1
|
Fernandes Q, Folorunsho OG. Unveiling the nexus: The tumor microenvironment as a strategic frontier in viral cancers. Cytokine 2025; 185:156827. [PMID: 39647395 DOI: 10.1016/j.cyto.2024.156827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/23/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Viral infections are a significant factor in the etiology of various cancers, with the tumor microenvironment (TME) playing a crucial role in disease progression. This review delves into the complex interactions between viruses and the TME, highlighting how these interactions shape the course of viral cancers. We explore the distinct roles of immune cells, including T-cells, B-cells, macrophages, and dendritic cells, within the TME and their influence on cancer progression. The review also examines how viral oncoproteins manipulate the TME to promote immune evasion and tumor survival. Unraveling these mechanisms highlights the emerging paradigm of targeting the TME as a novel approach to cancer treatment. Our analysis provides insights into the dynamic interplay between viruses and the TME, offering a roadmap for innovative treatments that leverage the unique characteristics of viral cancers.
Collapse
Affiliation(s)
- Queenie Fernandes
- College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, PO. Box 3050, Doha, Qatar.
| | - Oginni Gbenga Folorunsho
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska cesta 5000, Nova Gorica, Slovenia
| |
Collapse
|
2
|
Shi Y, Liu YY, Zhen Y, Si HN, Guan MQ, Cui Y, Li SS. Low-Density Neutrophil Levels Are Correlated with Sporotrichosis Severity: Insights into Subcutaneous Fungal Infection. J Invest Dermatol 2024:S0022-202X(24)02957-9. [PMID: 39603410 DOI: 10.1016/j.jid.2024.10.610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
Low-density neutrophils (LDNs) constitute a distinct subset of neutrophils among peripheral blood mononuclear cells. They are key mediators in systemic infections, amplifying inflammatory responses and potentially influencing disease severity and chronicity. However, their roles in subcutaneous fungal infections have not been previously investigated. In this study, we observed increased neutrophil counts in the blood and tissues of sporotrichosis patients through automated blood analysis, histology, and immunohistochemistry. Additionally, we found elevated granulocyte colony-stimulating factor (G-CSF) levels by enzyme-linked immunosorbent assays. Flow cytometry analysis revealed a significant increase in CD16+CD66b+ LDNs compared with healthy controls. In vitro stimulation with Sporothrix globosa induced LDN generation. We observed positive correlations of LDN frequency with levels of C-reactive protein and myeloperoxidase. Conversely, G-CSF levels were negatively correlated with LDN frequency. LDNs exhibited a combined mature/immature phenotype. Notably, transcriptomic analysis showed downregulation of anti-inflammatory signaling pathways in LDNs; functional assays also demonstrated reduced phagocytosis, reactive oxygen species production, and neutrophil extracellular trap formation after stimulation with Sporothrix globosa. Degranulation did not exhibit significant changes, suggesting that LDNs constitute an impaired subpopulation. Our findings in the context of subcutaneous fungal infections indicate that LDN levels are significantly elevated in sporotrichosis and positively correlated with disease severity.
Collapse
Affiliation(s)
- Ying Shi
- Department of Dermatology and Venerology, First Hospital of Jilin University, Changchun, China
| | - Yuan-Yuan Liu
- Department of Dermatology and Venerology, First Hospital of Jilin University, Changchun, China
| | - Yu Zhen
- Department of Dermatology and Venerology, First Hospital of Jilin University, Changchun, China
| | - He-Nan Si
- Department of Dermatology and Venerology, First Hospital of Jilin University, Changchun, China
| | - Meng-Qi Guan
- Department of Dermatology and Venerology, First Hospital of Jilin University, Changchun, China
| | - Yan Cui
- Department of Dermatology and Venerology, First Hospital of Jilin University, Changchun, China.
| | - Shan-Shan Li
- Department of Dermatology and Venerology, First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
3
|
Zhang H, Xu W, Zhu H, Chen X, Tsai HI. Overcoming the limitations of immunotherapy in pancreatic ductal adenocarcinoma: Combining radiotherapy and metabolic targeting therapy. J Cancer 2024; 15:2003-2023. [PMID: 38434964 PMCID: PMC10905401 DOI: 10.7150/jca.92502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/20/2024] [Indexed: 03/05/2024] Open
Abstract
As a novel anticancer therapy, immunotherapy has demonstrated robust efficacy against a few solid tumors but poor efficacy against pancreatic ductal adenocarcinoma (PDAC). This poor outcome is primarily attributable to the intrinsic cancer cell resistance and T-cell exhaustion, which is also the reason for the failure of conventional therapy. The present review summarizes the current PDAC immunotherapy avenues and the underlying resistance mechanisms. Then, the review discusses synergistic combination therapies, such as radiotherapy (RT) and metabolic targeting. Research suggests that RT boosts the antigen of PDAC, which facilitates the anti-tumor immune cell infiltration and exerts function. Metabolic reprogramming contributes to restoring the exhausted T cell function. The current review will help in tailoring combination regimens to enhance the efficacy of immunotherapy. In addition, it will help provide new approaches to address the limitations of the immunosuppressive tumor microenvironment (TME) by examining the relationship among immunotherapy, RT, and metabolism targeting therapy in PDAC.
Collapse
Affiliation(s)
- Han Zhang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
| | - Wenjin Xu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
| | - Haitao Zhu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xuelian Chen
- Department of Radiology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Hsiang-I Tsai
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
Sun Q, Dai H, Wang S, Chen Y, Shi H. Progress in research on the role played by myeloid-derived suppressor cells in liver diseases. Scand J Immunol 2023; 98:e13312. [PMID: 38441348 DOI: 10.1111/sji.13312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/23/2023] [Accepted: 07/02/2023] [Indexed: 03/07/2024]
Abstract
Myeloid-derived suppressor cells (MDSCs) refer to a group of immature myeloid cells with potent immunosuppressive capacity upon activation by pathological conditions. Because of their potent immunosuppressive ability, MDSCs have garnered extensive attention in the past few years in the fields of oncology, infection, chronic inflammation and autoimmune diseases. Research on MDSCs in liver diseases has gradually increased, and their potential therapeutic roles will be further explored. This review presents a summary of the involvement and the role played by MDSCs in liver diseases, thus identifying their potential targets for the treatment of liver diseases and providing new directions for liver disease-related research.
Collapse
Affiliation(s)
- Qianqian Sun
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Heng Dai
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Siliang Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yuanyuan Chen
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Huilian Shi
- Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
5
|
Yu X, Sun J, Yang F, Mao R, Shen Z, Ren L, Yuan S, He Q, Zhang L, Yang Y, Ding X, He Y, Zhu H, Shen Z, Zhu M, Qiu C, Su Z, Zhang J. Granulocytic myeloid-derived suppressor cells increase infection risk via the IDO/IL-10 pathway in patients with hepatitis B virus-related liver failure. Front Immunol 2023; 13:966514. [PMID: 36685516 PMCID: PMC9847254 DOI: 10.3389/fimmu.2022.966514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/05/2022] [Indexed: 01/05/2023] Open
Abstract
Hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) results in high susceptibility to infection. Although granulocytic myeloid-derived suppressor cells (gMDSC) are elevated in patients with HBV-ACLF, their role in HBV-ACLF pathogenesis is unknown. To elucidate the mechanism of gMDSC expansion and susceptibility to infection in HBV-ACLF patients, we analyzed the proportion of gMDSC in the peripheral blood and organ tissues of patients with HBV-ACLF and an ACLF mouse model established by continuous injection (eight times) of Concanavalin by flow cytometry and immunohistochemistry. We found that the proportion of gMDSC increased significantly in the blood and liver of patients with HBV-ACLF. This increase was positively correlated with disease severity, prognosis, and infection. gMDSC percentages were higher in peripheral blood, liver, spleen, and bone marrow than control levels in the ACLF mouse model. Immunofluorescence revealed that the gMDSC count increased in the liver of patients with HBV-ACLF as well as in the liver and spleen of ACLF mice. We further exposed peripheral blood monocyte cells from healthy donors to plasma from HBV-ACLF patients, recombinant cytokines, or their inhibitor, and found that TNF-α led to gMDSC expansion and significant upregulation of indoleamine 2, 3-dioxygenase (IDO), while blocking TNF-α signaling decreased gMDSC. Moreover, we detected proliferation and cytokine secretion of T lymphocytes when purified gMDSC was co-cultured with Pan T cells or IDO inhibitor and found that TNF-α-induced gMDSC inhibited T cell proliferation and interferon-γ production through the IDO signaling pathway. Lastly, the ability of gMDSC to phagocytose bacteria was low in patients with HBV-ACLF. Our findings elucidate HBV-ACLF pathogenesis and provide potential therapeutic targets.
Collapse
Affiliation(s)
- Xueping Yu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Department of Infection Diseases, Fujian Medical University Affiliated First Quanzhou Hospital, Quanzhou, Fujian, China
| | - Jian Sun
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Feifei Yang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Richeng Mao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiqing Shen
- Department of Infection Diseases, Fujian Medical University Affiliated First Quanzhou Hospital, Quanzhou, Fujian, China
- Department of Cardiology, The People’s Hospital of Fujian Traditional Medical University, Fuzhou, Fujian, China
| | - Lan Ren
- Department of Infection Diseases, Fujian Medical University Affiliated First Quanzhou Hospital, Quanzhou, Fujian, China
| | - Songhua Yuan
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qian He
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Linxia Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Yang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiangqing Ding
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yongquan He
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haoxiang Zhu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhongliang Shen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Mengqi Zhu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Chao Qiu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhijun Su
- Department of Infection Diseases, Fujian Medical University Affiliated First Quanzhou Hospital, Quanzhou, Fujian, China
| | - Jiming Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
- Department of Infectious Diseases, Jing’An Branch of Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Glover A, Zhang Z, Shannon-Lowe C. Deciphering the roles of myeloid derived suppressor cells in viral oncogenesis. Front Immunol 2023; 14:1161848. [PMID: 37033972 PMCID: PMC10076641 DOI: 10.3389/fimmu.2023.1161848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Myeloid derived suppressor cells (MDSCs) are a heterogenous population of myeloid cells derived from monocyte and granulocyte precursors. They are pathologically expanded in conditions of ongoing inflammation where they function to suppress both innate and adaptive immunity. They are subdivided into three distinct subsets: monocytic (M-) MDSC, polymorphonuclear (or neutrophilic) (PMN-) MDSC and early-stage (e-) MDSC that may exhibit differential function in different pathological scenarios. However, in cancer they are associated with inhibition of the anti-tumour immune response and are universally associated with a poor prognosis. Seven human viruses classified as Group I carcinogenic agents are jointly responsible for nearly one fifth of all human cancers. These viruses represent a large diversity of species, including DNA, RNA and retroviridae. They include the human gammaherpesviruses (Epstein Barr virus (EBV) and Kaposi's Sarcoma-Associated Herpesvirus (KSHV), members of the high-risk human papillomaviruses (HPVs), hepatitis B and C (HBV, HCV), Human T cell leukaemia virus (HTLV-1) and Merkel cell polyomavirus (MCPyV). Each of these viruses encode an array of different oncogenes that perturb numerous cellular pathways that ultimately, over time, lead to cancer. A prerequisite for oncogenesis is therefore establishment of chronic infection whereby the virus persists in the host cells without being eradicated by the antiviral immune response. Although some of the viruses can directly modulate the immune response to enable persistence, a growing body of evidence suggests the immune microenvironment is modulated by expansions of MDSCs, driven by viral persistence and oncogenesis. It is likely these MDSCs play a role in loss of immune recognition and function and it is therefore essential to understand their phenotype and function, particularly given the increasing importance of immunotherapy in the modern arsenal of anti-cancer therapies. This review will discuss the role of MDSCs in viral oncogenesis. In particular we will focus upon the mechanisms thought to drive the MDSC expansions, the subsets expanded and their impact upon the immune microenvironment. Importantly we will explore how MDSCs may modulate current immunotherapies and their impact upon the success of future immune-based therapies.
Collapse
|
7
|
Aghamajidi A, Farhangnia P, Pashangzadeh S, Damavandi AR, Jafari R. Tumor-promoting myeloid cells in the pathogenesis of human oncoviruses: potential targets for immunotherapy. Cancer Cell Int 2022; 22:327. [PMID: 36303138 PMCID: PMC9608890 DOI: 10.1186/s12935-022-02727-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/25/2022] [Indexed: 11/10/2022] Open
Abstract
Oncoviruses, known as cancer-causing viruses, are typically involved in cancer progression by inhibiting tumor suppressor pathways and uncontrolled cell division. Myeloid cells are the most frequent populations recruited to the tumor microenvironment (TME) and play a critical role in cancer development and metastasis of malignant tumors. Tumor-infiltrating myeloid cells, including tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), tumor-associated dendritic cells (TADCs), and tumor-associated neutrophils (TANs) exert different states from anti-tumorigenic to pro-tumorigenic phenotypes in TME. Although their role in the anti-tumorigenic state is well introduced, their opposing roles, pro-tumorigenic activities, such as anti-inflammatory cytokine and reactive oxygen species (ROS) production, should not be ignored since they result in inflammation, tumor progression, angiogenesis, and evasion. Since the blockade of these cells had promising results against cancer progression, their inhibition might be helpful in various cancer immunotherapies. This review highlights the promoting role of tumor-associated myeloid cells (TAMCs) in the pathophysiology of human virus tumorigenesis.
Collapse
Affiliation(s)
- Azin Aghamajidi
- grid.411746.10000 0004 4911 7066Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Pooya Farhangnia
- grid.411746.10000 0004 4911 7066Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Salar Pashangzadeh
- grid.411705.60000 0001 0166 0922Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirmasoud Rayati Damavandi
- grid.411705.60000 0001 0166 0922Students’ Scientific Research Center, Exceptional Talents Development Center, Tehran University of Medical Sciences, Tehran, Iran ,grid.411705.60000 0001 0166 0922School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Jafari
- grid.412763.50000 0004 0442 8645Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
8
|
Stevenson MM, Valanparambil RM, Tam M. Myeloid-Derived Suppressor Cells: The Expanding World of Helminth Modulation of the Immune System. Front Immunol 2022; 13:874308. [PMID: 35757733 PMCID: PMC9229775 DOI: 10.3389/fimmu.2022.874308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/02/2022] [Indexed: 01/09/2023] Open
Abstract
Infection with helminths or parasitic worms are highly prevalent worldwide especially in developing regions. Helminths cause chronic infections that are associated with suppression of immune responses to unrelated pathogens, vaccines, and by-stander antigens responsible for dysregulated immune responses as occurs in diseases such as allergies. Helminths use multiple mechanisms to modulate the immune system to evade the highly polarized type 2 immune response required to expel adult worms and for immunity to reinfection. Anthelmintic drugs are efficient in reducing adult worm burdens in helminth-infected individuals, but resistance to these drugs is rapidly increasing and vaccines against these pathogens are not available. Emerging evidence indicate that helminths induce myeloid-derived suppressor cells (MDSC), originally described in tumor-bearing mice and cancer patients. MDSC are a heterogenous population of immature cells that consist of two distinct sub-populations, polymorphonuclear (PMN)-MDSC and monocytic (M)-MDSC based on morphology and phenotype. MDSC suppress the function of T cells and other innate and adaptive immune cells including NK cells and B cells. During cancer or infection with bacteria or viruses, there is marked expansion of MDSC. Furthermore, the frequencies of MDSC correlate inversely with the prognosis and survival of tumor-bearing hosts as well as bacterial and viral burdens, persistence, and outcome in infected hosts. Currently, there is a paucity of data on MDSC and helminth infections. Here, we provide a survey of the evidence accumulated so far that overall support a role for MDSC in modulating immune responses during helminth infections. We review data from studies in various helminths, including those that infect humans. Finally, we summarize the progress to date in understanding the role of MDSC in helminth infections and briefly discuss potential host-directed strategies to target MDSC-mediated suppression of immune responses to helminths in favor of development of immunity to eliminate adult worms and possibly induce protection against reinfection.
Collapse
Affiliation(s)
- Mary M Stevenson
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Rajesh M Valanparambil
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Mifong Tam
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| |
Collapse
|
9
|
Neutrophil Functional Heterogeneity and Implications for Viral Infections and Treatments. Cells 2022; 11:cells11081322. [PMID: 35456003 PMCID: PMC9025666 DOI: 10.3390/cells11081322] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 12/15/2022] Open
Abstract
Evidence suggests that neutrophils exert specialized effector functions during infection and inflammation, and that these cells can affect the duration, severity, and outcome of the infection. These functions are related to variations in phenotypes that have implications in immunoregulation during viral infections. Although the complexity of the heterogeneity of neutrophils is still in the process of being uncovered, evidence indicates that they display phenotypes and functions that can assist in viral clearance or augment and amplify the immunopathology of viruses. Therefore, deciphering and understanding neutrophil subsets and their polarization in viral infections is of importance. In this review, the different phenotypes of neutrophils and the roles they play in viral infections are discussed. We also examine the possible ways to target neutrophil subsets during viral infections as potential anti-viral treatments.
Collapse
|
10
|
Feng L, Li G, An J, Liu C, Zhu X, Xu Y, Gao Y, Li J, Liu J, Yan J, Wang Y, Ren J, Yang L, Qi Z. Exercise Training Protects Against Heart Failure Via Expansion of Myeloid-Derived Suppressor Cells Through Regulating IL-10/STAT3/S100A9 Pathway. Circ Heart Fail 2021; 15:e008550. [PMID: 34911348 DOI: 10.1161/circheartfailure.121.008550] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Exercise training (ET) has a protective effect on the progression of heart failure, however, the specific mechanism has not been fully explored. Myeloid-derived suppressor cells (MDSCs) are a group of myeloid-derived immunosuppressive cells, which showed a protective effect in the progression of heart failure. Thus, we hypothesized that the protective effect of ET on heart failure may be related to the infiltration of MDSCs. METHODS C57BL/6 mice were made to run on a treadmill 6× a week for 4 weeks followed by isoproterenol injection from third week. Heart function was evaluated by echocardiography and the proportion of MDSCs was detected by flow cytometry. Hypertrophic markers, cardiac fibrosis, and inflammatory factors were detected by real-time PCR, ELISA, histological staining, and Western blot. RESULTS ET treatment in isoproterenol-induced heart failure mice (n=7) enhanced cardiac function (57% increase in FS%, P=0.002) and improved morphological changes compared with isoproterenol mice (n=17). ET further caused 79% increasing in cardiac MDSCs in isoproterenol mice (P<0.001). In addition, depletion of MDSCs by 5-Fluorouracil blunted the cardio-protective effect of ET. T-cell proliferation assay showed that ET did not affect the suppressive activity of MDSCs. Furthermore, we found that ET activated the secretion of IL (interleukin)-10 by macrophages in isoproterenol mice. MDSCs expansion and cardio protection was not present in tamoxifen-inducible macrophage-specific IL-10 knockout mice. Western blot results confirmed that IL-10 regulated the differentiation of MDSCs through the translocation of p-STAT3 (signal transducer and activator of transcription 3)/S100A9 (S100 calcium-binding protein A9) to the nucleus. CONCLUSIONS ET could increase MDSCs by stimulating the secretion of IL-10 from macrophage, which was through IL-10/STAT3/S100A9 signaling pathway, thereby achieving the role of heart protection.
Collapse
Affiliation(s)
- Lifeng Feng
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China (L.F., G.L., J.A., C.L., Y.X., Y.G., J. Li, J. Liu, J.Y., Y.W., L.Y., Z.Q.)
| | - Guangru Li
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China (L.F., G.L., J.A., C.L., Y.X., Y.G., J. Li, J. Liu, J.Y., Y.W., L.Y., Z.Q.)
| | - Jiale An
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China (L.F., G.L., J.A., C.L., Y.X., Y.G., J. Li, J. Liu, J.Y., Y.W., L.Y., Z.Q.)
| | - Chang Liu
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China (L.F., G.L., J.A., C.L., Y.X., Y.G., J. Li, J. Liu, J.Y., Y.W., L.Y., Z.Q.)
| | - Xiaolong Zhu
- Department of Pathogen Biology, Basic Medical College, Tianjin Medical University, China. (X.Z., J.R.).,Department of Cardiovascular Surgery, Tianjin Chest Hospital, China (X.Z.)
| | - Yang Xu
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China (L.F., G.L., J.A., C.L., Y.X., Y.G., J. Li, J. Liu, J.Y., Y.W., L.Y., Z.Q.)
| | - Yang Gao
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China (L.F., G.L., J.A., C.L., Y.X., Y.G., J. Li, J. Liu, J.Y., Y.W., L.Y., Z.Q.).,Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, China (Y.G., L.Y., Z.Q.)
| | - Jing Li
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China (L.F., G.L., J.A., C.L., Y.X., Y.G., J. Li, J. Liu, J.Y., Y.W., L.Y., Z.Q.)
| | - Jie Liu
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China (L.F., G.L., J.A., C.L., Y.X., Y.G., J. Li, J. Liu, J.Y., Y.W., L.Y., Z.Q.)
| | - Jie Yan
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China (L.F., G.L., J.A., C.L., Y.X., Y.G., J. Li, J. Liu, J.Y., Y.W., L.Y., Z.Q.)
| | - Yachen Wang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China (L.F., G.L., J.A., C.L., Y.X., Y.G., J. Li, J. Liu, J.Y., Y.W., L.Y., Z.Q.)
| | - Jiling Ren
- Department of Pathogen Biology, Basic Medical College, Tianjin Medical University, China. (X.Z., J.R.).,Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, China. (J.R.)
| | - Liang Yang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China (L.F., G.L., J.A., C.L., Y.X., Y.G., J. Li, J. Liu, J.Y., Y.W., L.Y., Z.Q.).,Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, China (Y.G., L.Y., Z.Q.)
| | - Zhi Qi
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China (L.F., G.L., J.A., C.L., Y.X., Y.G., J. Li, J. Liu, J.Y., Y.W., L.Y., Z.Q.).,Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, China (Y.G., L.Y., Z.Q.).,School of Tropical Medicine and Laboratory Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, China (Z.Q.)
| |
Collapse
|
11
|
Specific inhibition of SHP2 suppressed abdominal aortic aneurysm formation in mice by augmenting the immunosuppressive function of MDSCs. Life Sci 2020; 265:118751. [PMID: 33189823 DOI: 10.1016/j.lfs.2020.118751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/28/2020] [Accepted: 11/09/2020] [Indexed: 11/23/2022]
Abstract
AIMS To address the roles of SHP2 in regulating angiotensin II (Ang II) induced abdominal aortic aneurysm (AAA) and the potential molecular mechanisms. MAIN METHODS AAA model was established in apolipoprotein E-deficient (apoE-/-) mice infused with Ang II. Suprarenal aortic luminal diameters were ultrasonically measured to determine the presentation of AAA in mice. The inflammatory and immunosuppressive factors in serum were detected by ELISA. AAA lesion size, positive macrophages and elastic laminae degradation were examined by histological analysis. Myeloid-derived suppressor cells (MDSCs) were measured by flow cytometry after magnetic bead sorting. Bioinformatics analysis was applied to screen the crucial genes related the progression of AAA. KEY FINDINGS Treatment with PHPS1 (SHP2 inhibitor) significantly decreased the vascular diameter of AAA. Histological analysis showed that PHPS1 obviously reduced the Masson positive area, macrophages positive area, as well as the damage rate of elastic laminae. Moreover, PHPS1 suppressed the expression of INF-γ, TNF-α and MMPs, as well as elevated IL-10 and arginase-1 expression. Additionally, PHPS1 enhanced the expression of granulocytic MDSCs (G-MDSCs). By consulting with bioinformatics, STAT3 was selected. In G-MDSCs, PHPS1 stimulation obviously increased the phosphorylation level of STAT3, as well as elevated the protein expression of C/EBPβ and arginase-1. However, the above phenomena can be blocked after Stattic (STAT3 inhibitor) treatment. SIGNIFICANCE SHP2 may affect the AAA progression by interfering with expansion and function of MDSCs to regulate the body immunity, which might afford a novel direction for the treatment of patients with AAA.
Collapse
|
12
|
Silvestre-Roig C, Fridlender ZG, Glogauer M, Scapini P. Neutrophil Diversity in Health and Disease. Trends Immunol 2019; 40:565-583. [PMID: 31160207 PMCID: PMC7185435 DOI: 10.1016/j.it.2019.04.012] [Citation(s) in RCA: 323] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 12/17/2022]
Abstract
New evidence has challenged the outdated dogma that neutrophils are a homogeneous population of short-lived cells. Although neutrophil subpopulations with distinct functions have been reported under homeostatic and pathological conditions, a full understanding of neutrophil heterogeneity and plasticity is currently lacking. We review here current knowledge of neutrophil heterogeneity and diversity, highlighting the need for deep genomic, phenotypic, and functional profiling of the identified neutrophil subpopulations to determine whether these cells truly represent bona fide novel neutrophil subsets. We suggest that progress in understanding neutrophil heterogeneity will allow the identification of clinically relevant neutrophil subpopulations that may be used in the diagnosis of specific diseases and lead to the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Carlos Silvestre-Roig
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - Zvi G Fridlender
- Institute of Pulmonary Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, and Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Patrizia Scapini
- Department of Medicine, Section of General Pathology, School of Medicine, University of Verona, Verona, Italy.
| |
Collapse
|