1
|
Wangrawa DW, Odero JO, Baldini F, Okumu F, Badolo A. Distribution and insecticide resistance profile of the major malaria vector Anopheles funestus group across the African continent. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:119-137. [PMID: 38303659 DOI: 10.1111/mve.12706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024]
Abstract
There has been significant progress in malaria control in the last 2 decades, with a decline in mortality and morbidity. However, these gains are jeopardised by insecticide resistance, which negatively impacts the core interventions, such as insecticide-treated nets (ITN) and indoor residual spraying (IRS). While most malaria control and research efforts are still focused on Anopheles gambiae complex mosquitoes, Anopheles funestus remains an important vector in many countries and, in some cases, contributes to most of the local transmission. As countries move towards malaria elimination, it is important to ensure that all dominant vector species, including An. funestus, an important vector in some countries, are targeted. The objective of this review is to compile and discuss information related to A. funestus populations' resistance to insecticides and the mechanisms involved across Africa, emphasising the sibling species and their resistance profiles in relation to malaria elimination goals. Data on insecticide resistance in An. funestus malaria vectors in Africa were extracted from published studies. Online bibliographic databases, including Google Scholar and PubMed, were used to search for relevant studies. Articles published between 2000 and May 2023 reporting resistance of An. funestus to insecticides and associated mechanisms were included. Those reporting only bionomics were excluded. Spatial variation in species distribution and resistance to insecticides was recorded from 174 articles that met the selection criteria. It was found that An. funestus was increasingly resistant to the four classes of insecticides recommended by the World Health Organisation for malaria vector control; however, this varied by country. Insecticide resistance appears to reduce the effectiveness of vector control methods, particularly IRS and ITN. Biochemical resistance due to detoxification enzymes (P450s and glutathione-S-transferases [GSTs]) in An. funestus was widely recorded. However, An. funestus in Africa remains susceptible to other insecticide classes, such as organophosphates and neonicotinoids. This review highlights the increasing insecticide resistance of An. funestus mosquitoes, which are important malaria vectors in Africa, posing a significant challenge to malaria control efforts. While An. funestus has shown resistance to the recommended insecticide classes, notably pyrethroids and, in some cases, organochlorides and carbamates, it remains susceptible to other classes of insecticides such as organophosphates and neonicotinoids, providing potential alternative options for vector control strategies. The study underscores the need for targeted interventions that consider the population structure and geographical distribution of An. funestus, including its sibling species and their insecticide resistance profiles, to effectively achieve malaria elimination goals.
Collapse
Affiliation(s)
- Dimitri W Wangrawa
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
- Département des Sciences de la Vie et de la Terre, Université Norbert Zongo, Koudougou, Burkina Faso
| | - Joel O Odero
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Francesco Baldini
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Fredros Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Athanase Badolo
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| |
Collapse
|
2
|
Jeon J, Kim HC, Klein TA, Choi KS. Analysis of geometric morphometrics and molecular phylogeny for Anopheles species in the Republic of Korea. Sci Rep 2023; 13:22009. [PMID: 38086890 PMCID: PMC10716165 DOI: 10.1038/s41598-023-49536-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/09/2023] [Indexed: 12/18/2023] Open
Abstract
Human malaria, transmitted by Anopheles mosquitoes, is the most predominant mosquito-borne disease that is responsible for hundreds of thousands of deaths worldwide each year. In the Republic of Korea (ROK), there are currently several hundred malaria cases annually, mostly near the demilitarized zone (DMZ). Eight species of Anopheles mosquitoes are currently known to be present in the ROK. Similar to other major malaria vectors in Africa and India, it is very challenging to morphologically differentiate Anopheles mosquitoes in the ROK due to their extremely similar morphology. In this study, wing geometric morphometrics (WGM) were used to differentiate the eight Anopheles species collected at six locations near the DMZ, Seoul and Pyeongtaek from April-October 2021. Phylogenetic analysis was also performed using cytochrome c oxidase subunit 1 (COI), internal transcribed spacer 2 (ITS2), and tyrosine hydroxylase (TH) genes for comparison with WGM analysis and to infer evolutionary relationships. The results of cross-validation (overall accuracy = 74.8%) demonstrated that species identification using WGM alone was not possible with a high accuracy for all eight species. While phylogenetic analyses based on the COI region could not clearly distinguish some species, the analysis based on ITS2 and TH was more useful for resolving the phylogenetic correlation of the eight species. Our results may improve Anopheles species identification strategies for effective identification and control of malaria vectors in the ROK.
Collapse
Affiliation(s)
- Jiseung Jeon
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
- Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Heung Chul Kim
- U Inc., Daesakwan-ro 34-gil, Yongsan-gu, Seoul, 04409, Republic of Korea
| | - Terry A Klein
- Force Health Protection and Preventive Medicine, Medical Department Activity-Korea/65th Medical Brigade, Unit 15281, Pyeongtaek, APO AP 96281-5281, USA
- PSC 450, Box 75R, Pyeongtaek, APO AP 96206, USA
| | - Kwang Shik Choi
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
- Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu, 41566, Republic of Korea.
- Research Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
3
|
de Benedetta F, Gargiulo S, Miele F, Figlioli L, Innangi M, Audisio P, Nugnes F, Bernardo U. The spread of Carpophilus truncatus is on the razor's edge between an outbreak and a pest invasion. Sci Rep 2022; 12:18841. [PMID: 36344625 PMCID: PMC9640586 DOI: 10.1038/s41598-022-23520-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
In 2019, in southern Italy (Campania) there was an outbreak of a sap beetle infesting stored walnut fruits. A monitoring activity started to assess the spread and impact of the pest in walnut orchards and in warehouses, and an integrative characterization led to identify the beetle as Carpophilus truncatus. This species has been in Europe for a long time, rare and harmless until recently. We show also that this species is the same recently recorded in other two continents, Latin America and Australia, where it is causing massive damage on walnut and almond fruits. The sharing of a mitochondrial haplotype among populations recorded on three continents suggests that a worldwide invasion might be ongoing. A Geographic Profiling approach has determined that the more virulent population was first introduced in Italy, and the climate conditions of areas where C. truncatus is currently widespread and harmful indicate that the entire walnuts world production is in jeopardy as this species could adapt to any of the main walnut and almond production areas.
Collapse
Affiliation(s)
- Flavia de Benedetta
- grid.5326.20000 0001 1940 4177Institute for Sustainable Plant Protection - IPSP-CNR, National Research Council, P.le E. Fermi, 1, 80055 Portici, NA Italy ,grid.4691.a0000 0001 0790 385XDepartment of Agricultural Sciences, University of Napoli Federico II, Via Università, 100, 80055 Portici, NA Italy
| | - Simona Gargiulo
- grid.5326.20000 0001 1940 4177Institute for Sustainable Plant Protection - IPSP-CNR, National Research Council, P.le E. Fermi, 1, 80055 Portici, NA Italy
| | - Fortuna Miele
- grid.5326.20000 0001 1940 4177Institute for Sustainable Plant Protection - IPSP-CNR, National Research Council, P.le E. Fermi, 1, 80055 Portici, NA Italy
| | - Laura Figlioli
- grid.5326.20000 0001 1940 4177Institute for Sustainable Plant Protection - IPSP-CNR, National Research Council, P.le E. Fermi, 1, 80055 Portici, NA Italy
| | - Michele Innangi
- grid.10373.360000000122055422Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, IS Italy
| | - Paolo Audisio
- grid.7841.aDepartment of Biology and Biotechnologies “C. Darwin”, “Sapienza” University of Rome, Via A. Borelli, 50, 00161 Rome, Italy
| | - Francesco Nugnes
- grid.5326.20000 0001 1940 4177Institute for Sustainable Plant Protection - IPSP-CNR, National Research Council, P.le E. Fermi, 1, 80055 Portici, NA Italy
| | - Umberto Bernardo
- grid.5326.20000 0001 1940 4177Institute for Sustainable Plant Protection - IPSP-CNR, National Research Council, P.le E. Fermi, 1, 80055 Portici, NA Italy
| |
Collapse
|
4
|
Huff RM, Pitts RJ. Functional conservation of Anopheline linalool receptors through 100 million years of evolution. Chem Senses 2022; 47:bjac032. [PMID: 36458901 PMCID: PMC9717389 DOI: 10.1093/chemse/bjac032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Insects rely on olfactory receptors to detect and respond to diverse environmental chemical cues. Detection of semiochemicals by these receptors modulates insect behavior and has a direct impact on species fitness. Volatile organic compounds (VOCs) are released by animals and plants and can provide contextual cues that a blood meal host or nectar source is present. One such VOC is linalool, an enantiomeric monoterpene, that is emitted from plants and bacteria species. This compound exists in nature as one of two possible stereoisomers, (R)-(-)-linalool or (S)-(+)-linalool. In this study, we use a heterologous expression system to demonstrate differential responsiveness of a pair of Anopheline odorant receptors (Ors) to enantiomers of linalool. The mosquitoes Anopheles gambiae and Anopheles stephensi encode single copies of Or29 and Or53, which are expressed in the labella of An. gambiae. (S)-(+)-linalool activates Or29 orthologs with a higher potency than (R)-(-)-linalool, while the converse is observed for Or53 orthologs. The conservation of these receptors across a broad range of Anopheline species suggests they may function in the discrimination of linalool stereoisomers, thereby influencing the chemical ecology of mosquitoes. One potential application of this knowledge would be in the design of novel attractants or repellents to be used in integrated pest management practices.
Collapse
Affiliation(s)
- Robert M Huff
- Department of Biology, Baylor University, Waco, TX 76706, USA
| | | |
Collapse
|
5
|
Jones CM, Ciubotariu II, Muleba M, Lupiya J, Mbewe D, Simubali L, Mudenda T, Gebhardt ME, Carpi G, Malcolm AN, Kosinski KJ, Romero-Weaver AL, Stevenson JC, Lee Y, Norris DE. Multiple Novel Clades of Anopheline Mosquitoes Caught Outdoors in Northern Zambia. FRONTIERS IN TROPICAL DISEASES 2021; 2. [PMID: 35983564 PMCID: PMC9384971 DOI: 10.3389/fitd.2021.780664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Residual vector populations that do not come in contact with the most frequently utilized indoor-directed interventions present major challenges to global malaria eradication. Many of these residual populations are mosquito species about which little is known. As part of a study to assess the threat of outdoor exposure to malaria mosquitoes within the Southern and Central Africa International Centers of Excellence for Malaria Research, foraging female anophelines were collected outside households in Nchelenge District, northern Zambia. These anophelines proved to be more diverse than had previously been reported in the area. In order to further characterize the anopheline species, sequencing and phylogenetic approaches were utilized. Anopheline mosquitoes were collected from outdoor light traps, morphologically identified, and sent to Johns Hopkins Bloomberg School of Public Health for sequencing. Sanger sequencing from 115 field-derived samples yielded mitochondrial COI sequences, which were aligned with a homologous 488 bp gene segment from known anophelines (n = 140) retrieved from NCBI. Nuclear ITS2 sequences (n = 57) for at least one individual from each unique COI clade were generated and compared against NCBI’s nucleotide BLAST database to provide additional evidence for taxonomical identity and structure. Molecular and morphological data were combined for assignment of species or higher taxonomy. Twelve phylogenetic groups were characterized from the COI and ITS2 sequence data, including the primary vector species Anopheles funestus s.s. and An. gambiae s.s. An unexpectedly large proportion of the field collections were identified as An. coustani and An. sp. 6. Six phylogenetic groups remain unidentified to species-level. Outdoor collections of anopheline mosquitoes in areas frequented by people in Nchelenge, northern Zambia, proved to be extremely diverse. Morphological misidentification and underrepresentation of some anopheline species in sequence databases confound efforts to confirm identity of potential malaria vector species. The large number of unidentified anophelines could compromise the malaria vector surveillance and malaria control efforts not only in northern Zambia but other places where surveillance and control are focused on indoor-foraging and resting anophelines. Therefore, it is critical to continue development of methodologies that allow better identification of these populations and revisiting and cleaning current genomic databases.
Collapse
Affiliation(s)
- Christine M. Jones
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Ilinca I. Ciubotariu
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | | | - James Lupiya
- Tropical Diseases Research Centre, Ndola, Zambia
| | - David Mbewe
- Tropical Diseases Research Centre, Ndola, Zambia
| | | | | | - Mary E. Gebhardt
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Giovanna Carpi
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Ashley N. Malcolm
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL, United States
| | - Kyle J. Kosinski
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL, United States
| | - Ana L. Romero-Weaver
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL, United States
| | - Jennifer C. Stevenson
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Yoosook Lee
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL, United States
- Correspondence: Yoosook Lee, ; Douglas E. Norris,
| | | | | |
Collapse
|
6
|
Guarido MM, Riddin MA, Johnson T, Braack LEO, Schrama M, Gorsich EE, Brooke BD, Almeida APG, Venter M. Aedes species (Diptera: Culicidae) ecological and host feeding patterns in the north-eastern parts of South Africa, 2014-2018. Parasit Vectors 2021; 14:339. [PMID: 34174956 PMCID: PMC8235819 DOI: 10.1186/s13071-021-04845-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/11/2021] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND There is a paucity of recent data and knowledge on mosquito diversity and potential vectors of arboviruses in South Africa, with most of the available data dating back to the 1950s-1970s. Aedes and Culex species are the major vectors of some of the principal arboviruses which have emerged and re-emerged in the past few decades. METHODS In this study we used entomological surveillance in selected areas in the north-eastern parts of South Africa from 2014 to 2018 to assess mosquito diversity, with special emphasis on the Aedes species. The impact of trap types and environmental conditions was also investigated. Identification of the blood meal sources of engorged females collected during the study period was carried out, and DNA barcodes were generated for selected species. RESULTS Overall, 18.5% of the total Culicidae mosquitoes collected belonged to the genus Aedes, with 14 species recognised or suspected vectors of arboviruses. Species belonging to the Neomelaniconion subgenus were commonly collected in the Bushveld savanna at conservation areas, especially Aedes mcintoshi and Aedes circumluteolus. Aedes aegypti was present in all sites, albeit in low numbers. Temperature was a limiting factor for the Aedes population, and they were almost exclusively collected at temperatures between 18 °C and 27 °C. The cytochrome oxidase subunit I (COI) barcode fragment was amplified for 21 Aedes species, and for nine of these species it was the first sequence information uploaded on GenBank. CONCLUSION This study provides a better understanding of the diversity and relative abundance of Aedes species in the north-east of South Africa. The information provided here will contribute to future arboviral research and implementation of efficient vector control and prevention strategies.
Collapse
Affiliation(s)
- M M Guarido
- Zoonotic Arbo- and Respiratory Virus Program, Department Medical Virology, Faculty of Health Sciences, Centre for Viral Zoonoses, University of Pretoria, Pathology Building, Prinshof Campus South, Private Bag X323, Gezina, Pretoria, 0031, South Africa
| | - M A Riddin
- Zoonotic Arbo- and Respiratory Virus Program, Department Medical Virology, Faculty of Health Sciences, Centre for Viral Zoonoses, University of Pretoria, Pathology Building, Prinshof Campus South, Private Bag X323, Gezina, Pretoria, 0031, South Africa
- Faculty of Health Sciences, UP Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - T Johnson
- Zoonotic Arbo- and Respiratory Virus Program, Department Medical Virology, Faculty of Health Sciences, Centre for Viral Zoonoses, University of Pretoria, Pathology Building, Prinshof Campus South, Private Bag X323, Gezina, Pretoria, 0031, South Africa
- Department of Biological Sciences, Copperbelt University, Kitwe, Zambia
| | - L E O Braack
- Faculty of Health Sciences, UP Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
- Malaria Consortium, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - M Schrama
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | - E E Gorsich
- School of Life Sciences, University of Warwick, Coventry, UK
- The Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, UK
| | - B D Brooke
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases/NHLS, Johannesburg, South Africa
- Wits Research Institute for Malaria, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - A P G Almeida
- Zoonotic Arbo- and Respiratory Virus Program, Department Medical Virology, Faculty of Health Sciences, Centre for Viral Zoonoses, University of Pretoria, Pathology Building, Prinshof Campus South, Private Bag X323, Gezina, Pretoria, 0031, South Africa
- Institute of Tropical Medicine and Hygiene (IHMTNOVA), Medical Parasitology Unit/GHTM, NOVA University of Lisbon, Lisbon, Portugal
| | - Marietjie Venter
- Zoonotic Arbo- and Respiratory Virus Program, Department Medical Virology, Faculty of Health Sciences, Centre for Viral Zoonoses, University of Pretoria, Pathology Building, Prinshof Campus South, Private Bag X323, Gezina, Pretoria, 0031, South Africa.
| |
Collapse
|
7
|
Wragge SE, Venter N, Touré D, Hunt RH, Coetzee M. New distribution record of Anopheles rivulorum-like from Sadiola, Mali, with notes on malaria vector insecticide resistance. Trans R Soc Trop Med Hyg 2021; 115:495-499. [PMID: 33096555 DOI: 10.1093/trstmh/traa113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/06/2020] [Accepted: 10/06/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The SEMOS gold mine in Sadiola, southwestern Mali, has been implementing a malaria vector control programme for 15 y using indoor residual house spraying and sporadic larval control. Periodic screening of the vector populations have been carried out over the years to provide information to the control programme, mainly on vector species present and their insecticide resistance status. The data from five entomological surveys, carried out in 2006, 2011, 2014, 2016 and 2018, are presented. METHODS Adult mosquitoes were collected resting on walls inside houses and on verandas. Insecticide susceptibility assays were carried out and mosquitoes subsequently identified by species using molecular assays. RESULTS The major malaria vector mosquitoes, Anopheles gambiae and Anopheles arabiensis were abundant at each sampling period with Anopheles coluzzii and Anopheles funestus being rare or absent. Anopheles rivulorum was identified in 2006 and Anopheles leesoni in 2016. The presence of Anopheles rivulorum-like, identified for the first time in 2018, was not screened for in previous surveys. Insecticide susceptibility bioassays showed resistance in both A. gambiae and A. arabiensis to pyrethroids, carbamates and dichlorodiphenyltrichloroethane over the 12 y. CONCLUSIONS This is the first record of A. rivulorum-like west of Côte d'Ivoire. Resistance levels to the three classes of insecticides were variable but appeared to decrease after pyrethroids were discontinued for house spraying.
Collapse
Affiliation(s)
- Sue-Ellen Wragge
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,SEMOS Gold Mine, Sadiola, Kayes District, Mali
| | - Nelius Venter
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | | | - Richard H Hunt
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Maureen Coetzee
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| |
Collapse
|
8
|
Hoffman JE, Ciubotariu II, Simubali L, Mudenda T, Moss WJ, Carpi G, Norris DE, Stevenson JC. Phylogenetic Complexity of Morphologically Identified Anopheles squamosus in Southern Zambia. INSECTS 2021; 12:146. [PMID: 33567609 PMCID: PMC7915044 DOI: 10.3390/insects12020146] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 11/16/2022]
Abstract
Despite dramatic reductions in malaria cases in the catchment area of Macha Hospital, Choma District, Southern Province in Zambia, prevalence has remained near 1-2% by RDT for the past several years. To investigate residual malaria transmission in the area, this study focuses on the relative abundance, foraging behavior, and phylogenetic relationships of Anopheles squamosus specimens. In 2011, higher than expected rates of anthropophily were observed among "zoophilic" An. squamosus, a species that had sporadically been found to contain Plasmodium falciparum sporozoites. The importance of An. squamosus in the region was reaffirmed in 2016 when P. falciparum sporozoites were detected in numerous An. squamosus specimens. This study analyzed Centers for Disease Control (CDC) light trap collections of adult mosquitoes from two collection schemes: one performed as part of a reactive-test-and-treat program and the second performed along a geographical transect. Morphological identification, molecular verification of anopheline species, and blood meal source were determined on individual samples. Data from these collections supported earlier studies demonstrating An. squamosus to be primarily exophagic and zoophilic, allowing them to evade current control measures. The phylogenetic relationships generated from the specimens in this study illustrate the existence of well supported clade structure among An. squamosus specimens, which further emphasizes the importance of molecular identification of vectors. The primarily exophagic behavior of An. squamosus in these collections also highlights that indoor vector control strategies will not be sufficient for elimination of malaria in southern Zambia.
Collapse
Affiliation(s)
- Jordan E. Hoffman
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA;
| | - Ilinca I. Ciubotariu
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; (I.I.C.); (G.C.)
| | | | - Twig Mudenda
- Macha Research Trust, Choma, Zambia; (L.S.); (T.M.); (J.C.S.)
| | - William J. Moss
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Giovanna Carpi
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; (I.I.C.); (G.C.)
| | - Douglas E. Norris
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Jennifer C. Stevenson
- Macha Research Trust, Choma, Zambia; (L.S.); (T.M.); (J.C.S.)
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | |
Collapse
|
9
|
Ciubotariu II, Jones CM, Kobayashi T, Bobanga T, Muleba M, Pringle JC, Stevenson JC, Carpi G, Norris DE. Genetic Diversity of Anopheles coustani (Diptera: Culicidae) in Malaria Transmission Foci in Southern and Central Africa. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1782-1792. [PMID: 32614047 PMCID: PMC7899271 DOI: 10.1093/jme/tjaa132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Indexed: 05/04/2023]
Abstract
Despite ongoing malaria control efforts implemented throughout sub-Saharan Africa, malaria remains an enormous public health concern. Current interventions such as indoor residual spraying with insecticides and use of insecticide-treated bed nets are aimed at targeting the key malaria vectors that are primarily endophagic and endophilic. Anopheles coustani s.l., an understudied vector of malaria, is a species previously thought to exhibit mostly zoophilic behavior. Like many of these understudied species, An. coustani has greater anthropophilic tendencies than previously appreciated, is often both endophagic and exophagic, and carries Plasmodium falciparum sporozoites. The aim of this study was to explore genetic variation of An. coustani mosquitoes and the potential of this species to contribute to malaria parasite transmission in high transmission settings in Zambia and the Democratic Republic of the Congo (DRC). Morphologically identified An. coustani specimens that were trapped outdoors in these study sites were analyzed by PCR and sequencing for species identification and bloodmeal sources, and malaria parasite infection was determined by ELISA and qPCR. Fifty An. coustani s.s. specimens were confirmed by analysis of mitochondrial DNA cytochrome c oxidase subunit I (COI) and ribosomal internal transcribed spacer region 2 (ITS2). Maximum likelihood phylogenetic analysis of COI and ITS2 sequences revealed two distinct phylogenetic groups within this relatively small regional collection. Our findings indicate that both An. coustani groups have anthropophilic and exophagic habits and come into frequent contact with P. falciparum, suggesting that this potential alternative malaria vector might elude current vector control measures in northern Zambia and southern DRC.
Collapse
Affiliation(s)
- Ilinca I Ciubotariu
- The Department of Biological Sciences, Purdue University, West Lafayette, IN
| | - Christine M Jones
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Tamaki Kobayashi
- The Department of Epidemiology, Division of Infectious Disease Epidemiology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Thierry Bobanga
- The Department of Family Medicine, School of Medicine, Université Protestante au Congo, Kinshasa, Democratic Republic of Congo
- The Department of Tropical Medicine, School of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | | | - Julia C Pringle
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Jennifer C Stevenson
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Macha Research Trust, Choma, Zambia
| | - Giovanna Carpi
- The Department of Biological Sciences, Purdue University, West Lafayette, IN
| | - Douglas E Norris
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| |
Collapse
|
10
|
Zhong D, Hemming-Schroeder E, Wang X, Kibret S, Zhou G, Atieli H, Lee MC, Afrane YA, Githeko AK, Yan G. Extensive new Anopheles cryptic species involved in human malaria transmission in western Kenya. Sci Rep 2020; 10:16139. [PMID: 32999365 PMCID: PMC7527330 DOI: 10.1038/s41598-020-73073-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/31/2020] [Indexed: 11/09/2022] Open
Abstract
A thorough understanding of malaria vector species composition and their bionomic characteristics is crucial to devise effective and efficient vector control interventions to reduce malaria transmission. It has been well documented in Africa that malaria interventions in the past decade have resulted in major changes in species composition from endophilic Anopheles gambiae to exophilic An. arabiensis. However, the role of cryptic rare mosquito species in malaria transmission is not well known. This study examined the species composition and distribution, with a particular focus on malaria transmission potential of novel, uncharacterized Anopheles cryptic species in western Kenya. Phylogenetic analysis based on ITS2 and COX1 genes revealed 21 Anopheles mosquito species, including two previously unreported novel species. Unusually high rates of Plasmodium sporozoite infections were detected in An. funestus, An. gambiae and eight cryptic rare species. Plasmodium falciparum, P. malariae and P. ovale sporozoite infections were identified with large proportion of mixed species infections in these vectors. This study, for the first time, reports extensive new Anopheles cryptic species involved in the malaria transmission in western Kenya. These findings underscore the importance of non-common Anopheles species in malaria transmission and the need to target them in routine vector control and surveillance efforts.
Collapse
Affiliation(s)
- Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92697, USA.
| | - Elizabeth Hemming-Schroeder
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92697, USA
| | - Xiaoming Wang
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92697, USA
| | - Solomon Kibret
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92697, USA
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92697, USA
| | - Harrysone Atieli
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Ming-Chieh Lee
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92697, USA
| | - Yaw A Afrane
- Department of Medical Microbiology, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Andrew K Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
11
|
Briolant S, Costa MM, Nguyen C, Dusfour I, Pommier de Santi V, Girod R, Almeras L. Identification of French Guiana anopheline mosquitoes by MALDI-TOF MS profiling using protein signatures from two body parts. PLoS One 2020; 15:e0234098. [PMID: 32817616 PMCID: PMC7444543 DOI: 10.1371/journal.pone.0234098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/23/2020] [Indexed: 01/17/2023] Open
Abstract
In French Guiana, the malaria, a parasitic infection transmitted by Anopheline mosquitoes, remains a disease of public health importance. To prevent malaria transmission, the main effective way remains Anopheles control. For an effective control, accurate Anopheles species identification is indispensable to distinguish malaria vectors from non-vectors. Although, morphological and molecular methods are largely used, an innovative tool, based on protein pattern comparisons, the Matrix Assisted Laser Desorption / Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) profiling, emerged this last decade for arthropod identification. However, the limited mosquito fauna diversity of reference MS spectra remains one of the main drawback for its large usage. The aim of the present study was then to create and to share reference MS spectra for the identification of French Guiana Anopheline species. A total of eight distinct Anopheles species, among which four are malaria vectors, were collected in 6 areas. To improve Anopheles identification, two body parts, legs and thoraxes, were independently submitted to MS for the creation of respective reference MS spectra database (DB). This study underlined that double checking by MS enhanced the Anopheles identification confidence and rate of reliable classification. The sharing of this reference MS spectra DB should make easier Anopheles species monitoring in endemic malaria area to help malaria vector control or elimination programs.
Collapse
Affiliation(s)
- Sébastien Briolant
- Unité de Parasitologie et Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
- Aix Marseille Université, IRD, AP-HM, SSA, UMR Vecteurs–Infections Tropicales et Méditerranéennes (VITROME), IHU—Méditerranée Infection, Marseille, France
| | - Monique Melo Costa
- Unité de Parasitologie et Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
- Aix Marseille Université, IRD, AP-HM, SSA, UMR Vecteurs–Infections Tropicales et Méditerranéennes (VITROME), IHU—Méditerranée Infection, Marseille, France
| | - Christophe Nguyen
- Unité de Parasitologie et Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
- Aix Marseille Université, IRD, AP-HM, SSA, UMR Vecteurs–Infections Tropicales et Méditerranéennes (VITROME), IHU—Méditerranée Infection, Marseille, France
| | - Isabelle Dusfour
- Unite d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | | | - Romain Girod
- Unite d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne, French Guiana
- Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Lionel Almeras
- Unité de Parasitologie et Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
- Aix Marseille Université, IRD, AP-HM, SSA, UMR Vecteurs–Infections Tropicales et Méditerranéennes (VITROME), IHU—Méditerranée Infection, Marseille, France
- * E-mail:
| |
Collapse
|
12
|
Munawar K, Saleh A, Afzal M, Qasim M, Khan KA, Zafar MI, Khater EI. Molecular characterization and phylogenetic analysis of anopheline (Anophelinae: Culicidae) mosquitoes of the Oriental and Afrotropical Zoogeographic zones in Saudi Arabia. Acta Trop 2020; 207:105494. [PMID: 32330453 DOI: 10.1016/j.actatropica.2020.105494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 10/24/2022]
Abstract
The Kingdom of Saudi Arabia (KSA) has a diverse fauna due to its peculiar position bordering the Afrotropical, Oriental and Palaearctic zoogeographic zones. The present study reports the phylogenetics of five mosquito species belonging to five series of Anopheles (Cellia) . We collected mosquito larvae from eastern, western and southwestern regions of KSA. The sampled mosquitoes were morphologically identified using the pictorial keys of mosquitoes and characterized by using single and multi-locus analysis of -internal transcribed spacer 2 (ITS2) region and cytochrome oxidase c subunit I (COI). Based on the morphological and molecular data, five species were recognized, like An. stephensi (Neocellia) (Oriental), An. arabiensis (Pyretophorus) (Afrotropical), An. dthali (Myzomyia) (Oriental and Palaearctic), An. cinereus (Paramyzomyia) and An. rhodesiensis rupicola (Neomyzomyia) (Oriental and Palaearctic). The phylogenetic analysis showed that An. stephensi is a monophyletic species with different ecotypes found in different geographic regions. Comprehensive phylogenetics and population genetics studies are crucial for a better understanding of the role of these five mosquito species in malarial transmission across various zoogeographic zones of different ecological and demographic characteristics.
Collapse
|
13
|
Dahan-Moss Y, Hendershot A, Dhoogra M, Julius H, Zawada J, Kaiser M, Lobo NF, Brooke BD, Koekemoer LL. Member species of the Anopheles gambiae complex can be misidentified as Anopheles leesoni. Malar J 2020; 19:89. [PMID: 32093677 PMCID: PMC7038563 DOI: 10.1186/s12936-020-03168-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 02/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Accurate Anopheles species identification is key for effective malaria vector control. Identification primarily depends on morphological analysis of field samples as well as molecular species-specific identifications. During an intra-laboratory assessment (proficiency testing) of the Anopheles funestus group multiplex PCR assay, it was noted that Anopheles arabiensis can be misidentified as Anopheles leesoni, a zoophilic member of the An. funestus group. The aim of this project was, therefore, to ascertain whether other members of the Anopheles gambiae complex can also be misidentified as An. leesoni when using the standard An. funestus multiplex PCR. METHODS The An. funestus multiplex PCR was used to amplify DNA from An. gambiae complex specimens. These included specimens from the laboratory colonies and field samples from the Democratic Republic of Congo. Amplified DNA from these specimens, using the universal (UV) and An. leesoni species-specific primers (LEES), were sequence analysed. Additionally, An. leesoni DNA was processed through the diagnostic An. gambiae multiplex PCR to determine if this species can be misidentified as a member of the An. gambiae complex. RESULTS Laboratory-colonized as well as field-collected samples of An. arabiensis, An. gambiae, Anopheles merus, Anopheles quadriannulatus, Anopheles coluzzii as well as Anopheles moucheti produced an amplicon of similar size to that of An. leesoni when using an An. funestus multiplex PCR. Sequence analysis confirmed that the UV and LEES primers amplify a segment of the ITS2 region of members of the An. gambiae complex and An. moucheti. The reverse was not true, i.e. the An. gambiae multiplex PCR does not amplify DNA from An. leesoni. CONCLUSION This investigation shows that An. arabiensis, An. gambiae, An. merus, An. quadriannulatus, An. coluzzii and An. moucheti can be misidentified as An. leesoni when using An. funestus multiplex PCR. This shows the importance of identifying specimens using standard morphological dichotomous keys as far as possible prior to the use of appropriate PCR-based identification methods. Should there be doubt concerning field-collected specimens molecularly identified as An. leesoni, the An. gambiae multiplex PCR and sequencing of the internal transcribed spacer 2 (ITS2) can be used to eliminate false identifications.
Collapse
Affiliation(s)
- Yael Dahan-Moss
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa. .,Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Allison Hendershot
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Minishca Dhoogra
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.,Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Henry Julius
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Jacek Zawada
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.,Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Maria Kaiser
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.,Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Neil F Lobo
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Basil D Brooke
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.,Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lizette L Koekemoer
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.,Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
14
|
Genetic analysis and population structure of the Anopheles gambiae complex from different ecological zones of Burkina Faso. INFECTION GENETICS AND EVOLUTION 2020; 81:104261. [PMID: 32092481 DOI: 10.1016/j.meegid.2020.104261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 11/21/2022]
Abstract
The Anopheles gambiae complex (Diptera: Culicidae) is the most important vector for malaria in Sub-Saharan Africa, besides other vectors such as Anopheles funestus. Malaria vector control should encompass specific identification, genetic diversity and population structure of An. gambiae to design vector control strategies. The aim of this study was to determine the distribution of sibling species of the An. gambiae complex according to climatic regions related to cotton-growing or cotton-free areas by using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Then, variation in mitochondrial cytochrome c oxidase 1 (COI) was used to assess the genetic structure within and between populations from our selected ecological zones. At the sibling species level, the following proportions were found across all samples (n = 180): An. coluzzii 65.56%, An. gambiae stricto sensu (s.s). 21.11%, and An. arabiensis 3.33%. Hybrids between An. gambiae s.s. and An. coluzzii (7.78%) and hybrids between An. coluzzii and An. arabiensis (2.22%) were found. The phylogenetic tree and Integer Neighbour-Joining (IntNJ) haplotype network did not reveal any distinct genetic structure pattern related to climatic or agricultural conditions in Burkina Faso. The Fst (Wright's F-statistic) values close to zero showed a free gene flow and no differentiation in An. gambiae complex populations. Furthermore, neutrality indices calculated by Tajima's D, Fu and Li's D⁎, Fu and Li's F⁎, Fu's Fs tests suggested an excess of rare mutations in the populations. Overall, variation in the proportions of An. gambiae s.s., An. coluzzii and An. arabiensis was found according to climatic regions, but COI analysis did not evidence any population structuring of the An. gambiae complex. These scientific contributions can be used as a basis for further in-depth study of the genetic diversity of the An. gambiae complex for epidemiological risk assessment of malaria in Burkina Faso.
Collapse
|
15
|
Huff RM, Pitts RJ. An odorant receptor from Anopheles gambiae that demonstrates enantioselectivity to the plant volatile, linalool. PLoS One 2019; 14:e0225637. [PMID: 31751420 PMCID: PMC6872167 DOI: 10.1371/journal.pone.0225637] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023] Open
Abstract
Insects express chemical receptors within sensory neurons that are activated by specific cues in the environment, thereby influencing the acquisition of critical resources. A significant gap in our current understanding of insect chemical ecology is defining the molecular mechanisms that underlie sensitivity to plant-emitted volatiles. Linalool is a commonly-occurring monoterpene that has various effects on insect behavior, either acting as an attractant or a repellent, and existing in nature as one of two possible stereoisomers, (R)-(-)-linalool and (S)-(+)-linalool. In this study, we have used a cell-based functional assay to identify linalool and structurally-related compounds as ligands of Odorant receptor 29, a labellum-expressed receptor in the malaria vector mosquito, Anopheles gambiae (AgamOr29). While (R)-(-)-linalool activates AgamOr29, a mixture of the (R) and (S) stereoisomers activates the receptor with higher potency, implying enantiomeric selectivity. Orthologs of Or29 are present in the genomes of Anophelines within the Cellia subgenus. The conservation of this receptor across Anopheline lineages suggests that this ecologically important compound might serve as an attraction cue for nectar-seeking mosquitoes. Moreover, the characterization of a mosquito terpene receptor could serve as a foundation for future ligand-receptor studies of plant volatiles and for the discovery of compounds that can be integrated into push-pull vector control strategies.
Collapse
Affiliation(s)
- Robert Mark Huff
- Department of Biology, Baylor University, Waco, Texas, United States of America
| | - R. Jason Pitts
- Department of Biology, Baylor University, Waco, Texas, United States of America
| |
Collapse
|
16
|
Burke A, Dahan-Moss Y, Duncan F, Qwabe B, Coetzee M, Koekemoer L, Brooke B. Anopheles parensis contributes to residual malaria transmission in South Africa. Malar J 2019; 18:257. [PMID: 31358015 PMCID: PMC6664530 DOI: 10.1186/s12936-019-2889-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/22/2019] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Understanding the contribution of outdoor-resting Anopheles mosquitoes to residual malaria transmission is important in terms of scaling up vector control towards malaria elimination in South Africa. The aim of this project was to assess the potential role of Anopheles parensis and other Anopheles species in residual malaria transmission, using sentinel surveillance sites in the uMkhanyakude District of northern KwaZulu-Natal Province. METHODS Monthly vector surveillance was conducted at the sentinel sites from January 2017 to May 2018. Outdoor-placed clay pot resting traps were used to collect male and female adult Anopheles mosquitoes. All Anopheles gambiae complex and Anopheles funestus group specimens collected were identified to species and all females were screened for Plasmodium falciparum circumsporozoite protein (CSP) by enzyme-linked immunosorbent assay (ELISA). Samples showing infectivity for P. falciparum were further verified by a nested PCR and subsequent DNA sequence analysis. RESULTS From a sample of 491 anophelines, Anopheles arabiensis (n = 228) and An. parensis (n = 194) were the most abundant. Other species collected included Anopheles merus (n =11), Anopheles quadriannulatus (n = 10), Anopheles leesoni (n = 29), Anopheles rivulorum (n =18), and Anopheles vaneedeni (n =1). Of the 317 female specimens screened for P. falciparum CSP, one Anopheles arabiensis and one An. parensis showed positive by ELISA and Plasmodium nested PCR. For the An. parensis specimen, confirmation of its species identity was based on sequence analysis of the ITS2 region, and the presence of P. falciparum DNA was further confirmed by sequence analysis. CONCLUSIONS Anopheles parensis is a potential vector of malaria in South Africa although its contribution to transmission is likely to be minimal at best owing to its strong zoophilic tendency. By contrast, An. arabiensis is a major vector that is primarily responsible for the bulk of residual malaria transmission in South Africa. As all recently collected sporozoite-positive Anopheles mosquitoes were found in outdoor-placed resting traps, it is necessary to introduce interventions that can be used to control outdoor-resting vector populations while maintaining the efficacy of South Africa's indoor house spraying operations.
Collapse
Affiliation(s)
- Ashley Burke
- Wits Research Institute for Malaria and Wits/MRC Collaborating Centre for Multidisciplinary Research On Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Yael Dahan-Moss
- Wits Research Institute for Malaria and Wits/MRC Collaborating Centre for Multidisciplinary Research On Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Frances Duncan
- School of Animal, Plant & Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Bheki Qwabe
- Environmental Health, Malaria and Communicable Disease Control, KwaZulu-Natal Department of Health, Jozini, South Africa
| | - Maureen Coetzee
- Wits Research Institute for Malaria and Wits/MRC Collaborating Centre for Multidisciplinary Research On Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Lizette Koekemoer
- Wits Research Institute for Malaria and Wits/MRC Collaborating Centre for Multidisciplinary Research On Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Basil Brooke
- Wits Research Institute for Malaria and Wits/MRC Collaborating Centre for Multidisciplinary Research On Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa.
| |
Collapse
|
17
|
Cornel AJ, Lee Y, Almeida APG, Johnson T, Mouatcho J, Venter M, de Jager C, Braack L. Mosquito community composition in South Africa and some neighboring countries. Parasit Vectors 2018; 11:331. [PMID: 29859109 PMCID: PMC5984792 DOI: 10.1186/s13071-018-2824-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/28/2018] [Indexed: 11/25/2022] Open
Abstract
Background A century of studies have described particular aspects of relatively few mosquito species in southern Africa, mostly those species involved with disease transmission, specifically malaria and arboviruses. Patterns of community composition such as mosquito abundance and species diversity are often useful measures for medical entomologists to guide broader insights and projections regarding disease dynamics and potential introduction, spread or maintenance of globally spreading pathogens. However, little research has addressed these indicators in southern Africa. Results We collected 7882 mosquitoes from net and light traps at 11 localities comprising 66 species in 8 genera. We collected an additional 8 species using supplementary collection techniques such as larval sampling, sweep-netting and indoor pyrethrum knockdown catches. Highest diversity and species richness was found in the Okavango Delta of Botswana and in South Africa’s Kruger National Park, while the lowest diversity and abundances were in the extreme southern tip of South Africa and in semi-desert Kalahari close to the South Africa border with Botswana. Species composition was more similar between proximal localities than distant ones (Linear model P-value = 0.005). Multiple arbovirus vector species were detected in all localities we surveyed (proportion of vector mosquito numbers were > 0.5 in all locations except Shingwedzi). Their proportions were highest (> 90%) in Vilankulo and Kogelberg. Conclusions Multiple known arbovirus vector species were found in all study sites, whereas anopheline human malaria vector species in only some sites. The combination of net traps and light traps effectively sampled mosquito species attracted to carbon-dioxide or light, accounting for 89% of the 74 species collected. The 11% remaining species were collected using supplementary collection techniques mentioned above. The diversity of species weas highest in savanna type habitats, whereas low diversities were found in the drier Kalahari sands regions and the southern Cape fynbos regions. Electronic supplementary material The online version of this article (10.1186/s13071-018-2824-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anthony J Cornel
- Department of Entomology & Nematology, University of California, Davis, USA. .,UP Institute for Sustainable Malaria Control & MRC Collaborating Centre for Malaria Research, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| | - Yoosook Lee
- Department of Entomology & Nematology, University of California, Davis, USA
| | - António Paulo Gouveia Almeida
- Global Health and Tropical Medicine, GHTM, Institute for Hygiene and Tropical Medicine, IHMT, Universidade Nova de Lisboa, UNL, Lisbon, Portugal.,Centre for Viral Zoonoses, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Todd Johnson
- Centre for Viral Zoonoses, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Joel Mouatcho
- UP Institute for Sustainable Malaria Control & MRC Collaborating Centre for Malaria Research, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Marietjie Venter
- Centre for Viral Zoonoses, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Christiaan de Jager
- UP Institute for Sustainable Malaria Control & MRC Collaborating Centre for Malaria Research, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Leo Braack
- UP Institute for Sustainable Malaria Control & MRC Collaborating Centre for Malaria Research, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
18
|
Mouatcho J, Cornel AJ, Dahan-Moss Y, Koekemoer LL, Coetzee M, Braack L. Detection of Anopheles rivulorum-like, a member of the Anopheles funestus group, in South Africa. Malar J 2018; 17:195. [PMID: 29764433 PMCID: PMC5952852 DOI: 10.1186/s12936-018-2353-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 05/09/2018] [Indexed: 11/20/2022] Open
Abstract
Background The Anopheles gambiae sensu lato (s.l.) and Anopheles funestus s.l. species complexes contain the most important malaria vectors in Africa. Within the An. funestus group of at least 11 African species, the vector status of all but the nominal species An. funestus appears poorly investigated, although evidence exists that Anopheles rivulorum and Anopheles vaneedeni may play minor roles. A new species, An. rivulorum-like, was described from Burkina Faso in 2000 and subsequently also found in Cameroon and Zambia. This is the first paper reporting the presence of this species in South Africa, thereby significantly extending its known range. Methods Mosquitoes were collected using dry-ice baited net traps and CDC light traps in the Kruger National Park, South Africa. Sixty-four An. funestus s.l. among an overall 844 mosquitoes were captured and identified to species level using the polymerase chain reaction assay. All samples were also analysed for the presence of Plasmodium falciparum circumsporozoite protein using the enzyme-linked-immunosorbent assay. Results Four members of the An. funestus group were identified: An. rivulorum-like (n = 49), An. rivulorum (n = 11), Anopheles parensis (n = 2) and Anopheles leesoni (n = 1). One mosquito could not be identified. No evidence of P. falciparum was detected in any of the specimens. Conclusion This is the first report of An. rivulorum-like south of Zambia, and essentially extends the range of this species from West Africa down to South Africa. Given the continental-scale drive towards malaria elimination and the challenges faced by countries in the elimination phase to understand and resolve residual transmission, efforts should be directed towards determining the largely unknown malaria vector potential of members of the An. funestus group and other potential secondary vectors.
Collapse
Affiliation(s)
- Joel Mouatcho
- UP Institute for Sustainable Malaria Control & MRC Collaborating Centre for Malaria Research, University of Pretoria, Pretoria, South Africa
| | - Anthony J Cornel
- UP Institute for Sustainable Malaria Control & MRC Collaborating Centre for Malaria Research, University of Pretoria, Pretoria, South Africa.,Department of Entomology and Nematology, University of California, Davis, CA, 95616, USA
| | - Yael Dahan-Moss
- Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Lizette L Koekemoer
- Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Maureen Coetzee
- Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Leo Braack
- UP Institute for Sustainable Malaria Control & MRC Collaborating Centre for Malaria Research, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
19
|
[Phylogenetic signal at the Cytb-SertRNA-IG1-ND1 mitochondrial region in Anopheles (Kerteszia) neivai Howard, Dyar & Knab, 1913]. BIOMEDICA 2017; 37:143-154. [PMID: 29161486 DOI: 10.7705/biomedica.v37i0.3452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/16/2017] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Mitochondrial DNA has proven its utility for the study of insect evolution. Genes such as cytochrome b (Cytb) and the transfer gene for serine (SertRNA) can be used to compare closely related organisms. OBJECTIVE The phylogenetic utility of Cytb-SertRNA-IG1-ND1 was tested for polymorphisms, and secondary structure modeling in SertRNA was done to detect possible cryptic species in Anopheles neivai. MATERIALS AND METHODS Specimens from Colombia, Guatemala, and the type locality in Panamá were collected and sequenced for specimen comparison based on DNA polymorphisms, and secondary structure modeling for the SertRNA gene. RESULTS Thirty-six sequences for A. neivai and A. pholidotus were obtained. CONCLUSIONS Polymorphic variants were detected in A. neivai for Cytb-SertRNA-IG1- ND1. Despite this variation in A. neivai, cryptic species could not be detected.
Collapse
|
20
|
Burke A, Dandalo L, Munhenga G, Dahan-Moss Y, Mbokazi F, Ngxongo S, Coetzee M, Koekemoer L, Brooke B. A new malaria vector mosquito in South Africa. Sci Rep 2017; 7:43779. [PMID: 28262811 PMCID: PMC5338325 DOI: 10.1038/srep43779] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/30/2017] [Indexed: 11/08/2022] Open
Abstract
South Africa aims to eliminate malaria within its borders by 2018. Despite well-coordinated provincial vector control programmes that are based on indoor residual insecticide spraying, low-level residual malaria transmission continues in the low-altitude border regions of the north-eastern sector of the country. In order to identify the underlying causes of residual transmission, an enhanced vector surveillance system has been implemented at selected sites in the Mpumalanga and KwaZulu-Natal (KZN) provinces. The collection periods for the data presented are March 2015 to April 2016 for Mpumalanga and January 2014 to December 2015 for KZN. The mosquito collection methods used included indoor and outdoor traps based on the use of traditional ceramic pots, modified plastic buckets and exit window traps (KZN only). All Anopheles funestus species group mosquitoes collected were identified to species and all females were screened for the presence of Plasmodium falciparum sporozoites. Two An. vaneedeni females, one from each surveillance site, tested positive for P. falciparum sporozoites. These are the first records of natural populations of An. vaneedeni being infective with P. falciparum. As both specimens were collected from outdoor-placed ceramic pots, these data show that An. vaneedeni likely contributes to residual malaria transmission in South Africa.
Collapse
Affiliation(s)
- Ashley Burke
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Opportunistic, Tropical & Hospital Infections, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Leonard Dandalo
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Opportunistic, Tropical & Hospital Infections, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Givemore Munhenga
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Opportunistic, Tropical & Hospital Infections, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Yael Dahan-Moss
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Opportunistic, Tropical & Hospital Infections, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Frans Mbokazi
- Malaria Elimination Programme, Mpumalanga Department of Health, Ehlanzeni District, South Africa
| | - Sifiso Ngxongo
- Environmental Health, Malaria and Communicable Disease Control, KwaZulu-Natal Department of Health, South Africa
| | - Maureen Coetzee
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Opportunistic, Tropical & Hospital Infections, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Lizette Koekemoer
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Opportunistic, Tropical & Hospital Infections, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Basil Brooke
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Opportunistic, Tropical & Hospital Infections, National Institute for Communicable Diseases, Johannesburg, South Africa
| |
Collapse
|
21
|
Stevenson JC, Norris DE. Implicating Cryptic and Novel Anophelines as Malaria Vectors in Africa. INSECTS 2016; 8:E1. [PMID: 28025486 PMCID: PMC5371929 DOI: 10.3390/insects8010001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 11/24/2022]
Abstract
Entomological indices and bionomic descriptions of malaria vectors are essential to accurately describe and understand malaria transmission and for the design and evaluation of appropriate control interventions. In order to correctly assign spatio-temporal distributions, behaviors and responses to interventions to particular anopheline species, identification of mosquitoes must be accurately made. This paper reviews the current methods and their limitations in correctly identifying anopheline mosquitoes in sub-Saharan Africa, and highlights the importance of molecular methods to discriminate cryptic species and identify lesser known anophelines. The increasing number of reports of Plasmodium infections in assumed "minor", non-vector, and cryptic and novel species is reviewed. Their importance in terms of evading current control and elimination strategies and therefore maintaining malaria transmission is emphasized.
Collapse
Affiliation(s)
- Jennifer C Stevenson
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
- Macha Research Trust, Choma P.O. Box 630166, Southern Province, Zambia.
| | - Douglas E Norris
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
22
|
Stevenson JC, Simubali L, Mbambara S, Musonda M, Mweetwa S, Mudenda T, Pringle JC, Jones CM, Norris DE. Detection of Plasmodium falciparum Infection in Anopheles squamosus (Diptera: Culicidae) in an Area Targeted for Malaria Elimination, Southern Zambia. JOURNAL OF MEDICAL ENTOMOLOGY 2016; 53:1482-1487. [PMID: 27297214 PMCID: PMC5106822 DOI: 10.1093/jme/tjw091] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/11/2016] [Indexed: 05/21/2023]
Abstract
Southern Zambia is the focus of strategies to create malaria-free zones. Interventions being rolled out include test and treat strategies and distribution of insecticide-treated bed nets that target vectors that host-seek indoors and late at night. In Macha, Choma District, collections of mosquitoes were made outdoors using barrier screens within homesteads or UV bulb light traps set next to goats, cattle, or chickens during the rainy season of 2015. Anopheline mosquitoes were identified to species using molecular methods and Plasmodium falciparum infectivity was determined by ELISA and real-time qPCR methods. More than 40% of specimens caught were identified as Anopheles squamosus Theobald, 1901 of which six were found harboring malaria parasites. A single sample, morphologically identified as Anopheles coustani Laveran, 1900, was also found to be infectious. All seven specimens were caught outdoors next to goat pens. Parasite-positive specimens as well as a subset of An. squamosus specimens from either the same study or archive collections from the same area underwent sequencing of the mitochondrial cytochrome oxidase subunit I gene. Maximum parsimony trees constructed from the aligned sequences indicated presence of at least two clades of An. squamosus with infectious specimens falling in each clade. The single infectious specimen identified morphologically as An. coustani could not be matched to reference sequences. This is the first report from Zambia of infections in An. squamosus, a species which is described in literature to display exophagic traits. The bionomic characteristics of this species needs to be studied further to fully evaluate the implications for indoor-targeted vector control.
Collapse
Affiliation(s)
- Jennifer C Stevenson
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe St., Baltimore, MD 21205 (; ; ; )
- Macha Research Trust, Choma, Zambia (; ; ; ; ), and
| | | | | | | | | | - Twig Mudenda
- Macha Research Trust, Choma, Zambia (; ; ; ; ), and
| | - Julia C Pringle
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe St., Baltimore, MD 21205 (; ; ; )
| | - Christine M Jones
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe St., Baltimore, MD 21205 (; ; ; )
| | - Douglas E Norris
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe St., Baltimore, MD 21205 (; ; ; )
| |
Collapse
|
23
|
Tang XT, Zheng FS, Qin J, Lu MX, Du YZ. Genetic Structure of Water Chestnut Beetle: Providing Evidence for Origin of Water Chestnut. PLoS One 2016; 11:e0159557. [PMID: 27459279 PMCID: PMC4961436 DOI: 10.1371/journal.pone.0159557] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/05/2016] [Indexed: 11/19/2022] Open
Abstract
Water chestnut beetle (Galerucella birmanica Jacoby) is a pest of the water chestnut (Trapa natans L.). To analyze the phylogeny and biogeography of the beetle and provide evidence for the origin of T. natans in China, we conducted this by using three mitochondrial genes (COI, COII and Cytb) and nuclear ITS2 ribosomal DNA of G. birmanica. As for mtDNA genes, the beetle could be subdivided into three groups: northeastern China (NEC), central-northern-southern China (CC-NC-SC) and southwestern China (SWC) based on SAMOVA, phylogenetic analyses and haplotype networks. But for ITS2, no obvious lineages were obtained but individuals which were from NEC region clustered into one clade, which might be due to sequence conservation of ITS2. Significant genetic variation was observed among the three groups with infrequent gene flow between groups, which may have been restricted due to natural barriers and events in the Late Pleistocene. Based on our analyses of genetic variation in the CC-NC-SC geographical region, the star-like haplotype networks, approximate Bayesian computation, niche modelling and phylogeographic variation of the beetle, we concluded that the beetle population has been lasting in the lower, central reaches of the Yangtze River Basin with its host plant, water chestnut, which is consistent with archaeological records. Moreover, we speculate that the CC-NC-SC population of G. birmanica may have undergone a period of expansion coincident with domestication of the water chestnut approximately 113,900-126,500 years ago.
Collapse
Affiliation(s)
- Xiao-Tian Tang
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Fu-Shan Zheng
- Institute of Shandong River Wetlands, Laiwu, 271100, China
| | - Jing Qin
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Ming-Xing Lu
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Yu-Zhou Du
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
24
|
Yssouf A, Almeras L, Raoult D, Parola P. Emerging tools for identification of arthropod vectors. Future Microbiol 2016; 11:549-66. [PMID: 27070074 DOI: 10.2217/fmb.16.5] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The rapid and reliable identification of arthropod vector species is an essential component of the fight against vector-borne diseases. However, owing to the lack of entomological expertise required for the morphological identification method, development of alternative and complementary tools is needed. This review describes the main methods used for arthropod identification, focusing on the emergence of protein profiling using MALDI-TOF MS technology. Sample preparation, analysis of reproducibility, database creation and blind tests for controlling accuracy of this tool for arthropod identification are described. The advantages and limitations of the MALDI-TOF MS method are illustrated by emphasizing different hematophagous arthropods, including mosquitoes and ticks, the top two main vectors of infectious diseases.
Collapse
Affiliation(s)
- Amina Yssouf
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Faculté de Médecine, 27 bd Jean Moulin, 13385 Marseille cedex 5, France
| | - Lionel Almeras
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Faculté de Médecine, 27 bd Jean Moulin, 13385 Marseille cedex 5, France
| | - Didier Raoult
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Faculté de Médecine, 27 bd Jean Moulin, 13385 Marseille cedex 5, France
| | - Philippe Parola
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Faculté de Médecine, 27 bd Jean Moulin, 13385 Marseille cedex 5, France
| |
Collapse
|
25
|
St Laurent B, Cooke M, Krishnankutty SM, Asih P, Mueller JD, Kahindi S, Ayoma E, Oriango RM, Thumloup J, Drakeley C, Cox J, Collins FH, Lobo NF, Stevenson JC. Molecular Characterization Reveals Diverse and Unknown Malaria Vectors in the Western Kenyan Highlands. Am J Trop Med Hyg 2016; 94:327-35. [PMID: 26787150 DOI: 10.4269/ajtmh.15-0562] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/03/2015] [Indexed: 12/21/2022] Open
Abstract
The success of mosquito-based malaria control is dependent upon susceptible bionomic traits in local malaria vectors. It is crucial to have accurate and reliable methods to determine mosquito species composition in areas subject to malaria. An unexpectedly diverse set of Anopheles species was collected in the western Kenyan highlands, including unidentified and potentially new species carrying the malaria parasite Plasmodium falciparum. This study identified 2,340 anopheline specimens using both ribosomal DNA internal transcribed spacer region 2 and mitochondrial DNA cytochrome oxidase subunit 1 loci. Seventeen distinct sequence groups were identified. Of these, only eight could be molecularly identified through comparison to published and voucher sequences. Of the unidentified species, four were found to carry P. falciparum by circumsporozoite enzyme-linked immunosorbent assay and polymerase chain reaction, the most abundant of which had infection rates comparable to a primary vector in the area, Anopheles funestus. High-quality adult specimens of these unidentified species could not be matched to museum voucher specimens or conclusively identified using multiple keys, suggesting that they may have not been previously described. These unidentified vectors were captured outdoors. Diverse and unknown species have been incriminated in malaria transmission in the western Kenya highlands using molecular identification of unusual morphological variants of field specimens. This study demonstrates the value of using molecular methods to compliment vector identifications and highlights the need for accurate characterization of mosquito species and their associated behaviors for effective malaria control.
Collapse
Affiliation(s)
- Brandyce St Laurent
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Centre for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya; Western Triangle Research Center, Montana State University, Conrad, Montana; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Mary Cooke
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Centre for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya; Western Triangle Research Center, Montana State University, Conrad, Montana; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Sindhu M Krishnankutty
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Centre for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya; Western Triangle Research Center, Montana State University, Conrad, Montana; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Puji Asih
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Centre for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya; Western Triangle Research Center, Montana State University, Conrad, Montana; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - John D Mueller
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Centre for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya; Western Triangle Research Center, Montana State University, Conrad, Montana; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Samuel Kahindi
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Centre for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya; Western Triangle Research Center, Montana State University, Conrad, Montana; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Elizabeth Ayoma
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Centre for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya; Western Triangle Research Center, Montana State University, Conrad, Montana; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Robin M Oriango
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Centre for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya; Western Triangle Research Center, Montana State University, Conrad, Montana; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Julie Thumloup
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Centre for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya; Western Triangle Research Center, Montana State University, Conrad, Montana; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Chris Drakeley
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Centre for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya; Western Triangle Research Center, Montana State University, Conrad, Montana; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Jonathan Cox
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Centre for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya; Western Triangle Research Center, Montana State University, Conrad, Montana; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Frank H Collins
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Centre for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya; Western Triangle Research Center, Montana State University, Conrad, Montana; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Neil F Lobo
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Centre for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya; Western Triangle Research Center, Montana State University, Conrad, Montana; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Jennifer C Stevenson
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Centre for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya; Western Triangle Research Center, Montana State University, Conrad, Montana; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
26
|
Harbach RE, Kitching IJ. The phylogeny of Anophelinae revisited: inferences about the origin and classification ofAnopheles(Diptera: Culicidae). ZOOL SCR 2015. [DOI: 10.1111/zsc.12137] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ralph E. Harbach
- Department of Life Sciences; Natural History Museum; Cromwell Road London SW7 5BD UK
| | - Ian J. Kitching
- Department of Life Sciences; Natural History Museum; Cromwell Road London SW7 5BD UK
| |
Collapse
|