1
|
Appleby S, Aitken-Buck HM, Holdaway MS, Byers MS, Frampton CM, Paton LN, Richards AM, Lamberts RR, Pemberton CJ. Cardiac effects of myoregulin in ischemia-reperfusion. Peptides 2024; 174:171156. [PMID: 38246425 DOI: 10.1016/j.peptides.2024.171156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
Myoregulin is a recently discovered micropeptide that controls calcium levels by inhibiting the intracellular calcium pump sarco-endoplasmic reticulum Ca2+-ATPase (SERCA). Keeping calcium levels balanced in the heart is essential for normal heart functioning, thus myoregulin has the potential to be a crucial regulator of cardiac muscle performance by reducing the rate of intracellular Ca2+ uptake. We provide the first report of myoregulin mRNA expression in human heart tissue, absence of expression in human plasma, and the effects of myoregulin on cardiac hemodynamics in an ex vivo Langendorff isolated rat heart model of ischemia/reperfusion. In this preliminary study, myoregulin provided a cardio-protective effect, as assessed by preservation of left ventricular contractility and relaxation, during ischemia/reperfusion. This study provides the foundation for future research in this area.
Collapse
Affiliation(s)
- Sarah Appleby
- Christchurch Heart Institute, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011, New Zealand.
| | - Hamish M Aitken-Buck
- Department of Physiology, HeartOtago, University of Otago, 270 Great King St, Dunedin 9016, New Zealand.
| | - Mark S Holdaway
- Christchurch Heart Institute, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011, New Zealand.
| | - Mathew S Byers
- Christchurch Heart Institute, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011, New Zealand.
| | - Chris M Frampton
- Christchurch Heart Institute, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011, New Zealand.
| | - Louise N Paton
- Christchurch Heart Institute, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011, New Zealand.
| | - A Mark Richards
- Christchurch Heart Institute, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011, New Zealand; Department of Cardiology, Te Whatu Ora Waitaha, 2 Riccarton Avenue, Christchurch 8011, New Zealand; Cardiovascular Research Institute, National University of Singapore, 1E Kent Ridge Road, Singapore.
| | - Regis R Lamberts
- Department of Physiology, HeartOtago, University of Otago, 270 Great King St, Dunedin 9016, New Zealand.
| | - Christopher J Pemberton
- Christchurch Heart Institute, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011, New Zealand.
| |
Collapse
|
2
|
Valberg SJ, Velez-Irizarry D, Williams ZJ, Henry ML, Iglewski H, Herrick K, Fenger C. Enriched Pathways of Calcium Regulation, Cellular/Oxidative Stress, Inflammation, and Cell Proliferation Characterize Gluteal Muscle of Standardbred Horses between Episodes of Recurrent Exertional Rhabdomyolysis. Genes (Basel) 2022; 13:1853. [PMID: 36292738 PMCID: PMC9601720 DOI: 10.3390/genes13101853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/04/2022] Open
Abstract
Certain Standardbred racehorses develop recurrent exertional rhabdomyolysis (RER-STD) for unknown reasons. We compared gluteal muscle histopathology and gene/protein expression between Standardbreds with a history of, but not currently experiencing rhabdomyolysis (N = 9), and race-trained controls (N = 7). Eight RER-STD had a few mature fibers with small internalized myonuclei, one out of nine had histologic evidence of regeneration and zero out of nine degeneration. However, RER-STD versus controls had 791/13,531 differentially expressed genes (DEG). The top three gene ontology (GO) enriched pathways for upregulated DEG (N = 433) were inflammation/immune response (62 GO terms), cell proliferation (31 GO terms), and hypoxia/oxidative stress (31 GO terms). Calcium ion regulation (39 GO terms), purine nucleotide metabolism (32 GO terms), and electron transport (29 GO terms) were the top three enriched GO pathways for down-regulated DEG (N = 305). DEG regulated RYR1 and sarcoplasmic reticulum calcium stores. Differentially expressed proteins (DEP ↑N = 50, ↓N = 12) involved the sarcomere (24% of DEP), electron transport (23%), metabolism (20%), inflammation (6%), cell/oxidative stress (7%), and other (17%). DEP included ↑superoxide dismutase, ↑catalase, and DEP/DEG included several cysteine-based antioxidants. In conclusion, gluteal muscle of RER-susceptible Standardbreds is characterized by perturbation of pathways for calcium regulation, cellular/oxidative stress, inflammation, and cellular regeneration weeks after an episode of rhabdomyolysis that could represent therapeutic targets.
Collapse
Affiliation(s)
- Stephanie J. Valberg
- Mary Anne McPhail Equine Performance Center, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Deborah Velez-Irizarry
- Mary Anne McPhail Equine Performance Center, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Zoë J. Williams
- Mary Anne McPhail Equine Performance Center, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Marisa L. Henry
- Mary Anne McPhail Equine Performance Center, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Hailey Iglewski
- Mary Anne McPhail Equine Performance Center, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Keely Herrick
- Mary Anne McPhail Equine Performance Center, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Clara Fenger
- Equine Integrated Medicine, PLC, Lexington, KY 40324, USA
| |
Collapse
|
3
|
Sarcoplasmic Reticulum from Horse Gluteal Muscle Is Poised for Enhanced Calcium Transport. Vet Sci 2021; 8:vetsci8120289. [PMID: 34941816 PMCID: PMC8705379 DOI: 10.3390/vetsci8120289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/02/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
We have analyzed the enzymatic activity of the sarcoplasmic reticulum (SR) Ca2+-transporting ATPase (SERCA) from the horse gluteal muscle. Horses are bred for peak athletic performance yet exhibit a high incidence of exertional rhabdomyolysis, with elevated levels of cytosolic Ca2+ proposed as a correlative linkage. We recently reported an improved protocol for isolating SR vesicles from horse muscle; these horse SR vesicles contain an abundant level of SERCA and only trace-levels of sarcolipin (SLN), the inhibitory peptide subunit of SERCA in mammalian fast-twitch skeletal muscle. Here, we report that the in vitro Ca2+ transport rate of horse SR vesicles is 2.3 ± 0.7-fold greater than rabbit SR vesicles, which express close to equimolar levels of SERCA and SLN. This suggests that horse myofibers exhibit an enhanced SR Ca2+ transport rate and increased luminal Ca2+ stores in vivo. Using the densitometry of Coomassie-stained SDS-PAGE gels, we determined that horse SR vesicles express an abundant level of the luminal SR Ca2+ storage protein calsequestrin (CASQ), with a CASQ-to-SERCA ratio about double that in rabbit SR vesicles. Thus, we propose that SR Ca2+ cycling in horse myofibers is enhanced by a reduced SLN inhibition of SERCA and by an abundant expression of CASQ. Together, these results suggest that horse muscle contractility and susceptibility to exertional rhabdomyolysis are promoted by enhanced SR Ca2+ uptake and luminal Ca2+ storage.
Collapse
|
4
|
Song N, Yang M, Zhang H, Yang SK. Intracellular Calcium Homeostasis and Kidney Disease. Curr Med Chem 2021; 28:3647-3665. [PMID: 33138745 DOI: 10.2174/0929867327666201102114257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 11/22/2022]
Abstract
Kidney disease is a serious health problem that burdens our healthcare system. It is crucial to find the accurate pathogenesis of various types of kidney disease to provide guidance for precise therapies for patients suffering from these diseases. However, the exact molecular mechanisms underlying these diseases have not been fully understood. Disturbance of calcium homeostasis in renal cells plays a fundamental role in the development of various types of kidney disease, such as primary glomerular disease, diabetic nephropathy, acute kidney injury and polycystic kidney disease, through promoting cell proliferation, stimulating extracellular matrix accumulation, aggravating podocyte injury, disrupting cellular energetics as well as dysregulating cell survival and death dynamics. As a result, preventing the disturbance of calcium homeostasis in specific renal cells (such as tubular cells, podocytes and mesangial cells) is becoming one of the most promising therapeutic strategies in the treatment of kidney disease. The endoplasmic reticulum and mitochondria are two vital organelles in this process. Calcium ions cycle between the endoplasmic reticulum and mitochondria at the conjugation of these two organelles known as the mitochondria-associated endoplasmic reticulum membrane, maintaining calcium homeostasis. The pharmacologic modulation of cellular calcium homeostasis can be viewed as a novel therapeutic method for renal diseases. Here, we will introduce calcium homeostasis under physiological conditions and the disturbance of calcium homeostasis in kidney diseases. We will focus on the calcium homeostasis regulation in renal cells (including tubular cells, podocytes and mesangial cells), especially in the mitochondria- associated endoplasmic reticulum membranes of these renal cells.
Collapse
Affiliation(s)
- Na Song
- Department of Nephrology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Shi-Kun Yang
- Department of Nephrology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
5
|
Williams ZJ, Velez-Irizarry D, Petersen JL, Ochala J, Finno CJ, Valberg SJ. Candidate gene expression and coding sequence variants in Warmblood horses with myofibrillar myopathy. Equine Vet J 2021; 53:306-315. [PMID: 32453872 PMCID: PMC7864122 DOI: 10.1111/evj.13286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/18/2020] [Accepted: 05/02/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Myofibrillar myopathy (MFM) of unknown aetiology has recently been identified in Warmblood (WB) horses. In humans, 16 genes have been implicated in various MFM-like disorders. OBJECTIVES To identify variants in 16 MFM candidate genes and compare allele frequencies of all variants between MFM WB and non-MFM WB and coding variants with moderate or severe predicted effects in MFM WB with publicly available data of other breeds. To compare differential gene expression and muscle fibre contractile force between MFM and non-MFM WB. STUDY DESIGN Case-control. ANIMALS 8 MFM WB, 8 non-MFM WB, 33 other WB, 32 Thoroughbreds, 80 Quarter Horses and 77 horses of other breeds in public databases. METHODS Variants were called within transcripts of 16 candidate genes using gluteal muscle mRNA sequences aligned to EquCab3.0 and allele frequencies compared by Fisher's exact test among MFM WB, non-MFM WB and public sequences across breeds. Candidate gene differential expression was determined between MFM and non-MFM WB by fitting a negative binomial generalised log-linear model per gene (false discovery rate <0.05). The maximal isometric force/cross-sectional area generated by isolated membrane-permeabilised muscle fibres was determined. RESULTS None of the 426 variants identified in 16 candidate genes were associated with MFM including 26 missense variants. Breed-specific differences existed in allele frequencies. Candidate gene differential expression and muscle fibre-specific force did not differ between MFM WB (143.1 ± 34.7 kPa) and non-MFM WB (140.2 ± 43.7 kPa) (P = .8). MAIN LIMITATIONS RNA-seq-only assays transcripts expressed in skeletal muscle. Other possible candidate genes were not evaluated. CONCLUSIONS Evidence for association of variants with a disease is essential because coding sequence variants are common in the equine genome. Variants identified in MFM candidate genes, including two coding variants offered as commercial MFM equine genetic tests, did not associate with the WB MFM phenotype.
Collapse
Affiliation(s)
- Zoë J. Williams
- Large Animal Clinical Sciences, Michigan State University, College of Veterinary Medicine, East Lansing, MI, USA
| | - Deborah Velez-Irizarry
- Large Animal Clinical Sciences, Michigan State University, College of Veterinary Medicine, East Lansing, MI, USA
| | - Jessica L. Petersen
- Department of Animal Science, University of Nebraska Lincoln, Lincoln, NE, USA
| | - Julien Ochala
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Carrie J. Finno
- University of California at Davis, School of Veterinary Medicine, Davis, CA, USA
| | - Stephanie J. Valberg
- Large Animal Clinical Sciences, Michigan State University, College of Veterinary Medicine, East Lansing, MI, USA
| |
Collapse
|
6
|
Li H, Wang C, Li L, Li L. Skeletal muscle non-shivering thermogenesis as an attractive strategy to combat obesity. Life Sci 2021; 269:119024. [PMID: 33450257 DOI: 10.1016/j.lfs.2021.119024] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 02/05/2023]
Abstract
Obesity is a chronic disease derived from disequilibrium between energy intake and energy expenditure and evolving as a challenging epidemiological disease in the 21st century. It is urgently necessary to solve this issue by searching for effective strategies and safe drugs. Skeletal muscle could be a potential therapeutic target for the prevention and treatment of obesity and its associated complications due to non-shivering thermogenesis (NST) function. Skeletal muscle NST is based dominantly on futile sarcoplasmic reticulum Ca2+ ATPase (SERCA) pump cycling that leads to a rise in cytosolic Ca2+, increased adenosine triphosphate (ATP) hydrolysis and heat production. This review will highlight the mechanisms of skeletal muscle NST, including SLN mediated SERCA pump futile cycling, SR-mitochondrial crosstalk and increased mitochondrial biogenesis, and thermogenesis induced by uncoupling proteins 3 (UCP3). We then summarize natural products targeting the pathogenesis of obesity via skeletal muscle NST, offering new insights into pharmacotherapy and potential drug candidates to combat obesity.
Collapse
Affiliation(s)
- Hanbing Li
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China; Section of Endocrinology, School of Medicine, Yale University, New Haven 06520, USA.
| | - Can Wang
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Linghuan Li
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Lingqiao Li
- Zhejiang Starry Pharmaceutical Co., Ltd., Taizhou 317306, PR China
| |
Collapse
|
7
|
Sarcolipin Exhibits Abundant RNA Transcription and Minimal Protein Expression in Horse Gluteal Muscle. Vet Sci 2020; 7:vetsci7040178. [PMID: 33202832 PMCID: PMC7711957 DOI: 10.3390/vetsci7040178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 11/05/2020] [Indexed: 01/02/2023] Open
Abstract
Ca2+ regulation in equine muscle is important for horse performance, yet little is known about this species-specific regulation. We reported recently that horse encode unique gene and protein sequences for the sarcoplasmic reticulum (SR) Ca2+-transporting ATPase (SERCA) and the regulatory subunit sarcolipin (SLN). Here we quantified gene transcription and protein expression of SERCA and its inhibitory peptides in horse gluteus, as compared to commonly-studied rabbit skeletal muscle. RNA sequencing and protein immunoblotting determined that horse gluteus expresses the ATP2A1 gene (SERCA1) as the predominant SR Ca2+-ATPase isoform and the SLN gene as the most-abundant SERCA inhibitory peptide, as also found in rabbit skeletal muscle. Equine muscle expresses an insignificant level of phospholamban (PLN), another key SERCA inhibitory peptide expressed commonly in a variety of mammalian striated muscles. Surprisingly in horse, the RNA transcript ratio of SLN-to-ATP2A1 is an order of magnitude higher than in rabbit, while the corresponding protein expression ratio is an order of magnitude lower than in rabbit. Thus, SLN is not efficiently translated or maintained as a stable protein in horse muscle, suggesting a non-coding role for supra-abundant SLN mRNA. We propose that the lack of SLN and PLN inhibition of SERCA activity in equine muscle is an evolutionary adaptation that potentiates Ca2+ cycling and muscle contractility in a prey species domestically selected for speed.
Collapse
|
8
|
Denham J, McCluskey M, Denham MM, Sellami M, Davie AJ. Epigenetic control of exercise adaptations in the equine athlete: Current evidence and future directions. Equine Vet J 2020; 53:431-450. [PMID: 32671871 DOI: 10.1111/evj.13320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/04/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022]
Abstract
Horses (Equus ferus caballus) have evolved over the past 300 years in response to man-made selection for particular athletic traits. Some of the selected traits were selected based on the size and horses' muscular power (eg Clydesdales), whereas other breeds were bred for peak running performance (eg Thoroughbred and Arabian). Although the physiological changes and some of the cellular adaptations responsible for athletic potential of horses have been identified, the molecular mechanisms are only just beginning to be comprehensively investigated. The purpose of this review was to outline and discuss the current understanding of the molecular mechanisms underpinning the athletic performance and cardiorespiratory fitness in athletic breeds of horses. A brief review of the biology of epigenetics is provided, including discussion on DNA methylation, histone modifications and small RNAs, followed by a summary and critical review of the current work on the exercise-induced epigenetic and transcriptional changes in horses. Important unanswered questions and currently unexplored areas that deserve attention are highlighted. Finally, a rationale for the analysis of epigenetic modifications in the context with exercise-related traits and ailments associated with athletic breeds of horses is outlined in order to help guide future research.
Collapse
Affiliation(s)
- Joshua Denham
- RMIT University, School of Health and Biomedical Sciences, Melbourne, VIC, Australia
| | | | | | - Maha Sellami
- Qatar University, College of Arts and Sciences (CAS), Sport Science Program (SSP), Doha, Qatar
| | - Allan J Davie
- Australian Equine Racing and Research Centre (AERR), Ballina, NSW, Australia
| |
Collapse
|
9
|
Autry JM, Karim CB, Cocco M, Carlson SF, Thomas DD, Valberg SJ. Purification of sarcoplasmic reticulum vesicles from horse gluteal muscle. Anal Biochem 2020; 610:113965. [PMID: 32956693 DOI: 10.1016/j.ab.2020.113965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/24/2020] [Accepted: 09/14/2020] [Indexed: 01/09/2023]
Abstract
We have analyzed protein expression and enzyme activity of the sarcoplasmic reticulum Ca2+-transporting ATPase (SERCA) in horse gluteal muscle. Horses exhibit a high incidence of recurrent exertional rhabdomyolysis, with myosolic Ca2+ proposed, but yet to be established, as the underlying cause. To better assess Ca2+ regulatory mechanisms, we developed an improved protocol for isolating sarcoplasmic reticulum (SR) vesicles from horse skeletal muscle, based on mechanical homogenization and optimized parameters for differential centrifugation. Immunoblotting identified the peak subcellular fraction containing the SERCA1 protein (fast-twitch isoform). Gel analysis using the Stains-all dye demonstrated that calsequestrin (CASQ) and phospholipids are highly enriched in the SERCA-containing subcellular fraction isolated from horse gluteus. Immunoblotting also demonstrated that these horse SR vesicles show low content of glycogen phosphorylase (GP), which is likely an abundant contaminating protein of traditional horse SR preps. The maximal Ca2+-activated ATPase activity (Vmax) of SERCA in horse SR vesicles isolated using this protocol is 5‒25-fold greater than previously-reported SERCA activity in SR preps from horse skeletal muscle. We propose that this new protocol for isolating SR vesicles will be useful for determining enzymatic parameters of horse SERCA with high fidelity, plus assessing regulatory effect of SERCA peptide subunit(s) expressed in horse muscle.
Collapse
Affiliation(s)
- Joseph M Autry
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Christine B Karim
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mariana Cocco
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Samuel F Carlson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Stephanie J Valberg
- Department of Large Animal Clinical Sciences, McPhail Equine Performance Center, Michigan State University, East Lansing, MI, 48823, USA.
| |
Collapse
|
10
|
Valberg SJ, Soave K, Williams ZJ, Perumbakkam S, Schott M, Finno CJ, Petersen JL, Fenger C, Autry JM, Thomas DD. Coding sequences of sarcoplasmic reticulum calcium ATPase regulatory peptides and expression of calcium regulatory genes in recurrent exertional rhabdomyolysis. J Vet Intern Med 2019; 33:933-941. [PMID: 30720217 PMCID: PMC6430904 DOI: 10.1111/jvim.15425] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 01/11/2019] [Indexed: 12/12/2022] Open
Abstract
Background Sarcolipin (SLN), myoregulin (MRLN), and dwarf open reading frame (DWORF) are transmembrane regulators of the sarcoplasmic reticulum calcium transporting ATPase (SERCA) that we hypothesized played a role in recurrent exertional rhabdomyolysis (RER). Objectives Compare coding sequences of SLN, MRLN, DWORF across species and between RER and control horses. Compare expression of muscle Ca2+ regulatory genes between RER and control horses. Animals Twenty Thoroughbreds (TB), 5 Standardbreds (STD), 6 Quarter Horses (QH) with RER and 39 breed‐matched controls. Methods Sanger sequencing of SERCA regulatory genes with comparison of amino acid (AA) sequences among control, RER horses, human, mouse, and rabbit reference genomes. In RER and control gluteal muscle, quantitative real‐time polymerase chain reaction of SERCA regulatory peptides, the calcium release channel (RYR1), and its accessory proteins calsequestrin (CASQ1), and calstabin (FKBP1A). Results The SLN gene was the highest expressed horse SERCA regulatory gene with a uniquely truncated AA sequence (29 versus 31) versus other species. Coding sequences of SLN, MRLN, and DWORF were identical in RER and control horses. A sex‐by‐phenotype effect occurred with lower CASQ1 expression in RER males versus control males (P < .001) and RER females (P = .05) and higher FKBP1A (P = .01) expression in RER males versus control males. Conclusions and Clinical Importance The SLN gene encodes a uniquely truncated peptide in the horse versus other species. Variants in the coding sequence of SLN, MLRN, or DWORF were not associated with RER. Males with RER have differential gene expression that could reflect adaptations to stabilize RYR1.
Collapse
Affiliation(s)
- Stephanie J Valberg
- McPhail Equine Performance Center, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan
| | - Kaitlin Soave
- McPhail Equine Performance Center, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan
| | - Zoë J Williams
- McPhail Equine Performance Center, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan
| | - Sudeep Perumbakkam
- McPhail Equine Performance Center, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan
| | - Melissa Schott
- McPhail Equine Performance Center, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan
| | - Carrie J Finno
- Department of Population Health and Reproduction, University of California-Davis, Davis, California
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Clara Fenger
- Equine Integrated Medicine, PLC, Lexington, Kentucky
| | - Joseph M Autry
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|