1
|
You HJ, Li Q, Ma LH, Wang X, Zhang HY, Wang YX, Bao ES, Zhong YJ, Kong DL, Liu XY, Kong FY, Zheng KY, Tang RX. Inhibition of GLUD1 mediated by LASP1 and SYVN1 contributes to hepatitis B virus X protein-induced hepatocarcinogenesis. J Mol Cell Biol 2024; 16:mjae014. [PMID: 38587834 PMCID: PMC11440430 DOI: 10.1093/jmcb/mjae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 01/18/2024] [Accepted: 04/06/2024] [Indexed: 04/09/2024] Open
Abstract
Glutamate dehydrogenase 1 (GLUD1) is implicated in oncogenesis. However, little is known about the relationship between GLUD1 and hepatocellular carcinoma (HCC). In the present study, we demonstrated that the expression levels of GLUD1 significantly decreased in tumors, which was relevant to the poor prognosis of HCC. Functionally, GLUD1 silencing enhanced the growth and migration of HCC cells. Mechanistically, the upregulation of interleukin-32 through AKT activation contributes to GLUD1 silencing-facilitated hepatocarcinogenesis. The interaction between GLUD1 and AKT, as well as α-ketoglutarate regulated by GLUD1, can suppress AKT activation. In addition, LIM and SH3 protein 1 (LASP1) interacts with GLUD1 and induces GLUD1 degradation via the ubiquitin-proteasome pathway, which relies on the E3 ubiquitin ligase synoviolin (SYVN1), whose interaction with GLUD1 is enhanced by LASP1. In hepatitis B virus (HBV)-related HCC, the HBV X protein (HBX) can suppress GLUD1 with the participation of LASP1 and SYVN1. Collectively, our data suggest that GLUD1 silencing is significantly associated with HCC development, and LASP1 and SYVN1 mediate the inhibition of GLUD1 in HCC, especially in HBV-related tumors.
Collapse
Affiliation(s)
- Hong-Juan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou 221004, China
| | - Qi Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou 221004, China
- Laboratory Department, The People's Hospital of Funing, Yancheng 224400, China
| | - Li-Hong Ma
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou 221004, China
| | - Xing Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou 221004, China
| | - Huan-Yang Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou 221004, China
| | - Yu-Xin Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou 221004, China
| | - En-Si Bao
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou 221004, China
| | - Yu-Jie Zhong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou 221004, China
| | - De-Long Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiang-Ye Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou 221004, China
| | - Fan-Yun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou 221004, China
| | - Kui-Yang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou 221004, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou 221004, China
| | - Ren-Xian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou 221004, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
2
|
Enomoto H, Akuta N, Hikita H, Suda G, Inoue J, Tamaki N, Ito K, Akahane T, Kawaoka T, Morishita A, Ogawa E, Tateishi R, Yoshiji H. Etiological changes of liver cirrhosis and hepatocellular carcinoma-complicated liver cirrhosis in Japan: Updated nationwide survey from 2018 to 2021. Hepatol Res 2024; 54:763-772. [PMID: 38638067 DOI: 10.1111/hepr.14047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/20/2024]
Abstract
AIM A nationwide survey in 2018 showed decreasing involvement of viral hepatitis and increasing involvement of nonviral liver diseases in the etiology of liver cirrhosis (LC) in Japan. An updated nationwide survey was undertaken in 2023. METHODS Cases of LC diagnosed between 2018 and 2021 were collected from 75 institutions, and the etiologies of LC were investigated. In addition, the data obtained were compared with the results of previous studies. RESULTS Among the 15 517 cases, alcohol-related liver disease (ALD)-associated LC was the most frequent cause (n = 5,487, 35.4%). Hepatitis C virus-associated LC, nonalcoholic steatohepatitis (NASH)-associated LC, and hepatitis B virus-associated LC were ranked as second, third, and fourth, respectively. In comparison to the previous survey, the ratios of viral hepatitis-associated LC decreased (HBV: from 11.5% to 8.1%; HCV: from 48.2% to 23.4%), while the ratios of ALD-associated LC and NASH-associated LC increased (from 19.9% to 35.4% and from 6.3% to 14.6%, respectively). Regarding cases of LC with hepatocellular carcinoma (n = 5906), HCV-associated LC (1986 cases, 33.6%) was the most frequent cause. Alcohol-related liver disease-associated LC, NASH-associated LC, and HBV-associated LC were the second-, third-, and fourth-ranked causes, respectively. In comparison to the previous survey, as the cause of hepatocellular carcinoma-complicated LC, HCV-associated LC decreased from 60.3% to 33.6%, while the ratios of ALD-associated LC and NASH-associated LC increased from 14.2% to 28.6% and from 4.2% to 14.0%, respectively. CONCLUSIONS The major causes of LC in Japan are suggested to have been shifting from viral hepatitis to nonviral chronic liver diseases.
Collapse
Affiliation(s)
- Hirayuki Enomoto
- Division of Hepatobiliary and Pancreatic Diseases, Department of Gastroenterology, Hyogo Medical University, Nishinomiya, Japan
| | - Norio Akuta
- Department of Hepatology, Toranomon Hospital and Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| | - Hayato Hikita
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Goki Suda
- Departments of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Jun Inoue
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobuharu Tamaki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Kiyoaki Ito
- Department of Gastroenterology, Aichi Medical University, Nagakute, Japan
| | - Takemi Akahane
- Department of Gastroenterology, Nara Medical University, Kashihara, Japan
| | - Tomokazu Kawaoka
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Takamatsu, Japan
| | - Eiichi Ogawa
- Department of General Internal Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Ryosuke Tateishi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hitoshi Yoshiji
- Department of Gastroenterology, Nara Medical University, Kashihara, Japan
| |
Collapse
|
3
|
Pan X, Xu J, Zhou Y. Multifaceted role of FAM210B in hepatocellular carcinoma: Implications for tumour progression, microenvironment modulation and therapeutic selection. J Cell Mol Med 2024; 28:e70031. [PMID: 39198940 PMCID: PMC11358035 DOI: 10.1111/jcmm.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a common and lethal liver cancer characterized by complex aetiology and limited treatment options. FAM210B, implicated in various cancers, is noteworthy for its potential role in the progression and treatment response of HCC. Yet, its expression patterns, functional impacts and correlations with patient outcomes and resistance to therapy are not well understood. We employed a comprehensive methodology to explore the role of FAM210B in HCC, analysing its expression across cancers, subcellular localization and impacts on cell proliferation, invasion, migration, biological enrichment and the immune microenvironment. Additionally, we investigated its expression in single cells, drug sensitivity and relationships with genomic instability, immunotherapy efficacy and key immune checkpoints. While FAM210B expression varied across cancers, there was no notable difference between HCC and normal tissues. Elevated levels of FAM210B were associated with improved survival outcomes. Subcellular analysis located FAM210B in the plasma membrane and cytosol. FAM210B was generally downregulated in HCC, and its suppression significantly enhanced cell proliferation, invasion and migration. Biological enrichment analysis linked FAM210B to metabolic and immune response pathways. Moreover, its expression modified the immune microenvironment of HCC, affecting drug responsiveness and immunotherapy outcomes. High expression levels of FAM202B correlated with increased resistance to sunitinib and enhanced responsiveness to immunotherapy, as evidenced by associations with tumour mutation burden, PDCD1, CTLA4 and TIDE scores. FAM210B exerts a complex influence on HCC, affecting tumour cell behaviour, metabolic pathways, the immune microenvironment and responses to therapy.
Collapse
Affiliation(s)
- Xianzhu Pan
- Department of Pathology and Pathophysiology, School of Basic MedicineAnhui Medical CollegeHefeiChina
| | - Jun Xu
- Department of Pathology and Pathophysiology, School of Basic MedicineAnhui Medical CollegeHefeiChina
| | - Yuanqin Zhou
- Department of Pathology and Pathophysiology, School of Basic MedicineAnhui Medical CollegeHefeiChina
| |
Collapse
|
4
|
Jeng WJ, Chien RN, Chen YC, Lin CL, Wu CY, Liu YC, Peng CW, Su CW, Hsu CE, Liaw YF. Hepatocellular carcinoma reduced, HBsAg loss increased, and survival improved after finite therapy in hepatitis B patients with cirrhosis. Hepatology 2024; 79:690-703. [PMID: 37625144 DOI: 10.1097/hep.0000000000000575] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND AND AIMS Long-term nucleos(t)ide analog (Nuc) treatment can reduce HCC in patients with HBV-related liver cirrhosis (HBV-LC). Earlier small cohort studies showed a comparable 5-year incidence of HCC in HBeAg-negative patients with HBV-LC who stopped and those continued Nuc therapy. This study aimed to validate these findings using a large cohort with 10-year follow-up. APPROACH AND RESULTS From 2 centers, 494 HBeAg-negative patients with HBV-LC who stopped (finite group) and 593 who continued (continuous group) Nuc therapy were recruited. HCC, HBsAg loss, liver-related mortality/transplantation, and overall survival rates were compared between 2 groups with 1:1 propensity score matching of sex, treatment history, types of Nuc, age, transaminases, platelet count, and HBsAg levels at end of therapy in finite group or 3-year on-therapy in continuous groups. During a median follow-up of 6.2 (3.4-8.9) years, the annual and 10-year HCC incidence were lower in finite group (1.6 vs. 3.3%/y and 10-y 15.7% vs. 26.8%, respectively; log-rank test, p <0.0001). The finite group showed greater HBsAg decline/year (-0.116 vs. -0.095 log 10 IU/mL, p =0.0026) and 7.6 times higher 10-year incidence of HBsAg loss (22.7% vs. 3%, p <0.0001). Multivariate Cox regression showed finite therapy an independent factor for HBsAg loss (adjusted HR: 11.79) but protective against HCC (adjusted HR: 0.593), liver-related mortality/transplantation (adjusted HR: 0.312), and overall mortality (adjusted HR: 0.382). CONCLUSIONS Finite Nuc therapy in HBeAg-negative HBV-LC may reduce HCC incidence, increase HBsAg loss, and improve survival. Greater HBsAg decline/loss may reflect enhanced immunity and contribute to the reduction of hepatic carcinogenesis.
Collapse
Affiliation(s)
- Wen-Juei Jeng
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou Branch, Taiwan
- College of Medicine, Chang Gung University, Taiwan
| | - Rong-Nan Chien
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou Branch, Taiwan
- College of Medicine, Chang Gung University, Taiwan
- Liver Research Unit, Chang Gung Memorial Hospital, Linkou Branch, Taiwan
| | - Yi-Cheng Chen
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou Branch, Taiwan
- College of Medicine, Chang Gung University, Taiwan
- Liver Research Unit, Chang Gung Memorial Hospital, Linkou Branch, Taiwan
| | - Chih-Lang Lin
- College of Medicine, Chang Gung University, Taiwan
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Keelung Branch, Taiwan
| | - Chia-Ying Wu
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou Branch, Taiwan
| | - Yen-Chun Liu
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou Branch, Taiwan
- College of Medicine, Chang Gung University, Taiwan
| | - Chien-Wei Peng
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou Branch, Taiwan
- College of Medicine, Chang Gung University, Taiwan
| | - Chung-Wei Su
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou Branch, Taiwan
- College of Medicine, Chang Gung University, Taiwan
| | - Cheng-Er Hsu
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou Branch, Taiwan
- College of Medicine, Chang Gung University, Taiwan
| | - Yun-Fan Liaw
- College of Medicine, Chang Gung University, Taiwan
- Liver Research Unit, Chang Gung Memorial Hospital, Linkou Branch, Taiwan
| |
Collapse
|
5
|
You H, Zhang N, Yu T, Ma L, Li Q, Wang X, Yuan D, Kong D, Liu X, Hu W, Liu D, Kong F, Zheng K, Tang R. Hepatitis B virus X protein promotes MAN1B1 expression by enhancing stability of GRP78 via TRIM25 to facilitate hepatocarcinogenesis. Br J Cancer 2023; 128:992-1004. [PMID: 36635499 PMCID: PMC10006172 DOI: 10.1038/s41416-022-02115-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND GRP78 has been implicated in hepatocarcinogenesis. However, the clinical relevance, biological functions and related regulatory mechanisms of GRP78 in hepatitis B virus (HBV)-associated hepatoma carcinoma (HCC) remain elusive. METHODS The association between GRP78 expression and HBV-related HCC was investigated. The effects of HBV X protein (HBX) on GRP78 and MAN1B1 expression, biological functions of GRP78 and MAN1B1 in HBX-mediated HCC cells and mechanisms related to TRIM25 on GRP78 upregulation to induce MAN1B1 expression in HBX-related HCC cells were examined. RESULTS GRP78 expression was correlated with poor prognosis in HBV-positive HCC. HBX increased MAN1B1 protein expression depending on GRP78, and HBX enhanced the levels of MAN1B1 to promote proliferation, migration and PI3-K/mTOR signalling pathway activation in HCC cells. GRP78 activates Smad4 via its interaction with Smad4 to increase MAN1B1 expression in HBX-expressing HCC cells. TRIM25 enhanced the stability of GRP78 by inhibiting its ubiquitination. HBX binds to GRP78 and TRIM25 and accelerates their interaction of GRP78 and TRIM25, leading to an increase in GRP78 expression. CONCLUSIONS HBX enhances the stability of GRP78 through TRIM25 to increase the expression of MAN1B1 to facilitate tumorigenesis, and we provide new insights into the molecular mechanisms underlying HBV-induced malignancy.
Collapse
Affiliation(s)
- Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ning Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tong Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lihong Ma
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qi Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Laboratory Department, The People's Hospital of Funing, Yancheng, Jiangsu, China
| | - Xing Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dongchen Yuan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Delong Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiangye Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wei Hu
- Nanjing Drum Tower Hospital Group Suqian Hospital, The Affiliate Suqian Hospital of Xuzhou Medical University, Suqian, Jiangsu, China
| | - Dongsheng Liu
- Nanjing Drum Tower Hospital Group Suqian Hospital, The Affiliate Suqian Hospital of Xuzhou Medical University, Suqian, Jiangsu, China
| | - Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
6
|
Pregenomic RNA Launch Hepatitis B Virus Replication System Facilitates the Mechanistic Study of Antiviral Agents and Drug-Resistant Variants on Covalently Closed Circular DNA Synthesis. J Virol 2022; 96:e0115022. [PMID: 36448800 PMCID: PMC9769369 DOI: 10.1128/jvi.01150-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Hepatitis B virus (HBV) replicates its genomic DNA by reverse transcription of an RNA intermediate, termed pregenomic RNA (pgRNA), within nucleocapsid. It had been shown that transfection of in vitro-transcribed pgRNA initiated viral replication in human hepatoma cells. We demonstrated here that viral capsids, single-stranded DNA, relaxed circular DNA (rcDNA) and covalently closed circular DNA (cccDNA) became detectable sequentially at 3, 6, 12, and 24 h post-pgRNA transfection into Huh7.5 cells. The levels of viral DNA replication intermediates and cccDNA peaked at 24 and 48 h post-pgRNA transfection, respectively. HBV surface antigen (HBsAg) became detectable in culture medium at day 4 posttransfection. Interestingly, the early robust viral DNA replication and cccDNA synthesis did not depend on the expression of HBV X protein (HBx), whereas HBsAg production was strictly dependent on viral DNA replication and expression of HBx, consistent with the essential role of HBx in the transcriptional activation of cccDNA minichromosomes. While the robust and synchronized HBV replication within 48 h post-pgRNA transfection is particularly suitable for the precise mapping of the HBV replication steps, from capsid assembly to cccDNA formation, targeted by distinct antiviral agents, the treatment of cells starting at 48 h post-pgRNA transfection allows the assessment of antiviral agents on mature nucleocapsid uncoating, cccDNA synthesis, and transcription, as well as viral RNA stability. Moreover, the pgRNA launch system could be used to readily assess the impacts of drug-resistant variants on cccDNA formation and other replication steps in the viral life cycle. IMPORTANCE Hepadnaviral pgRNA not only serves as a template for reverse transcriptional replication of viral DNA but also expresses core protein and DNA polymerase to support viral genome replication and cccDNA synthesis. Not surprisingly, cytoplasmic expression of duck hepatitis B virus pgRNA initiated viral replication leading to infectious virion secretion. However, HBV replication and antiviral mechanism were studied primarily in human hepatoma cells transiently or stably transfected with plasmid-based HBV replicons. The presence of large amounts of transfected HBV DNA or transgenes in cellular chromosomes hampered the robust analyses of HBV replication and cccDNA function. As demonstrated here, the pgRNA launch HBV replication system permits the accurate mapping of antiviral target and investigation of cccDNA biosynthesis and transcription using secreted HBsAg as a convenient quantitative marker. The effect of drug-resistant variants on viral capsid assembly, genome replication, and cccDNA biosynthesis and function can also be assessed using this system.
Collapse
|
7
|
Hu W, Liu D, Li R, Qian H, Qiu W, Ye Q, Kong F. Comprehensive Analysis of TRIM Family Genes in Hepatitis Virus B-Related Hepatoma Carcinoma. Front Genet 2022; 13:913743. [PMID: 35873464 PMCID: PMC9301387 DOI: 10.3389/fgene.2022.913743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/10/2022] [Indexed: 11/25/2022] Open
Abstract
Background: As significant components of E3 ligases, the tripartite motif (TRIM) proteins participate in various biological processes and facilitate the development of several diseases. Nevertheless, the correlations of TIRMs with hepatitis B virus (HBV)-positive hepatoma carcinoma (HCC) are not well elaborated. Methods: The expression profile of TRIM genes in HBV-associated HCC and related clinical information were extracted from the Cancer Genome Atla (TCGA) database and the International Cancer Genome Consortium (ICGC) database. Dependent on the ConsensusPathDB and STRING databases, the gene ontology, Reactome pathways, and protein-protein interaction were assessed. Relied on TIMER 2.0 database, the relationship of the TRIMs with immune infiltration was investigated. Using multivariate analysis and Kaplan Meier analysis, the association between TRIM genes and the prognostic value was examined. Results: A total of 17 TRIM genes, including TRIM16, TRIM17, and TRIM31 with fold change no less than 1.5, were discovered to upregulate in HBV-associated HCC in both TCGA and ICGC cohorts. Relied on gene enrichment analysis, the identified TRIMs were observed to not only be related to the interferon and cytokine signaling but also linked to the adaptive immune system. Particularly, the co-expression patterns of identified TRIMs with other E3 ligase genes and many innate immune genes that are associated with Toll-like receptor signaling, apoptosis, and SUMOylation. Besides, some of identified TRIM expressions were also linked to the infiltration levels of T cells and B cells. Additionally, several TRIM genes were associated with various clinical factors and relevant to the poor survival of HBV-associated HCC. Conclusion: Our findings could deepen our understanding of TRIMs and their correlations with HBV-associated HCC. Furthermore, some of these TRIMs may be utilized as new prognostic markers of HBV-related HCC prognosis, or act as potential molecular targets for the disease.
Collapse
Affiliation(s)
- Wei Hu
- NanJing Drum Tower Hospital Group Suqian Hospital, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Dongsheng Liu
- NanJing Drum Tower Hospital Group Suqian Hospital, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Renjie Li
- NanJing Drum Tower Hospital Group Suqian Hospital, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Hong Qian
- NanJing Drum Tower Hospital Group Suqian Hospital, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Wei Qiu
- NanJing Drum Tower Hospital Group Suqian Hospital, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Qingwang Ye
- NanJing Drum Tower Hospital Group Suqian Hospital, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Fanyun Kong
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Fanyun Kong,
| |
Collapse
|
8
|
Russo FP, Zanetto A, Pinto E, Battistella S, Penzo B, Burra P, Farinati F. Hepatocellular Carcinoma in Chronic Viral Hepatitis: Where Do We Stand? Int J Mol Sci 2022; 23:500. [PMID: 35008926 PMCID: PMC8745141 DOI: 10.3390/ijms23010500] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the major causes of cancer-related death. Although the burden of alcohol- and NASH-related HCC is growing, chronic viral hepatitis (HBV and HCV) remains a major cause of HCC development worldwide. The pathophysiology of viral-related HCC includes liver inflammation, oxidative stress, and deregulation of cell signaling pathways. HBV is particularly oncogenic because, contrary to HCV, integrates in the cell DNA and persists despite virological suppression by nucleotide analogues. Surveillance by six-month ultrasound is recommended in patients with cirrhosis and in "high-risk" patients with chronic HBV infection. Antiviral therapy reduces the risks of development and recurrence of HCC; however, patients with advanced chronic liver disease remain at risk of HCC despite virological suppression/cure and should therefore continue surveillance. Multiple scores have been developed in patients with chronic hepatitis B to predict the risk of HCC development and may be used to stratify individual patient's risk. In patients with HCV-related liver disease who achieve sustained virological response by direct acting antivirals, there is a strong need for markers/scores to predict long-term risk of HCC. In this review, we discuss the most recent advances regarding viral-related HCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fabio Farinati
- Gastroenterology/Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy; (F.P.R.); (A.Z.); (E.P.); (S.B.); (B.P.); (P.B.)
| |
Collapse
|