coagulation (thrombomodulin) and fibrinolysis (VEGFA, MMP9, MMP14 and PAI-1). Increased production of CCL2, IL-6 and TNF following stimulation with intermittent hypoxia and IL-1β was confirmed by ELISA. Our findings provide valuable insights into how the different hypoxic profiles shape the immunothrombotic response of monocytes and shed new light on the early events in the pathogenesis of venous thrombosis.
Collapse
Affiliation(s)
- Casper J.E. Wahlund
- Thrombosis Research Group (TREC), Department of Clinical Medicine, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Safak Çaglayan
- Thrombosis Research Group (TREC), Department of Clinical Medicine, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Paulo Czarnewski
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
- Science for Life Laboratory, Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Stockholm University, Stockholm, Sweden
| | - John-Bjarne Hansen
- Thrombosis Research Group (TREC), Department of Clinical Medicine, UiT – The Arctic University of Norway, Tromsø, Norway
- Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Omri Snir
- Thrombosis Research Group (TREC), Department of Clinical Medicine, UiT – The Arctic University of Norway, Tromsø, Norway
- Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
8
|
Deng Z, Tan X, Guo D, Zhang J, Xu D, Hou X, Wang S, Zhang J, Wei F, Zhang D. MXene-sensitized electrochemiluminescence sensor for thrombin activity detection and inhibitor screening. Mikrochim Acta 2023; 190:328. [PMID: 37495854 DOI: 10.1007/s00604-023-05906-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023]
Abstract
Thrombin, a crucial enzyme involved in blood coagulation and associated diseases, requires accurate detection of its activity and screening of inhibitors for clinical diagnosis and drug discovery. To address this, an electrochemiluminescence (ECL) method was developed to detect thrombin activity based on the sensitization of Ti3C2Tx MXene, which could sensitize the Ru(bpy)32+ ECL system greatly. The thrombin-cleavable substrate bio-S-G-R-P-V-L-G-C was used as recognizer to evaluate the activity of thrombin. Under the optimal conditions, the limit of detection for thrombin in serum was 83 pU/mL (S/N = 3) with a linear range from 0.1 nU/mL to 1 µU/mL. Moreover, the developed ECL biosensor was employed to screen for thrombin inhibitors from Artemisiae argyi Folium. Four potential thrombin inhibitors (isoquercitrin, nepetin, L-camphor, L-borneol) were screened out with inhibition rates beyond 50%, among which isoquercitrin had the best inhibition rate of 90.26%. Isoquercitrin and nepetin were found to be competitive inhibitors of thrombin, with [Formula: see text] values of 0.91 μM and 2.18 μM, respectively. Molecular docking results showed that these compounds could interact with the active sites of thrombin through hydrogen bonds including ASP189, SER195, GLY216, and GLY219. The electrochemical biosensor constructed provides a new idea for the detection of thrombin activity and screening of its inhibitors.
Collapse
Affiliation(s)
- Zijie Deng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi'an, 710061, China
| | - Xueping Tan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi'an, 710061, China
| | - Dongnan Guo
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi'an, 710061, China
| | - Jing Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi'an, 710061, China
| | - Dan Xu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi'an, 710061, China
| | - Xiaofang Hou
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, 710061, China.
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi'an, 710061, China.
| | - Sicen Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, 710061, China.
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi'an, 710061, China.
| | - Junbo Zhang
- Department of Peripheral Vascular Disease, The First Affiliated Hospital of the Medical College of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.
| | - Fen Wei
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi'an, 710061, China
| | - Dongdong Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi'an, 710061, China
| |
Collapse
|
9
|
Østerud B, Latysheva N, Hansen JB, Snir O. “A rapid, sensitive, and specific assay to measure tissue factor activity based on chromogenic determination of thrombin generation”: reply. J Thromb Haemost 2023; 21:1062-1063. [PMID: 36990516 DOI: 10.1016/j.jtha.2022.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 03/29/2023]
|
10
|
Tanratana P, Azevedo Sachetto AT, Mackman N. “A rapid, sensitive, and specific assay to measure tissue factor activity based on chromogenic determination of thrombin generation”: comment from Tanratana et al. J Thromb Haemost 2023; 21:1059-1061. [PMID: 36990515 DOI: 10.1016/j.jtha.2022.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 03/29/2023]
|
11
|
Mackman N, Sachetto ATA, Hisada Y. Measurement of tissue factor-positive extracellular vesicles in plasma: strengths and weaknesses of current methods. Curr Opin Hematol 2022; 29:266-274. [PMID: 35852819 DOI: 10.1097/moh.0000000000000730] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This review evaluates the different methods used to measure levels of tissue factor (TF) in plasma and on extracellular vesicles (EVs). Levels of TF-positive (TF+) EVs in blood are increased in a variety of diseases, such as cancer, sepsis, and viral infection, and are associated with thrombosis. Highly sensitive assays are required to measure the low levels of TF+ EVs in blood. RECENT FINDINGS TF antigen levels in plasma have been measured using standard ELISAs, SimpleStep ELISA technology, and solid-phase proximity ligation assay. Some studies reported the detection of TF+ EVs in plasma by flow cytometry. In addition, TF+ EVs can be captured onto beads and chips using anti-TF antibodies. Several assays have been developed to measure TF activity in EVs isolated from plasma. Importantly, activity-based assays are more sensitive than antigen-based assays as a single TF/FVIIa complex can generate large amounts of FXa. SUMMARY We recommend isolating EVs from plasma and measuring TF activity using a functional assay in the presence and absence of an anti-TF antibody. We do not recommend using antigen-based assays as these are not sensitive enough to detect the low levels of TF in plasma.
Collapse
Affiliation(s)
- Nigel Mackman
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | | | | |
Collapse
|