1
|
Chen Y, Chen L, Huang S, Yang L, Wang L, Yang F, Huang J, Ding X. Predicting novel biomarkers for early diagnosis and dynamic severity monitoring of human ulcerative colitis. Front Genet 2024; 15:1429482. [PMID: 39144720 PMCID: PMC11321978 DOI: 10.3389/fgene.2024.1429482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
Background Ulcerative colitis is an emerging global health concern that poses a significant threat to human health and can progress to colorectal cancer if not diagnosed and treated promptly. Currently, the biomarkers used clinically for diagnosis and dynamic severity monitoring lack disease specificity. Methods Mouse models induced with 2%, 2.5%, and 3% DSS were utilized to simulate human UC with varying severities of inflammation. Transcriptome sequencing technology was employed to identify differentially expressed genes (DEGs) between the control group and each treatment group. Functional enrichment analysis of the KEGG database was performed for shared DEGs among the three treatment groups. DEGs that were significantly and strongly correlated with DSS concentrations were identified using Spearman correlation analysis. Human homologous genes of the interested DEGs were searched in the HomoloGene database, and their regulation patterns in UC patients were validated using the GSE224758 dataset. These genes were then submitted to the DisGeNET database to identify their known associations with human diseases. Online tools, including SignalP 6.0 and DeepTMHMM 1.0, were used to predict signal peptides and transmembrane helices in the amino acid sequences of human genes homologous to the DEGs of interest. Results A total of 1,230, 995, and 2,214 DEGs were identified in the 2%, 2.5%, and 3% DSS-induced groups, respectively, with 668 DEGs common across all three groups. These shared DEGs were primarily associated with signaling transport, pathogenesis, and immune response. Through extensive screening, LGI2 and PRSS22 were identified as potentially novel biomarkers with higher specificity and ease of detection for the early diagnosis and dynamic severity monitoring of human UC, respectively. Conclusion We have identified two potentially novel biomarkers, LGI2 and PRSS22, which are easy of detection and more specific for human UC. These findings provide new insights into the accurate diagnosis and dynamic monitoring of this persistent disease.
Collapse
Affiliation(s)
- Yu Chen
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing, China
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing, China
| | - Li Chen
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing, China
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing, China
| | - Sheng Huang
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing, China
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing, China
| | - Li Yang
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing, China
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing, China
| | - Li Wang
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing, China
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing, China
| | - Feiyun Yang
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing, China
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing, China
| | - Jinxiu Huang
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing, China
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing, China
| | - Xiuliang Ding
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing, China
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing, China
| |
Collapse
|
2
|
Kinsey N, Belanger JM, Mandigers PJJ, Leegwater PA, Heinonen T, Hytönen MK, Lohi H, Ostrander EA, Oberbauer AM. Idiopathic Epilepsy Risk Allele Trends in Belgian Tervuren: A Longitudinal Genetic Analysis. Genes (Basel) 2024; 15:114. [PMID: 38255002 PMCID: PMC10815166 DOI: 10.3390/genes15010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Idiopathic epilepsy (IE) has been known to be inherited in the Belgian Tervuren for many decades. Risk genotypes for IE in this breed have recently been identified on Canis familiaris chromosomes (CFA) 14 and 37. In the current study, the allele frequencies of these loci were analyzed to determine whether dog breeders had employed a purposeful selection against IE, leading to a reduction in risk-associated allele frequency within the breed over time. The allele frequencies of two generational groupings of Belgian Tervuren with and without IE were compared. Allele frequencies for risk-associated alleles on CFA14 were unchanged between 1985 and 2015, whereas those on CFA37 increased during that time in the control population (p < 0.05). In contrast, dogs with IE showed a decrease (p < 0.05) in the IE risk-associated allele frequency at the CFA37 locus. Seizure prevalence in the Belgian Tervuren appears to be increasing. These results suggest that, despite awareness that IE is inherited, selection against IE has not been successful.
Collapse
Affiliation(s)
- Nathan Kinsey
- Department of Animal Science, University of California, Davis, CA 95616, USA; (N.K.); (J.M.B.)
| | - Janelle M. Belanger
- Department of Animal Science, University of California, Davis, CA 95616, USA; (N.K.); (J.M.B.)
| | - Paul J. J. Mandigers
- Department of Clinical Sciences, Utrecht University, Yalelaan 108, 3584 CM Utrecht, The Netherlands; (P.J.J.M.); (P.A.L.)
| | - Peter A. Leegwater
- Department of Clinical Sciences, Utrecht University, Yalelaan 108, 3584 CM Utrecht, The Netherlands; (P.J.J.M.); (P.A.L.)
| | - Tiina Heinonen
- Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland; (T.H.); (M.K.H.); (H.L.)
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Marjo K. Hytönen
- Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland; (T.H.); (M.K.H.); (H.L.)
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Hannes Lohi
- Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland; (T.H.); (M.K.H.); (H.L.)
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Elaine A. Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Anita M. Oberbauer
- Department of Animal Science, University of California, Davis, CA 95616, USA; (N.K.); (J.M.B.)
| |
Collapse
|
3
|
Hasegawa D, Kanazono S, Chambers JK, Uchida K. Neurosurgery in feline epilepsy, including clinicopathology of feline epilepsy syndromes. Vet J 2022; 290:105928. [PMID: 36347391 DOI: 10.1016/j.tvjl.2022.105928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/07/2022]
Abstract
Feline epilepsy is treated with antiseizure medications, which achieves fair to good seizure control. However, a small subset of feline patients with drug-resistant epilepsy requires alternative therapies. Furthermore, approximately 50 % of cats with epileptic seizures are diagnosed with structural epilepsy with or without hippocampal abnormality and may respond to surgical intervention. The presence of hippocampal pathology and intracranial tumors is a key point to consider for surgical treatment. This review describes feline epilepsy syndrome and epilepsy-related pathology, and discusses the indications for and availability of neurosurgery, including lesionectomy, temporal lobectomy with hippocampectomy, and corpus callosotomy, for cats with different epilepsy types.
Collapse
Affiliation(s)
- Daisuke Hasegawa
- Laboratory of Veterinary Radiology, Nippon Veterinary and Life Science University, 1-7-1 Kyounancho, Musashino, Tokyo 180-8602, Japan; The Research Center for Animal Life Science, Nippon Veterinary and Life Science University, 1-7-1 Kyounancho, Musashino, Tokyo 180-8602, Japan.
| | - Shinichi Kanazono
- Neurology and Neurosurgery Service, Veterinary Specialists and Emergency Center, 815 Ishigami, Kawaguchi, Saitama 333-0823, Japan
| | - James K Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
4
|
Crasta M, Arteaga K, Barachetti L, Guandalini A. A multicenter retrospective evaluation of the prevalence of known and presumed hereditary eye diseases in Lagotto Romagnolo dog breed within a referral population in Italy (2012-2020). Vet Ophthalmol 2022; 25:426-433. [PMID: 35976615 DOI: 10.1111/vop.13020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 07/26/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To describe the ophthalmological findings of Lagotto Romagnolo dog breed and to report the prevalence of Known and Presumed Hereditary Eye Diseases (KP-HED). ANIMALS STUDIED Two hundred sixteen dogs were examined and included in this retrospective study. PROCEDURES Medical records of Lagotto Romagnolo dogs between 2012 and 2020 were included. Data about the ocular status were collected through ocular screening examinations (OSE) or clinical ophthalmic examinations (COE). The prevalence of each KP-HED was expressed as a function of the total number of the KP-HED in this referral population. RESULTS A total of 85 dogs (39.35%) were ophthalmologically healthy, ocular diseases presumably not hereditary were found in 43 dogs (19.91%), and 88 dogs (40.74%) were affected by one KP-HED. The most common KP-HEDs diagnosed were cataract (28/88; 31.82%), corneal endothelial dystrophy (17/88; 19.32%), retinal dysplasia (9/88; 10.23%), lens instability (7/88; 7.95%), progressive retinal atrophy (6/88, 6.82%), and keratoconjunctivitis sicca (6/88, 6.82%). Most of dogs with a KP-HED (77.27%, 68/88) were identified within COE group. CONCLUSIONS To the authors' knowledge, this is the first report of the prevalence of ocular disease in the Lagotto Romagnolo dog breed within a referral population in Italy. This study suggests a relatively high prevalence of KP-HED, with a characteristic late-onset presentation in some diseases. Many of these KP-HED's, lead to ocular pain and irreversible blindness, for this reason, the authors highlight the importance of aiming for an early diagnosis. Breeder's efforts and breeding programs should be directed at limiting such disorders.
Collapse
Affiliation(s)
| | | | - Laura Barachetti
- Scienze Cliniche Veterinarie, Università degli Studi di Milano, Milano, Italy
| | - Adolfo Guandalini
- Department of Ophthalmology, Centro Veterinario Specialistico (CVS), Rome, Italy
| |
Collapse
|
5
|
Baudin P, Cousyn L, Navarro V. The LGI1 protein: molecular structure, physiological functions and disruption-related seizures. Cell Mol Life Sci 2021; 79:16. [PMID: 34967933 PMCID: PMC11072701 DOI: 10.1007/s00018-021-04088-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 01/16/2023]
Abstract
Leucine-rich, glioma inactivated 1 (LGI1) is a secreted glycoprotein, mainly expressed in the brain, and involved in central nervous system development and physiology. Mutations of LGI1 have been linked to autosomal dominant lateral temporal lobe epilepsy (ADLTE). Recently auto-antibodies against LGI1 have been described as the basis for an autoimmune encephalitis, associated with specific motor and limbic epileptic seizures. It is the second most common cause of autoimmune encephalitis. This review presents details on the molecular structure, expression and physiological functions of LGI1, and examines how their disruption underlies human pathologies. Knock-down of LGI1 in rodents reveals that this protein is necessary for normal brain development. In mature brains, LGI1 is associated with Kv1 channels and AMPA receptors, via domain-specific interaction with membrane anchoring proteins and contributes to regulation of the expression and function of these channels. Loss of function, due to mutations or autoantibodies, of this key protein in the control of neuronal activity is a common feature in the genesis of epileptic seizures in ADLTE and anti-LGI1 autoimmune encephalitis.
Collapse
Affiliation(s)
- Paul Baudin
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Louis Cousyn
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
- AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, Paris, France
| | - Vincent Navarro
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, AP-HP, Pitié-Salpêtrière Hospital, Paris, France.
- AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, Paris, France.
- AP-HP, Center of Reference for Rare Epilepsies, Pitié-Salpêtrière Hospital, 47-83 Boulevard de l'Hôpital, 75013, Paris, France.
| |
Collapse
|
6
|
Hasegawa D, Ohnishi Y, Koyama E, Matsunaga S, Ohtani S, Nakanishi A, Shiga T, Chambers JK, Uchida K, Yokoi N, Fukata Y, Fukata M. Deleted in colorectal cancer (netrin-1 receptor) antibodies and limbic encephalitis in a cat with hippocampal necrosis. J Vet Intern Med 2019; 33:1440-1445. [PMID: 30942925 PMCID: PMC6524083 DOI: 10.1111/jvim.15492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/19/2019] [Indexed: 12/01/2022] Open
Abstract
A 7‐year‐old neutered female domestic shorthaired cat born in Poland and then moved to Japan presented to the local clinic with recent onset of convulsive cluster seizures and status epilepticus. Magnetic resonance imaging revealed bilateral swelling of the hippocampus with T2 hyperintensity and contrast enhancing image, suggesting hippocampal necrosis. The cat completely recovered after treatment with antiepileptic drugs (AED) and administration of prednisolone (1 mg/kg PO q24h for 4 days and tapered). However, cluster seizures reoccurred and developed into status epilepticus despite increasing doses of AED. Although the convulsions were resolved by other AEDs, stupor and renal failure developed, and the cat was euthanized. Pathological findings were consistent with hippocampal necrosis. Immunological analysis for leucine‐rich glioma inactivated 1 (LGI1) autoantibodies was negative, but antibodies against DCC (deleted in colorectal carcinoma) known as netrin‐1 receptor were found. This report describes a case of feline autoimmune limbic encephalitis and hippocampal necrosis that were presumably associated with DCC autoantibodies.
Collapse
Affiliation(s)
- Daisuke Hasegawa
- Department of Veterinary Clinical Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Yumi Ohnishi
- Companion Animal Medical Imaging Center, Tokyo, Japan
| | - Eiji Koyama
- Companion Animal Medical Imaging Center, Tokyo, Japan.,Sendai General Animal Hospital, Miyagi, Japan
| | | | | | | | - Takanori Shiga
- Laboratory of Veterinary Pathology, The University of Tokyo, Tokyo, Japan
| | - James K Chambers
- Laboratory of Veterinary Pathology, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, The University of Tokyo, Tokyo, Japan
| | - Norihiko Yokoi
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Science, Aichi, Japan
| | - Yuko Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Science, Aichi, Japan
| | - Masaki Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Science, Aichi, Japan
| |
Collapse
|
7
|
Yu Y, Hasegawa D, Fujiwara-Igarashi A, Hamamoto Y, Mizoguchi S, Kuwabara T, Fujita M. Molecular cloning and characterization of the family of feline leucine-rich glioma-inactivated (LGI) genes, and mutational analysis in familial spontaneous epileptic cats. BMC Vet Res 2017; 13:389. [PMID: 29237452 PMCID: PMC5729232 DOI: 10.1186/s12917-017-1308-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/28/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Leucine-rich glioma-inactivated (LGI) proteins play a critical role in synaptic transmission. Dysfunction of these genes and encoded proteins is associated with neurological disorders such as genetic epilepsy or autoimmune limbic encephalitis in animals and human. Familial spontaneous epileptic cats (FSECs) are the only feline strain and animal model of familial temporal lobe epilepsy. The seizure semiology of FSECs comprises recurrent limbic seizures with or without evolution into generalized epileptic seizures, while cats with antibodies against voltage-gated potassium channel complexed/LGI1 show limbic encephalitis and recurrent limbic seizures. However, it remains unclear whether the genetics underlying FSECs are associated with LGI family genes. In the present study, we cloned and characterized the feline LGI1-4 genes and examined their association with FSECs. Conventional PCR techniques were performed for cloning and mutational analysis. Characterization was predicted using bioinformatics software. RESULTS The cDNAs of feline LGI1-4 contained 1674-bp, 1650-bp, 1647-bp, and 1617-bp open reading frames, respectively, and encoded proteins comprising 557, 549, 548, and 538 amino acid residues, respectively. The feline LGI1-4 putative protein sequences showed high homology with Homo sapiens, Canis familiaris, Bos taurus, Sus scrofa, and Equus caballus (92%-100%). Mutational analysis in 8 FSECs and 8 controls for LGI family genes revealed 3 non-synonymous and 14 synonymous single nucleotide polymorphisms in the coding region. Only one non-synonymous single nucleotide polymorphism in LGI4 was found in 3 out of 8 FSECs. Using three separate computational tools, this mutation was not predicted to be disease causing. No co-segregation of the disease was found with any variant. CONCLUSIONS We cloned the cDNAs of the four feline LGI genes, analyzed the amino acid sequences, and revealed that epilepsy in FSEC is not a monogenic disorder associated with LGI genes.
Collapse
Affiliation(s)
- Yoshihiko Yu
- Department of Clinical Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8602, Japan.
| | - Daisuke Hasegawa
- Department of Clinical Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8602, Japan.
| | - Aki Fujiwara-Igarashi
- Department of Clinical Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8602, Japan
| | - Yuji Hamamoto
- Department of Clinical Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8602, Japan
| | - Shunta Mizoguchi
- Department of Clinical Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8602, Japan
| | - Takayuki Kuwabara
- Department of Clinical Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8602, Japan
| | - Michio Fujita
- Department of Clinical Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8602, Japan
| |
Collapse
|
8
|
Hasegawa D, Pakozdy A, Volk HA. Differentiating structural from idiopathic epilepsy in cats. Vet Rec 2017. [DOI: 10.1136/vr.j2896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Daisuke Hasegawa
- Department of Clinical Veterinary Science; Nippon Veterinary and Life Science University; Tokyo Japan
| | - Akos Pakozdy
- Clinic for Small Animal Medicine; University of Veterinary Medicine; Vienna Austria
| | - Holger A. Volk
- Department of Clinical Science and Services; Royal Veterinary College; Hatfield UK
| |
Collapse
|
9
|
Fang Z, Yang Y, Chen X, Zhang W, Xie Y, Chen Y, Liu Z, Yuan W. Advances in Autoimmune Epilepsy Associated with Antibodies, Their Potential Pathogenic Molecular Mechanisms, and Current Recommended Immunotherapies. Front Immunol 2017; 8:395. [PMID: 28487693 PMCID: PMC5403900 DOI: 10.3389/fimmu.2017.00395] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/21/2017] [Indexed: 01/17/2023] Open
Abstract
In this comprehensive article, we present an overview of some most common autoimmune antibodies believed to be potentially pathogenic for autoimmune epilepsies and elaborate their pathogenic mode of action in molecular levels based on the existing knowledge. Findings of the studies of immunemodulatory treatments for epilepsy are also discussed, and guidelines for immunotherapy are sorted out. We aim to summarize the emerging understanding of different pathogenic mechanisms of autoantibodies and clinical immunotherapy regimens to open up therapeutic possibilities for future optimum therapy. We conclude that early diagnosis of autoimmune epilepsy is of great significance, as early immune treatments have useful disease-modifying effects on some epilepsies and can facilitate the recovery.
Collapse
Affiliation(s)
- Zhiwei Fang
- Department of Neurology, Xinhua Hospital Affiliated to the Medical School of Shanghai Jiao Tong University, Shanghai, China.,School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yunqi Yang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,Zhiyuan College, Shanghai Jiao Tong University, Shanghai, China
| | - Xuan Chen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Weiwang Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yangmei Xie
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yinghui Chen
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Zhenguo Liu
- Department of Neurology, Xinhua Hospital Affiliated to the Medical School of Shanghai Jiao Tong University, Shanghai, China
| | - Weien Yuan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Yilmazer-Hanke D, O'Loughlin E, McDermott K. Contribution of amygdala pathology to comorbid emotional disturbances in temporal lobe epilepsy. J Neurosci Res 2015; 94:486-503. [DOI: 10.1002/jnr.23689] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/07/2015] [Accepted: 10/16/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Deniz Yilmazer-Hanke
- Department of Biomedical Sciences, School of Medicine; Creighton University; Omaha Nebraska
- Department of Anatomy and Neuroscience; University College; Cork Ireland
| | - Elaine O'Loughlin
- Department of Anatomy and Neuroscience; University College; Cork Ireland
- Ann Romney Centre for Neurologic Diseases, Brigham and Women's Hospital; Harvard Medical School; Boston Massachusetts
| | - Kieran McDermott
- Department of Anatomy and Neuroscience; University College; Cork Ireland
- Graduate Entry Medical School; University of Limerick; Limerick Ireland
| |
Collapse
|