1
|
Koeberle SC, Thürmer M, Su F, Werner M, Grander J, Hofer L, Gollowitzer A, Xuan LL, Benscheid FJ, Bonyadi Rad E, Zarrelli A, Di Fabio G, Werz O, Romanucci V, Lupp A, Koeberle A. Silybin A from Silybum marianum reprograms lipid metabolism to induce a cell fate-dependent class switch from triglycerides to phospholipids. Theranostics 2025; 15:2006-2034. [PMID: 39897559 PMCID: PMC11780512 DOI: 10.7150/thno.99562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/25/2024] [Indexed: 02/04/2025] Open
Abstract
Rationale: Silybum marianum is used to protect against degenerative liver damage. The molecular mechanisms of its bioactive component, silybin, remained enigmatic, although membrane-stabilizing properties, modulation of membrane protein function, and metabolic regulation have been discussed for decades. Methods: Experiments were performed with hepatocyte cell lines and primary monocytes in vitro under both basal and stressed conditions, and in mice in vivo. Quantitative lipidomics was used to detect changes in phospholipids and triglycerides. Key findings were confirmed by Western blotting, quantitative PCR, microscopy, enzyme activity assays, metabolic flux studies, and functional relationships were investigated using selective inhibitors. Results: We show that specifically the stereoisomer silybin A decreases triglyceride levels and lipid droplet content, while enriching major phospholipid classes and maintaining a homeostatic phospholipid composition in human hepatocytes in vitro and in mouse liver in vivo under normal and pre-disease conditions. Conversely, in cell-based disease models of lipid overload and lipotoxic stress, silybin treatment primarily depletes triglycerides. Mechanistically, silymarin/silybin suppresses phospholipid-degrading enzymes, induces phospholipid biosynthesis to varying degrees depending on the conditions, and down-regulates triglyceride remodeling/biosynthesis, while inducing complex changes in sterol and fatty acid metabolism. Structure-activity relationship studies highlight the importance of the 1,4-benzodioxane ring configuration of silybin A in triglyceride reduction and the saturated 2,3-bond of the flavanonol moiety in phospholipid accumulation. Enrichment of hepatic phospholipids and intracellular membrane expansion are associated with a heightened biotransformation capacity. Conclusion: Our study deciphers the structural features of silybin contributing to hepatic lipid remodeling and suggests that silymarin/silybin protects the liver in individuals with mild metabolic dysregulation, involving a lipid class switch from triglycerides to phospholipids, whereas it may be less effective in disease states associated with severe metabolic dysregulation.
Collapse
Affiliation(s)
- Solveigh C. Koeberle
- Institute of Pharmaceutical Sciences/Pharmacognosy and Excellence Field BioHealth, University of Graz, 8010 Graz, Austria
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Maria Thürmer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Fengting Su
- Institute of Pharmaceutical Sciences/Pharmacognosy and Excellence Field BioHealth, University of Graz, 8010 Graz, Austria
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Markus Werner
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Julia Grander
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Laura Hofer
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - André Gollowitzer
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Loc Le Xuan
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Felix J. Benscheid
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Ehsan Bonyadi Rad
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Armando Zarrelli
- Department of Chemical Sciences, University of Napoli Federico II, I-80126 Naples, Italy
| | - Giovanni Di Fabio
- Department of Chemical Sciences, University of Napoli Federico II, I-80126 Naples, Italy
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Valeria Romanucci
- Department of Chemical Sciences, University of Napoli Federico II, I-80126 Naples, Italy
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
| | - Andreas Koeberle
- Institute of Pharmaceutical Sciences/Pharmacognosy and Excellence Field BioHealth, University of Graz, 8010 Graz, Austria
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
2
|
Shi Z, Mhlanga A, Ishida Y, Josephson A, Collier NT, Abe-Chayama H, Tateno-Mukaidani C, Cotler SJ, Ozik J, Major M, Feld JJ, Chayama K, Dahari H. Theoretical modeling of hepatitis C acute infection in liver-humanized mice support pre-clinical assessment of candidate viruses for controlled-human-infection studies. Sci Rep 2024; 14:31826. [PMID: 39738554 DOI: 10.1038/s41598-024-83104-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025] Open
Abstract
Designing and carrying out a controlled human infection (CHI) model for hepatitis C virus (HCV) is critical for vaccine development. However, key considerations for a CHI model protocol include understanding of the earliest viral-host kinetic events during the acute phase and susceptibility of the viral isolate under consideration for use in the CHI model to antiviral treatment before any infections in human volunteers can take place. Humanized mouse models lack adaptive immune responses but provide a unique opportunity to obtain quantitative understanding of early HCV kinetics and develop mathematical models to further understand viral and innate immune response dynamics during acute HCV infection. We show that the models reproduce the measured HCV kinetics in humanized mice, which are consistent with early acute HCV-host dynamics in immunocompetent chimpanzees. Our findings suggest that humanized mice are well-suited to support development of a CHI model. In-silico and in-vivo modeling estimates provide a starting point to characterize candidate viruses for testing in CHI model studies.
Collapse
Affiliation(s)
- Zhenzhen Shi
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, 2160 S. First Ave., Maywood, IL, 60153, USA
| | - Adquate Mhlanga
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, 2160 S. First Ave., Maywood, IL, 60153, USA
| | - Yuji Ishida
- PhoenixBio Co., Ltd., Higashi-Hiroshima, Japan
| | - Ari Josephson
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, 2160 S. First Ave., Maywood, IL, 60153, USA
| | - Nicholson T Collier
- Decision and Infrastructure Sciences Division, Argonne National Laboratory, Lemont, IL, USA
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA
| | - Hiromi Abe-Chayama
- Center for Medical Specialist Graduate Education and Research, Hiroshima University, Hiroshima, Japan
| | | | - Scott J Cotler
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, 2160 S. First Ave., Maywood, IL, 60153, USA
| | - Jonathan Ozik
- Decision and Infrastructure Sciences Division, Argonne National Laboratory, Lemont, IL, USA
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA
| | - Marian Major
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Jordan J Feld
- Toronto Centre for Liver Disease, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Kazuaki Chayama
- Hiroshima Institute of Life Sciences, 7-21, Nishi Asahi-Machi, Minami-ku, Hiroshima-shi, Hiroshima, 734-0002, Japan.
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
| | - Harel Dahari
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, 2160 S. First Ave., Maywood, IL, 60153, USA.
| |
Collapse
|
3
|
Selc M, Macova R, Babelova A. Novel Strategies Enhancing Bioavailability and Therapeutical Potential of Silibinin for Treatment of Liver Disorders. Drug Des Devel Ther 2024; 18:4629-4659. [PMID: 39444787 PMCID: PMC11498047 DOI: 10.2147/dddt.s483140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
Silibinin, a bioactive component found in milk thistle extract (Silybum marianum), is known to have significant therapeutic potential in the treatment of various liver diseases. It is considered a key element of silymarin, which is traditionally used to support liver function. The main mechanisms of action of silibinin are attributed to its antioxidant properties protecting liver cells from damage caused by free radicals. Experimental studies conducted in vitro and in vivo have confirmed its ability to inhibit inflammatory and fibrotic processes, as well as promote the regeneration of damaged liver tissue. Therefore, silibinin represents a promising tool for the treatment of liver diseases. Since the silibinin molecule is insoluble in water and has poor bioavailability in vivo, new perspectives on solving this problem are being sought. The two most promising approaches are the water-soluble derivative silibinin-C-2',3-dihydrogen succinate, disodium salt, and the silibinin-phosphatidylcholine complex. Both drugs are currently under evaluation in liver disease clinical trials. Nevertheless, the mechanism underlying silibinin biological activity is still elusive and its more detailed understanding would undoubtedly increase its potential in the development of effective therapeutic strategies against liver diseases. This review is focused on the therapeutic potential of silibinin and its derivates, approaches to increase the bioavailability and the benefits in the treatment of liver diseases that have been achieved so far. The review discusses the relevant in vitro and in vivo studies that investigated the protective effects of silibinin in various forms of liver damage.
Collapse
Affiliation(s)
- Michal Selc
- Centre for Advanced Material Application, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Radka Macova
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| | - Andrea Babelova
- Centre for Advanced Material Application, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
4
|
Zarenezhad E, Abdulabbas HT, Kareem AS, Kouhpayeh SA, Barbaresi S, Najafipour S, Mazarzaei A, Sotoudeh M, Ghasemian A. Protective role of flavonoids quercetin and silymarin in the viral-associated inflammatory bowel disease: an updated review. Arch Microbiol 2023; 205:252. [PMID: 37249707 DOI: 10.1007/s00203-023-03590-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/14/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic recurrent inflammation of the gastrointestinal tract (GIT). IBD patients are susceptible to various infections such as viral infections due to the long-term consumption of immunosuppressive drugs and biologics. The antiviral and IBD protective traits of flavonoids have not been entirely investigated. This study objective included an overview of the protective role of flavonoids quercetin and silymarin in viral-associated IBD. Several viral agents such as cytomegalovirus (CMV), Epstein-Barr virus (EBV), varicella zoster virus (VZV) and enteric viruses can be reactivated and thus develop or exacerbate the IBD conditions or eventually facilitate the disease remission. Flavonoids such as quercetin and silymarin are non-toxic and safe bioactive compounds with remarkable anti-oxidant, anti-inflammatory and anti-viral effects. Mechanisms of anti-inflammatory and antiviral effects of silymarin and quercetin mainly include immune modulation and inhibition of caspase enzymes, viral binding and replication, RNA synthesis, viral proteases and viral assembly. In the nutraceutical sector, natural flavonoids low bioavailability and solubility necessitate the application of delivery systems to enhance their efficacy. This review study provided an updated understanding of the protective role of quercetin and silymarin against viral-associated IBD.
Collapse
Affiliation(s)
- Elham Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Hussein T Abdulabbas
- Department of Medical Microbiology, Medical College, Al Muthanna University, Al Muthanna, Iraq
| | - Ahmed Shayaa Kareem
- Department of Medical Laboratories Techniques, Imam Ja'afar Al-Sadiq University, Al-Muthanna, 66002, Iraq
| | - Seyed Amin Kouhpayeh
- Department of Pharmacology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Silvia Barbaresi
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Sohrab Najafipour
- Department of Microbiology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Abdulbaset Mazarzaei
- Department of Immunology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Mitra Sotoudeh
- Department of Nutrition, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
5
|
Ponticelli M, Bellone ML, Parisi V, Iannuzzi A, Braca A, de Tommasi N, Russo D, Sileo A, Quaranta P, Freer G, Pistello M, Milella L. Specialized metabolites from plants as a source of new multi-target antiviral drugs: a systematic review. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2023; 22:1-79. [PMID: 37359711 PMCID: PMC10008214 DOI: 10.1007/s11101-023-09855-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/30/2023] [Indexed: 06/28/2023]
Abstract
Viral infections have always been the main global health challenge, as several potentially lethal viruses, including the hepatitis virus, herpes virus, and influenza virus, have affected human health for decades. Unfortunately, most licensed antiviral drugs are characterized by many adverse reactions and, in the long-term therapy, also develop viral resistance; for these reasons, researchers have focused their attention on investigating potential antiviral molecules from plants. Natural resources indeed offer a variety of specialized therapeutic metabolites that have been demonstrated to inhibit viral entry into the host cells and replication through the regulation of viral absorption, cell receptor binding, and competition for the activation of intracellular signaling pathways. Many active phytochemicals, including flavonoids, lignans, terpenoids, coumarins, saponins, alkaloids, etc., have been identified as potential candidates for preventing and treating viral infections. Using a systematic approach, this review summarises the knowledge obtained to date on the in vivo antiviral activity of specialized metabolites extracted from plant matrices by focusing on their mechanism of action.
Collapse
Affiliation(s)
- Maria Ponticelli
- Department of Science, University of Basilicata, Viale Dell’ateneo Lucano 10, 85100 Potenza, Italy
| | - Maria Laura Bellone
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
- Ph.D. Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Valentina Parisi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
- Ph.D. Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Annamaria Iannuzzi
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Alessandra Braca
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Nunziatina de Tommasi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Daniela Russo
- Department of Science, University of Basilicata, Viale Dell’ateneo Lucano 10, 85100 Potenza, Italy
| | - Annalisa Sileo
- Department of Science, University of Basilicata, Viale Dell’ateneo Lucano 10, 85100 Potenza, Italy
| | | | - Giulia Freer
- Virology Unit, Pisa University Hospital, Pisa, Italy
| | | | - Luigi Milella
- Department of Science, University of Basilicata, Viale Dell’ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
6
|
Mechanistic Insights into the Pharmacological Significance of Silymarin. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165327. [PMID: 36014565 PMCID: PMC9414257 DOI: 10.3390/molecules27165327] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 12/29/2022]
Abstract
Medicinal plants are considered the reservoir of diverse therapeutic agents and have been traditionally employed worldwide to heal various ailments for several decades. Silymarin is a plant-derived mixture of polyphenolic flavonoids originating from the fruits and akenes of Silybum marianum and contains three flavonolignans, silibinins (silybins), silychristin and silydianin, along with taxifolin. Silybins are the major constituents in silymarin with almost 70–80% abundance and are accountable for most of the observed therapeutic activity. Silymarin has also been acknowledged from the ancient period and is utilized in European and Asian systems of traditional medicine for treating various liver disorders. The contemporary literature reveals that silymarin is employed significantly as a neuroprotective, hepatoprotective, cardioprotective, antioxidant, anti-cancer, anti-diabetic, anti-viral, anti-hypertensive, immunomodulator, anti-inflammatory, photoprotective and detoxification agent by targeting various cellular and molecular pathways, including MAPK, mTOR, β-catenin and Akt, different receptors and growth factors, as well as inhibiting numerous enzymes and the gene expression of several apoptotic proteins and inflammatory cytokines. Therefore, the current review aims to recapitulate and update the existing knowledge regarding the pharmacological potential of silymarin as evidenced by vast cellular, animal, and clinical studies, with a particular emphasis on its mechanisms of action.
Collapse
|
7
|
Zheng X, Guo R, Liu Q, Wakae K, Watanabe N, Fukano K, Que L, Li Y, Aly HH, Watashi K, Suzuki R, Murayama A, Kato T, Aizaki H, Wakita T, Huang X, Yan Y, Song SJ, Muramatsu M. Identification of natural compounds extracted from crude drugs as novel inhibitors of hepatitis C virus. Biochem Biophys Res Commun 2021; 567:1-8. [PMID: 34130179 DOI: 10.1016/j.bbrc.2021.06.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022]
Abstract
Natural product-derived crude drugs are expected to yield an abundance of new drugs to treat infectious diseases. Hepatitis C virus (HCV) is an oncogenic virus that significantly impacts public health. In this study, we sought to identify anti-HCV compounds in extracts of natural products. A total of 110 natural compounds extracted from several herbal medicine plants were examined for antiviral activity against HCV. Using a Huh7-mCherry-NLS-IPS reporter system for HCV infection, we first performed a rapid screening for anti-HCV compounds extracted from crude drugs. The compounds threo-2,3-bis(4-hydroxy-3-methoxyphenyl)-3-butoxypropan-1-ol (#106) and medioresinol (#110), which were extracted from Crataegus cuneate, exhibited anti-HCV activity and significantly inhibited HCV production in a dose-dependent manner. Analyses using HCV pseudoparticle and subgenomic replicon systems indicated that compounds #106 and #110 specifically inhibit HCV RNA replication but not viral entry or translation. Interestingly, compound #106 also inhibited the replication and production of hepatitis A virus. Our findings suggest that C. cuneate is a new source for novel anti-hepatitis virus drug development.
Collapse
Affiliation(s)
- Xin Zheng
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Department of Virology II, National Institute of Infectious Diseases, 162-8640, Tokyo, Japan
| | - Rui Guo
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Qingbo Liu
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Kousho Wakae
- Department of Virology II, National Institute of Infectious Diseases, 162-8640, Tokyo, Japan
| | - Noriyuki Watanabe
- Department of Virology II, National Institute of Infectious Diseases, 162-8640, Tokyo, Japan
| | - Kento Fukano
- Department of Virology II, National Institute of Infectious Diseases, 162-8640, Tokyo, Japan
| | - Lusheng Que
- Department of Virology II, National Institute of Infectious Diseases, 162-8640, Tokyo, Japan
| | - Yingfang Li
- Department of Virology II, National Institute of Infectious Diseases, 162-8640, Tokyo, Japan
| | - Hussein H Aly
- Department of Virology II, National Institute of Infectious Diseases, 162-8640, Tokyo, Japan
| | - Koichi Watashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 162-8640, Tokyo, Japan; Department of Virology II, National Institute of Infectious Diseases, 162-8640, Tokyo, Japan
| | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, 162-8640, Tokyo, Japan
| | - Asako Murayama
- Department of Virology II, National Institute of Infectious Diseases, 162-8640, Tokyo, Japan
| | - Takanobu Kato
- Department of Virology II, National Institute of Infectious Diseases, 162-8640, Tokyo, Japan
| | - Hideki Aizaki
- Department of Virology II, National Institute of Infectious Diseases, 162-8640, Tokyo, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, 162-8640, Tokyo, Japan
| | - Xiaoxiao Huang
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Yi Yan
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, 162-8640, Tokyo, Japan.
| |
Collapse
|
8
|
Parthasarathy A, Borrego EJ, Savka MA, Dobson RCJ, Hudson AO. Amino acid-derived defense metabolites from plants: A potential source to facilitate novel antimicrobial development. J Biol Chem 2021; 296:100438. [PMID: 33610552 PMCID: PMC8024917 DOI: 10.1016/j.jbc.2021.100438] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/23/2022] Open
Abstract
For millennia, humanity has relied on plants for its medicines, and modern pharmacology continues to reexamine and mine plant metabolites for novel compounds and to guide improvements in biological activity, bioavailability, and chemical stability. The critical problem of antibiotic resistance and increasing exposure to viral and parasitic diseases has spurred renewed interest into drug treatments for infectious diseases. In this context, an urgent revival of natural product discovery is globally underway with special attention directed toward the numerous and chemically diverse plant defensive compounds such as phytoalexins and phytoanticipins that combat herbivores, microbial pathogens, or competing plants. Moreover, advancements in “omics,” chemistry, and heterologous expression systems have facilitated the purification and characterization of plant metabolites and the identification of possible therapeutic targets. In this review, we describe several important amino acid–derived classes of plant defensive compounds, including antimicrobial peptides (e.g., defensins, thionins, and knottins), alkaloids, nonproteogenic amino acids, and phenylpropanoids as potential drug leads, examining their mechanisms of action, therapeutic targets, and structure–function relationships. Given their potent antibacterial, antifungal, antiparasitic, and antiviral properties, which can be superior to existing drugs, phytoalexins and phytoanticipins are an excellent resource to facilitate the rational design and development of antimicrobial drugs.
Collapse
Affiliation(s)
- Anutthaman Parthasarathy
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Eli J Borrego
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Michael A Savka
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| | - André O Hudson
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA.
| |
Collapse
|
9
|
Wang X, Zhang Z, Wu SC. Health Benefits of Silybum marianum: Phytochemistry, Pharmacology, and Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11644-11664. [PMID: 33045827 DOI: 10.1021/acs.jafc.0c04791] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Silybum marianum (SM), a well-known plant used as both a medicine and a food, has been widely used to treat various diseases, especially hepatic diseases. The seeds and fruits of SM contain a flavonolignan complex called silymarin, the active compounds of which include silybin, isosilybin, silychristin, dihydrosilybin, silydianin, and so on. In this review, we thoroughly summarize high-quality publications related to the pharmacological effects and underlying mechanisms of SM. SM has antimicrobial, anticancer, hepatoprotective, cardiovascular-protective, neuroprotective, skin-protective, antidiabetic, and other effects. Importantly, SM also counteracts the toxicities of antibiotics, metals, and pesticides. The diverse pharmacological activities of SM provide scientific evidence supporting its use in both humans and animals. Multiple signaling pathways associated with oxidative stress and inflammation are the common molecular targets of SM. Moreover, the flavonolignans of SM are potential agonists of PPARγ and ABCA1, PTP1B inhibitors, and metal chelators. At the end of the review, the potential and perspectives of SM are discussed, and these insights are expected to facilitate the application of SM and the discovery and development of new drugs. We conclude that SM is an interesting dietary medicine for health enhancement and drug discovery and warrants further investigation.
Collapse
Affiliation(s)
- Xin Wang
- College of Veterinary Medicine, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, Shandong 266109, People's Republic of China
| | - Zhen Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, Shandong 266109, People's Republic of China
| | - Shuai-Cheng Wu
- College of Veterinary Medicine, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, Shandong 266109, People's Republic of China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| |
Collapse
|
10
|
Churkin A, Lewkiewicz S, Reinharz V, Dahari H, Barash D. Efficient Methods for Parameter Estimation of Ordinary and Partial Differential Equation Models of Viral Hepatitis Kinetics. MATHEMATICS 2020; 8. [PMID: 33224865 PMCID: PMC7676746 DOI: 10.3390/math8091483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Parameter estimation in mathematical models that are based on differential equations is known to be of fundamental importance. For sophisticated models such as age-structured models that simulate biological agents, parameter estimation that addresses all cases of data points available presents a formidable challenge and efficiency considerations need to be employed in order for the method to become practical. In the case of age-structured models of viral hepatitis dynamics under antiviral treatment that deal with partial differential equations, a fully numerical parameter estimation method was developed that does not require an analytical approximation of the solution to the multiscale model equations, avoiding the necessity to derive the long-term approximation for each model. However, the method is considerably slow because of precision problems in estimating derivatives with respect to the parameters near their boundary values, making it almost impractical for general use. In order to overcome this limitation, two steps have been taken that significantly reduce the running time by orders of magnitude and thereby lead to a practical method. First, constrained optimization is used, letting the user add constraints relating to the boundary values of each parameter before the method is executed. Second, optimization is performed by derivative-free methods, eliminating the need to evaluate expensive numerical derivative approximations. The newly efficient methods that were developed as a result of the above approach are described for hepatitis C virus kinetic models during antiviral therapy. Illustrations are provided using a user-friendly simulator that incorporates the efficient methods for both the ordinary and partial differential equation models.
Collapse
Affiliation(s)
- Alexander Churkin
- Department of Software Engineering, Sami Shamoon College of Engineering, Beer-Sheva 8410501, Israel
- Correspondence: (A.C.); (D.B.); Tel.: +972-8-647-5281 (A.C.); +972-8-647-2714 (D.B.)
| | - Stephanie Lewkiewicz
- Department of Mathematics, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Vladimir Reinharz
- Department of Computer Science, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada
| | - Harel Dahari
- Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Medical Center, Maywoood, IL 60153, USA
| | - Danny Barash
- Department of Computer Science, Ben-Gurion University, Beer-Sheva 8410501, Israel
- Correspondence: (A.C.); (D.B.); Tel.: +972-8-647-5281 (A.C.); +972-8-647-2714 (D.B.)
| |
Collapse
|
11
|
Lignans and Their Derivatives from Plants as Antivirals. Molecules 2020; 25:molecules25010183. [PMID: 31906391 PMCID: PMC6982783 DOI: 10.3390/molecules25010183] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 12/31/2022] Open
Abstract
Lignans are widely produced by various plant species; they are a class of natural products that share structural similarity. They usually contain a core scaffold that is formed by two or more phenylpropanoid units. Lignans possess diverse pharmacological properties, including their antiviral activities that have been reported in recent years. This review discusses the distribution of lignans in nature according to their structural classification, and it provides a comprehensive summary of their antiviral activities. Among them, two types of antiviral lignans—podophyllotoxin and bicyclol, which are used to treat venereal warts and chronic hepatitis B (CHB) in clinical, serve as examples of using lignans for antivirals—are discussed in some detail. Prospects of lignans in antiviral drug discovery are also discussed.
Collapse
|
12
|
Xu F, Han C, Li Y, Zheng M, Xi X, Hu C, Cui X, Cao H. The Chemical Constituents and Pharmacological Actions of Silybum Marianum. CURRENT NUTRITION & FOOD SCIENCE 2019. [DOI: 10.2174/1573401314666180327155745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review presents the chemical constituents and pharmacological actions of Silybum marianum. These chemical constituents include flavonolignans, fatty acids, phenolics and other chemical constituents. Furthermore, flavonolignans constituents include silymarin isosilychristin, silychristin, silydianin, silybin A, silybin B, isosilybin A, isosilybin B, etc. Pharmacological actions include a well curative effect on non-alcoholic steatohepatitis, UV damage, varieties of cancers, diabetes. In addition, its pharmacological actions include anti-inflammatory, anti-depression and more pharmacological actions. This paper will enable Silybum marianum lay the foundation for producing high and sustainable productions in the future.
Collapse
Affiliation(s)
- Fangxue Xu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yujuan Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Mengmeng Zheng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaozhi Xi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chaoqun Hu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaowei Cui
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Hui Cao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
13
|
Antiviral Activities of Silymarin and Derivatives. Molecules 2019; 24:molecules24081552. [PMID: 31010179 PMCID: PMC6514695 DOI: 10.3390/molecules24081552] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/22/2022] Open
Abstract
Silymarin flavonolignans are well-known agents that typically possess antioxidative, anti-inflammatory, and hepatoprotective functions. Recent studies have also documented the antiviral activities of silymarin and its derivatives against several viruses, including the flaviviruses (hepatitis C virus and dengue virus), togaviruses (Chikungunya virus and Mayaro virus), influenza virus, human immunodeficiency virus, and hepatitis B virus. This review will describe some of the latest preclinical and clinical studies detailing the antiviral profiles of silymarin and its derivatives, and discuss their relevance for antiviral drug development.
Collapse
|
14
|
Koh C, Dubey P, Han MAT, Walter PJ, Garraffo HM, Surana P, Southall NT, Borochov N, Uprichard SL, Cotler SJ, Etzion O, Heller T, Dahari H, Liang TJ. A randomized, proof-of-concept clinical trial on repurposing chlorcyclizine for the treatment of chronic hepatitis C. Antiviral Res 2019; 163:149-155. [PMID: 30711416 DOI: 10.1016/j.antiviral.2019.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Chlorcyclizine HCl (CCZ) is a piperazine-class antihistamine with anti-hepatitis C virus (HCV) activity in vitro and in vivo. In a first-in-humans study for HCV, we evaluated the antiviral effects and safety of CCZ±ribavirin (RBV), characterized pharmacokinetic (PK) and viral kinetic (VK) patterns, and provide insights into CCZs mode of action against HCV. METHODS Chronic HCV patients were randomized to CCZ (75 mg twice daily) or CCZ+weight-based RBV (1000/1200 mg daily) for 28 days. Therapy started with a loading dose of CCZ 150 mg ± RBV. Serial assessments of safety, liver tests, PK and VK markers were obtained. RESULTS 24 HCV patients were treated; 54% male, median age 56 years, median HCV RNA 6.30 log IU/ml, without baseline differences between groups. At the end of therapy, subjects treated with CCZ monotherapy did not show any significant or sustained reduction in viremia (p = 0.69), whereas 7/12 (58%) subjects treated with CCZ+RBV had a >3-fold decline in HCV RNA. Subjects who responded demonstrated monophasic (n = 2), biphasic (n = 2) and triphasic (n = 3) VK responses. Contrary to historical RBV monotherapy response, CCZ+RBV demonstrated a continued viral decline suggesting a possible synergistic effect of CCZ+RBV. Mathematical modeling predicts a median effectiveness of CCZ+RBV in blocking viral production (ε) of 59% (Interquartile range, IQR: 50%) and blocking infection (η) of 78% (IQR: 23%). Adverse events (AEs) were mild-moderate without treatment discontinuations for AEs. CONCLUSIONS In this human pilot study, CCZ demonstrated some anti-HCV effects, mostly in combination with RBV. More potent CCZ derivatives with optimal PK features may be more suitable for future therapeutic development. ClinicalTrials.gov number: NCT02118012.
Collapse
Affiliation(s)
- Christopher Koh
- Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Preeti Dubey
- The Program for Experimental & Theoretical Modeling, Division of Hepatology, Loyola University Medical Center, Maywood, IL, USA
| | - Ma Ai Thanda Han
- Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter J Walter
- Clinical Mass Spectrometry Core, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - H Martin Garraffo
- Clinical Mass Spectrometry Core, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pallavi Surana
- Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Noel T Southall
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Nathaniel Borochov
- The Program for Experimental & Theoretical Modeling, Division of Hepatology, Loyola University Medical Center, Maywood, IL, USA
| | - Susan L Uprichard
- The Program for Experimental & Theoretical Modeling, Division of Hepatology, Loyola University Medical Center, Maywood, IL, USA
| | - Scott J Cotler
- The Program for Experimental & Theoretical Modeling, Division of Hepatology, Loyola University Medical Center, Maywood, IL, USA
| | - Ohad Etzion
- Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Theo Heller
- Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Harel Dahari
- The Program for Experimental & Theoretical Modeling, Division of Hepatology, Loyola University Medical Center, Maywood, IL, USA
| | - T Jake Liang
- Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
15
|
Sun S, Li J. Humanized chimeric mouse models of hepatitis B virus infection. Int J Infect Dis 2017; 59:131-136. [PMID: 28408253 DOI: 10.1016/j.ijid.2017.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/01/2017] [Accepted: 04/03/2017] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus (HBV) infection is associated with an increased risk of hepatic cirrhosis, hepatocellular carcinoma, fulminant hepatitis and end-stage hepatic failure. Despite the availability of anti-HBV therapies, HBV infection remains a major global public health problem. Developing an ideal animal model of HBV infection to clarify the details of the HBV replication process, the viral life cycle, the resulting immunoresponse and the precise pathogenesis of HBV is difficult because HBV has an extremely narrow host range and almost exclusively infects humans. In this review, we summarize and evaluate animal models available for studying HBV infection, especially focusing on humanized chimeric mouse models, and we discuss future development trends regarding immunocompetent humanized mouse models that can delineate the natural history and immunopathophysiology of HBV infection.
Collapse
Affiliation(s)
- Suwan Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Jun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China.
| |
Collapse
|
16
|
Dahari H, Shteingart S, Gafanovich I, Cotler SJ, D'Amato M, Pohl RT, Weiss G, Ashkenazi YJ, Tichler T, Goldin E, Lurie Y. Sustained virological response with intravenous silibinin: individualized IFN-free therapy via real-time modelling of HCV kinetics. Liver Int 2015; 35:289-94. [PMID: 25251042 PMCID: PMC4304917 DOI: 10.1111/liv.12692] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/15/2014] [Accepted: 09/18/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Intravenous silibinin (SIL) is a potent antiviral agent against hepatitis C virus (HCV) genotype-1. In this proof of concept case-study we tested: (i) whether interferon-alfa (IFN)-free treatment with SIL plus ribavirin (RBV) can achieve sustained virological response (SVR); (ii) whether SIL is safe and feasible for prolonged duration of treatment and (iii) whether mathematical modelling of early on-treatment HCV kinetics can guide duration of therapy to achieve SVR. METHODS A 44 year-old female HCV-(genotype-1)-infected patient who developed severe psychiatric adverse events to a previous course of pegIFN+RBV, initiated combination treatment with 1200 mg/day of SIL, 1200 mg/day of RBV and 6000 u/day vitamin D. Blood samples were collected frequently till week 4, thereafter every 1-12 weeks until the end of therapy. The standard biphasic mathematical model with time-varying SIL effectiveness was used to predict the duration of therapy to achieve SVR. RESULTS Based on modelling the observed viral kinetics during the first 3 weeks of treatment, SVR was predicted to be achieved within 34 weeks of therapy. Provided with this information, the patient agreed to complete 34 weeks of treatment. IFN-free treatment with SIL+RBV was feasible, safe and achieved SVR (week-33). CONCLUSIONS We report, for the first time, the use of real-time mathematical modelling of HCV kinetics to individualize duration of IFN-free therapy and to empower a patient to participate in shared decision making regarding length of treatment. SIL-based individualized therapy provides a treatment option for patients who do not respond to or cannot receive other HCV agents and should be further validated.
Collapse
Affiliation(s)
- Harel Dahari
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Loyola University Medical Center, Maywood, IL, USA,Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA,To whom correspondence and questions regarding mathematical modeling should be addressed: Harel Dahari, Address: Division of Hepatology, Department of Medicine, Loyola University Medical Center, Maywood, IL, USA; Fax: +1-708-216-6299; Tel: +1-708-216-4682;
| | - Shimon Shteingart
- Digestive Disease Institute, Share'e Zedek Medical Center, Jerusalem, Israel
| | - Inna Gafanovich
- Liver Unit, Digestive Disease Institute, Share'e Zedek Medical Center, Jerusalem, Israel
| | - Scott J. Cotler
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Loyola University Medical Center, Maywood, IL, USA
| | | | | | - Gali Weiss
- Nursing Division, Share'e Zedek Medical Center, Jerusalem, Israel
| | | | - Thomas Tichler
- Internal medicine, Share'e Zedek Medical Center, Jerusalem, Israel
| | - Eran Goldin
- Digestive Disease Institute, Share'e Zedek Medical Center, Jerusalem, Israel
| | - Yoav Lurie
- Liver Unit, Digestive Disease Institute, Share'e Zedek Medical Center, Jerusalem, Israel,To whom correspondence and questions regarding mathematical modeling should be addressed: Harel Dahari, Address: Division of Hepatology, Department of Medicine, Loyola University Medical Center, Maywood, IL, USA; Fax: +1-708-216-6299; Tel: +1-708-216-4682;
| |
Collapse
|