1
|
Tham HL, Davis JL. Pharmacology of drugs used in autoimmune dermatopathies in cats and dogs: A narrative review. Vet Dermatol 2024; 35:453-476. [PMID: 38708551 DOI: 10.1111/vde.13253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/15/2024] [Accepted: 04/12/2024] [Indexed: 05/07/2024]
Abstract
Immunosuppressive drugs are the mainstay of treatment for many feline and canine autoimmune skin diseases, either as monotherapy or in combination with other drugs. Treatment with these drugs is often lifelong and may have long-term consequences on the affected animal's overall quality-of-life. Clinicians need to understand the pharmacology of immunosuppressants in planning and executing the treatment regimen for the best possible clinical outcome, as well as reducing the risk of adverse effects. This review paper will focus on the mechanism of action, pharmacokinetics and pharmacodynamics, clinical uses and adverse effects of immunosuppressive drugs used to treat autoimmune dermatoses in cats and dogs. These include glucocorticoids, ciclosporin A, azathioprine, chlorambucil, mycophenolate mofetil, oclacitinib and Bruton's tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Heng L Tham
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Jennifer L Davis
- Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
2
|
LeVine DN, Goggs R, Kohn B, Mackin AJ, Kidd L, Garden OA, Brooks MB, Eldermire ERB, Abrams-Ogg A, Appleman EH, Archer TM, Bianco D, Blois SL, Brainard BM, Callan MB, Fellman CL, Haines JM, Hale AS, Huang AA, Lucy JM, O'Marra SK, Rozanski EA, Thomason JM, Walton JE, Wilson HE. ACVIM consensus statement on the treatment of immune thrombocytopenia in dogs and cats. J Vet Intern Med 2024; 38:1982-2007. [PMID: 38779941 PMCID: PMC11256181 DOI: 10.1111/jvim.17079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 05/25/2024] Open
Abstract
Management of immune thrombocytopenia (ITP) in dogs and cats is evolving, but there are no evidence-based guidelines to assist clinicians with treatment decisions. Likewise, the overall goals for treatment of ITP have not been established. Immunosuppressive doses of glucocorticoids are the first line treatment, but optimal treatment regimens beyond glucocorticoids remain uncertain. Additional options include secondary immunosuppressive drugs such as azathioprine, modified cyclosporine, and mycophenolate mofetil, usually selected based on clinician preference. Vincristine, human IV immunoglobulin (hIVIg), and transfusion of platelet or red blood cell-containing products are often used in more severe cases. Splenectomy and thrombopoietin receptor agonists are usually reserved for refractory cases, but when and in which patient these modalities should be employed is under debate. To develop evidence-based guidelines for individualized treatment of ITP patients, we asked 20 Population Intervention Comparison Outcome (PICO) format questions. These were addressed by 17 evidence evaluators using a literature pool of 288 articles identified by a structured search strategy. Evidence evaluators, using panel-designed templates and data extraction tools, summarized evidence and created guideline recommendations. These were integrated by treatment domain chairs and then refined by iterative Delphi survey review to reach consensus on the final guidelines. In addition, 19 non-PICO questions covering scenarios in which evidence was lacking or of low quality were answered by expert opinion using iterative Delphi surveys with panelist integration and refinement. Commentary was solicited from multiple relevant professional organizations before finalizing the consensus. The rigorous consensus process identified few comparative treatment studies, highlighting many areas of ITP treatment requiring additional studies. This statement is a companion manuscript to the ACVIM Consensus Statement on the Diagnosis of Immune Thrombocytopenia in Dogs and Cats.
Collapse
Affiliation(s)
- Dana N LeVine
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Robert Goggs
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Barbara Kohn
- Small Animal Clinic, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Andrew J Mackin
- Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Linda Kidd
- Linda Kidd Veterinary Internal Medicine Consulting, Carlsbad, California, USA
| | - Oliver A Garden
- School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Marjory B Brooks
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Erin R B Eldermire
- Flower-Sprecher Veterinary Library, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Anthony Abrams-Ogg
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Elizabeth H Appleman
- Department of Internal Medicine, The Animal Medical Center, New York, New York, USA
| | - Todd M Archer
- Bluff City Veterinary Specialists, Memphis, Tennessee, USA
| | - Domenico Bianco
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Shauna L Blois
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Benjamin M Brainard
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Mary Beth Callan
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Claire L Fellman
- Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA
| | - Jillian M Haines
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Anne S Hale
- Zia Pet Hospital, Rio Rancho, New Mexico, USA
| | | | - John M Lucy
- Oradell Animal Hospital, Paramus, New Jersey, USA
| | - Shana K O'Marra
- Northwest Veterinary Critical Care Services, Vancouver, Washington, USA
| | - Elizabeth A Rozanski
- Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA
| | - John M Thomason
- Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Jenny E Walton
- Veterinary Apheresis Service UK, Washington, Tyne and Wear, United Kingdom
| | - Helen E Wilson
- Langford Vets, University of Bristol, Langford, Somerset, United Kingdom
| |
Collapse
|
4
|
Knych HK, McKemie DS, Kanarr KL, White SD. Pharmacokinetics of mycophenolate mofetil following single-dose intravenous and single- and multiple-dose oral administration and clinicopathologic effects of mycophenolate mofetil following long-term oral administration in healthy horses. Am J Vet Res 2021; 82:502-509. [PMID: 34032479 DOI: 10.2460/ajvr.82.6.502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To characterize the pharmacokinetics of mycophenolate mofetil (MMF) following single-dose IV or PO administration, characterize the pharmacokinetics of MMF following long-term PO administration, and describe the clinicopathologic effects of long-term MMF administration in horses. ANIMALS 12 healthy adult horses. PROCEDURES In phase 1, 6 horses received a single IV (2.5 mg/kg) or PO (5 mg/kg) dose of MMF in a randomized balanced crossover assessment (≥ 2-week interval between administrations). In phase 2, 6 other horses received MMF for 60 days (5 mg/kg, PO, q 24 h for 30 days and then 5 mg/kg, PO, q 48 h for an additional 30 days). RESULTS Following IV (single-dose) or PO (single- or multiple-dose) administration, MMF was rapidly converted to mycophenolic acid. For single-dose PO administration, mean ± SD maximum plasma mycophenolic acid concentration was 1,778.3 ± 441.5 ng/mL at 0.71 ± 0.29 hours. For single-dose IV administration, mean systemic clearance and volume of distribution at steady state were 0.689 ± 0.194 L/h/kg and 1.57 ± 0.626 L/kg, respectively. Following single doses, mean terminal half-life was 3.99 ± 0.865 hours for IV administration and 4.02 ± 1.01 hours for PO administration. The accumulation index following long-term PO administration was 1.0 ± 0.002, and the terminal half-life was 4.59 ± 1.25 hours following the final dose on day 60. None of the horses developed abnormal clinical signs or had any consistently abnormal clinicopathologic findings. CONCLUSIONS AND CLINICAL RELEVANCE Further investigation of the clinical efficacy of long-term MMF treatment of horses with autoimmune diseases is warranted.
Collapse
|
5
|
Tamura Y, Nagamoto T, Segawa K, Neo S, Igarashi H, Hisasue M. Successful treatment and long-term follow up of idiopathic immune-mediated polyarthritis with mycophenolate mofetil in a cat. JFMS Open Rep 2020; 6:2055116920963995. [PMID: 33224514 PMCID: PMC7649897 DOI: 10.1177/2055116920963995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Case summary A 7-year-old neutered male Norwegian Forest Cat was presented with decreased appetite and activity, weight loss, fever, neutrophilia and hyperglobulinaemia. A physical examination showed painful stifle joints and enlarged popliteal lymph nodes. Blood examination showed neutrophilia, hyperglobulinaemia and increased serum amyloid A. Urinalysis, thoracic and abdominal radiographs, and abdominal ultrasonography were unremarkable. Synovial fluid from the knee joints had diminished viscosity and revealed neutrophilic inflammation on the smear. There was no evidence of infection in a microbiological culture of the synovial fluid. A diagnosis of idiopathic immune-mediated polyarthritis (IMPA) was made. Prednisolone was initiated at 2 mg/kg q24h PO and tapered with additional immunosuppressants (leflunomide, ciclosporin A and methotrexate); however, prednisolone could not be discontinued. Informed consent was obtained from the owner and mycophenolate mofetil (MMF) at a dosage of 10 mg/kg q12h PO was initiated on day 798. There were no adverse effects of MMF and prednisolone was discontinued on day 1183. Clinical signs resolved and the cat’s general condition remained stable with MMF alone at a dosage of 10 mg/kg q48h PO on day 1600. Relevance and novel information There is limited information describing feline IMPA and its treatment options other than the use of prednisolone. This is the first report of the successful treatment and long-term follow-up of feline IMPA with MMF. MMF may be a safe and effective option as an additional immunosuppressant in feline IMPA.
Collapse
Affiliation(s)
- Yu Tamura
- Veterinary Teaching Hospital, Azabu University, Sagamihara, Kanagawa, Japan.,Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Tetsuro Nagamoto
- Veterinary Teaching Hospital, Azabu University, Sagamihara, Kanagawa, Japan
| | | | - Sakurako Neo
- Laboratory of Clinical Diagnosis, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Hirotaka Igarashi
- Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Masaharu Hisasue
- Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| |
Collapse
|
6
|
Kopke MA, Galloway PEJ. Suspected hepatopathy and pancreatitis associated with mycophenolate mofetil use in a cat with immune-mediated haemolytic anaemia. JFMS Open Rep 2020; 6:2055116920905038. [PMID: 32095260 PMCID: PMC7013118 DOI: 10.1177/2055116920905038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Case summary A 5-year-old spayed female domestic shorthair cat was referred for severe
anaemia. Findings on initial work-up were consistent with a diagnosis of
idiopathic immune-mediated haemolytic anaemia. A combination of prednisolone
and mycophenolate mofetil (MMF) was instituted. On revisit approximately 2
months later, red blood cell parameters were normal, but the plasma was
described as icteric, prompting further investigation. Concurrent
hepatopathy and pancreatitis were diagnosed, suspected as being adverse
reactions to MMF, as has been reported with use of the drug in humans.
Resolution of serum biochemistry abnormalities took approximately 2 months,
following discontinuing MMF. At the time of writing, the cat remained
clinically well 1 year after initial presentation. Relevance and novel information With increasing use of MMF as an immunosuppressive agent in cats, clinicians
should be aware of both common and potentially rare adverse effects, such as
those described herein. In addition, suitable monitoring tools need to be in
place to facilitate early detection and appropriate management.
Collapse
Affiliation(s)
- Matthew A Kopke
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | | |
Collapse
|
7
|
Slovak JE, Hwang JK, Rivera SM, Villarino NF. Pharmacokinetics of mycophenolic acid and its effect on CD4 + and CD8 + T cells after oral administration of mycophenolate mofetil to healthy cats. J Vet Intern Med 2019; 33:2020-2028. [PMID: 31423655 PMCID: PMC6766527 DOI: 10.1111/jvim.15585] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 07/23/2019] [Indexed: 12/01/2022] Open
Abstract
Background Mycophenolate mofetil (MMF) is an immunosuppressant used in human and veterinary medicine. Little pharmacokinetic and pharmacodynamic information on MMF is available in cats. Objective To evaluate the plasma disposition of mycophenolic acid (MPA) and assess its effect on total peripheral blood mononuclear cells and CD4+/CD8+ ratios after PO administration of MMF. Animals Healthy cats (n = 10). Methods Mycophenolate mofetil was administered at a dosage of 10 mg/kg q12h (n = 3), 15 mg/kg q12h (n = 3), and 15 mg/kg q8h (n = 4) for 7 days. Concentrations of MPA and derivatives were determined using ultra‐high‐performance liquid chromatography. Flow cytometry was used to assess CD4+/CD8+ T‐cell ratios. Results All cats biotransformed MMF into MPA. Half of the cats (5/10) had adverse effects within 1 week of MMF administration. Area under the curve limit of quantification (AUC0‐LOQh) of MPA ranged from 1.27 to 2.03 hours·μg/mL and from 1.77 to 8.54 hours·μg/mL after the first and last PO dose of 10 mg/kg. The AUC0‐loqh of MPA ranged from 2.18 to 31 hours·μg/mL after the first dose of 15 mg/kg of MMF. Before the first dose of MMF, the average total number of PBMC ranged from 1.2 to 9.3 million/mL. At the last dose of MMF, the average total number of PBMC ranged from 3 to 5 million/mL. Conclusion Mycophenolic acid was detected in all cats. The dose 10 mg/kg given q12h for 1 week was tolerated (n = 3). The efficacy of MMF as an immunosuppressant and long‐term safety in cats of this dosage regimen is unknown.
Collapse
Affiliation(s)
- Jennifer E Slovak
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington
| | - Julianne K Hwang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington
| | - Sol M Rivera
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington
| | - Nicolas F Villarino
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington
| |
Collapse
|