1
|
Shafiee S, Dastmalchi S, Gharekhani A, Shayanfar A. Analysis of indoxyl sulfate in biological fluids with emphasis on sample preparation techniques: A comprehensive analytical review. Heliyon 2024; 10:e35032. [PMID: 39157307 PMCID: PMC11328088 DOI: 10.1016/j.heliyon.2024.e35032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
The uremic toxin indoxyl sulfate (IS) has been related to the development of various medical conditions notably chronic kidney disease (CKD). Hence, quantification of this biomarker in biological fluids may be a diagnostic tool to evaluate renal system functionality. Numerous analytical methods including liquid chromatography, gas chromatography, spectroscopy, and electrochemical techniques have since been used to analyze IS in different biological fluids. The current review highlights the relevant studies that assessed IS with a special focus on sample preparation, which is essential to reduce or eliminate the effect of endogenous components from the matrix in bioanalysis.
Collapse
Affiliation(s)
- Samira Shafiee
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afshin Gharekhani
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shayanfar
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Summers S, Quimby J. Insights into the gut-kidney axis and implications for chronic kidney disease management in cats and dogs. Vet J 2024; 306:106181. [PMID: 38897377 DOI: 10.1016/j.tvjl.2024.106181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
Chronic kidney disease (CKD) in cats and dogs presents significant clinical challenges, with emerging research highlighting the pivotal role of the gut-kidney axis in its pathogenesis and management. Gut dysbiosis, characterized by alterations in the gut microbiome composition and function, contributes to microbial dysmetabolism of key nutrients causing uremic toxin accumulation and disruptions in amino acid, bile acid and fatty acid profiles. These disturbances in turn exacerbate renal dysfunction and systemic inflammation. Recent research in veterinary medicine, particularly in cats, supports the gut microbiome and microbial-derived metabolites as novel therapeutic targets. Potential therapeutic strategies targeting the gut microbiome and microbial dysmetabolism, including dietary management, probiotics, adsorbents, and addressing constipation, offer promising avenues for intervention to restore metabolic balance and preserve renal function. This review highlights the microbial influence on renal health and focuses on potential therapeutic strategies available to veterinarians to optimize the management of CKD in cats and dogs.
Collapse
Affiliation(s)
- Stacie Summers
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University Oregon, Magruder Hall, 700 SW 30th St, Corvallis 97331, USA.
| | - Jessica Quimby
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 601 Vernon Tharp Dr., Columbus, OH, USA
| |
Collapse
|
3
|
Rowe JC, Winston JA, Parker VJ, McCool KE, Suchodolski JS, Lopes R, Steiner JM, Gilor C, Rudinsky AJ. Gut microbiota promoting propionic acid production accompanies caloric restriction-induced intentional weight loss in cats. Sci Rep 2024; 14:11901. [PMID: 38789518 PMCID: PMC11126632 DOI: 10.1038/s41598-024-62243-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Rodent models and human clinical studies have shown gut microbiota-derived short-chain fatty acids (SCFAs) play roles in obesity and insulin resistance. These roles have been minimally explored in cats, where in the USA an estimated 60% of cats are overweight or obese. Overweight/obese research cats (n = 7) were transitioned from a maintenance diet to a reduced calorie diet fed ad libitum for 7 days, then calories were restricted to achieve 1-2% weight loss per week for an additional 77 days. Cats then received their original maintenance diet again for 14 days. Significant intentional weight loss was noted after calorie restriction (adjusted p < 0.0001). 16S rRNA gene amplicon sequencing and targeted SCFA metabolomics were performed on fecal samples. Fecal microbial community structure significantly differed between the four study phases (PERMANOVA p = 0.011). Fecal propionic acid was significantly higher during caloric restriction-induced weight loss (adjusted p < 0.05). Repeated measures correlation revealed the relative abundances of Prevotella 9 copri (correlation coefficient = 0.532, 95% CI (0.275, 0.717), p = 0.0002) significantly correlated with propionic acid composition. Like humans, obese cats experienced an altered microbial community structure and function, favoring propionic acid production, during caloric restriction-induced weight loss.
Collapse
Affiliation(s)
- J C Rowe
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, OH, USA
- Comparative Hepatobiliary Intestinal Research Program (CHIRP), The Ohio State University College of Veterinary Medicine, Columbus, OH, USA
| | - J A Winston
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, OH, USA.
- Comparative Hepatobiliary Intestinal Research Program (CHIRP), The Ohio State University College of Veterinary Medicine, Columbus, OH, USA.
| | - V J Parker
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, OH, USA
- Comparative Hepatobiliary Intestinal Research Program (CHIRP), The Ohio State University College of Veterinary Medicine, Columbus, OH, USA
| | - K E McCool
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, USA
| | - J S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University College of Veterinary Medicine, College Station, TX, USA
| | - R Lopes
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University College of Veterinary Medicine, College Station, TX, USA
| | - J M Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University College of Veterinary Medicine, College Station, TX, USA
| | - C Gilor
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| | - A J Rudinsky
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, OH, USA
- Comparative Hepatobiliary Intestinal Research Program (CHIRP), The Ohio State University College of Veterinary Medicine, Columbus, OH, USA
| |
Collapse
|
4
|
Shafiee S, Dastmalchi S, Gharekhani A, Shayanfar A. Determination of indoxyl sulfate by spectrofluorimetric method in human plasma through extraction with deep eutectic solvent. BMC Chem 2024; 18:61. [PMID: 38555438 PMCID: PMC10981813 DOI: 10.1186/s13065-024-01172-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024] Open
Abstract
A rapid and efficient analytical method was established to quantify indoxyl sulfate (IS) in plasma through extraction technique with a deep eutectic solvent (DES) and spectrofluorimetric method. DES (choline chloride: urea) was mixed with plasma samples for the extraction of IS, followed by the addition of dipotassium hydrogen phosphate (K2HPO4) solution to form an aqueous two-phase system. The fluorescence intensity of IS which was first extracted to the DES-rich-phase and then back-extracted into the salt-rich-phase, was measured by spectrofluorimetric method. Some key factors such as pH, centrifugation speed and time, the volume ratio of DES/salt, and salt concentration were optimized. Under the optimized conditions, the suggested method had a dynamic range between 20 and 160 µg/mL with a coefficient of determination (R2) of 0.99. Precision (relative standard deviation) was less than 15% and accuracy (% relative recovery) was ± 15% at the nominal concentration level. In addition, results showed that IS levels in real samples were higher than 40 µg/mL which was compatible with reported IS levels in end-stage renal disease (ESRD) patients. Overall, all the results reflect the fact that the presented analytical method can potentially be used for the determination of IS in real plasma samples.
Collapse
Affiliation(s)
- Samira Shafiee
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Near East University, Mersin 10, Nicosia, POBOX: 99138, North Cyprus, Turkey
| | - Afshin Gharekhani
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shayanfar
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
He W, Connolly ED, Wu G. Characteristics of the Digestive Tract of Dogs and Cats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1446:15-38. [PMID: 38625523 DOI: 10.1007/978-3-031-54192-6_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
As for other mammals, the digestive system of dogs (facultative carnivores) and cats (obligate carnivores) includes the mouth, teeth, tongue, pharynx, esophagus, stomach, small intestine, large intestine, and accessory digestive organs (salivary glands, pancreas, liver, and gallbladder). These carnivores have a relatively shorter digestive tract but longer canine teeth, a tighter digitation of molars, and a greater stomach volume than omnivorous mammals such as humans and pigs. Both dogs and cats have no detectable or a very low activity of salivary α-amylase but dogs, unlike cats, possess a relatively high activity of pancreatic α-amylase. Thus, cats select low-starch foods but dogs can consume high-starch diets. In contrast to many mammals, the vitamin B12 (cobalamin)-binding intrinsic factor for the digestion and absorption of vitamin B12 is produced in: (a) dogs primarily by pancreatic ductal cells and to a lesser extent the gastric mucosa; and (b) cats exclusively by the pancreatic tissue. Amino acids (glutamate, glutamine, and aspartate) are the main metabolic fuels in enterocytes of the foregut. The primary function of the small intestine is to digest and absorb dietary nutrients, and its secondary function is to regulate the entry of dietary nutrients into the blood circulation, separate the external from the internal milieu, and perform immune surveillance. The major function of the large intestine is to ferment undigested food (particularly fiber and protein) and to absorb water, short-chain fatty acids (serving as major metabolic fuels for epithelial cells of the large intestine), as well as vitamins. The fermentation products, water, sloughed cells, digestive secretions, and microbes form feces and then pass into the rectum for excretion via the anal canal. The microflora influences colonic absorption and cell metabolism, as well as feces quality. The digestive tract is essential for the health, survival, growth, and development of dogs and cats.
Collapse
Affiliation(s)
- Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Erin D Connolly
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
6
|
Roointan A, Ghaeidamini M, Shafieizadegan S, Hudkins KL, Gholaminejad A. Metabolome panels as potential noninvasive biomarkers for primary glomerulonephritis sub-types: meta-analysis of profiling metabolomics studies. Sci Rep 2023; 13:20325. [PMID: 37990116 PMCID: PMC10663527 DOI: 10.1038/s41598-023-47800-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/18/2023] [Indexed: 11/23/2023] Open
Abstract
Primary glomerulonephritis diseases (PGDs) are known as the top causes of chronic kidney disease worldwide. Renal biopsy, an invasive method, is the main approach to diagnose PGDs. Studying the metabolome profiles of kidney diseases is an inclusive approach to identify the disease's underlying pathways and discover novel non-invasive biomarkers. So far, different experiments have explored the metabolome profiles in different PGDs, but the inconsistencies might hinder their clinical translations. The main goal of this meta-analysis study was to achieve consensus panels of dysregulated metabolites in PGD sub-types. The PGDs-related metabolome profiles from urine samples in humans were selected in a comprehensive search. Amanida package in R software was utilized for performing the meta-analysis. Through sub-type analyses, the consensus list of metabolites in each category was obtained. To identify the most affected pathways, functional enrichment analysis was performed. Also, a gene-metabolite network was constructed to identify the key metabolites and their connected proteins. After a vigorous search, among the 11 selected studies (15 metabolite profiles), 270 dysregulated metabolites were recognized in urine of 1154 PGDs and control samples. Through sub-type analyses by Amanida package, the consensus list of metabolites in each category was obtained. Top dysregulated metabolites (vote score of ≥ 4 or ≤ - 4) in PGDs urines were selected as main panel of meta-metabolites including glucose, leucine, choline, betaine, dimethylamine, fumaric acid, citric acid, 3-hydroxyisovaleric acid, pyruvic acid, isobutyric acid, and hippuric acid. The enrichment analyses results revealed the involvement of different biological pathways such as the TCA cycle and amino acid metabolisms in the pathogenesis of PGDs. The constructed metabolite-gene interaction network revealed the high centralities of several metabolites, including pyruvic acid, leucine, and choline. The identified metabolite panels could shed a light on the underlying pathological pathways and be considered as non-invasive biomarkers for the diagnosis of PGD sub-types.
Collapse
Affiliation(s)
- Amir Roointan
- Regenerative Medicine Research Center, Faculty of Medicine, Isfahan University of Medical Sciences, Hezar Jarib St., Isfahan, 81746-73461, Iran
| | - Maryam Ghaeidamini
- Regenerative Medicine Research Center, Faculty of Medicine, Isfahan University of Medical Sciences, Hezar Jarib St., Isfahan, 81746-73461, Iran
| | - Saba Shafieizadegan
- Regenerative Medicine Research Center, Faculty of Medicine, Isfahan University of Medical Sciences, Hezar Jarib St., Isfahan, 81746-73461, Iran
| | - Kelly L Hudkins
- Department of Laboratory Medicine and Pathology, University of Washington, School of Medicine, Seattle, USA
| | - Alieh Gholaminejad
- Regenerative Medicine Research Center, Faculty of Medicine, Isfahan University of Medical Sciences, Hezar Jarib St., Isfahan, 81746-73461, Iran.
| |
Collapse
|
7
|
Rowe JC, Winston JA, Parker VJ, McCool KE, Suchodolski JS, Lopes R, Steiner JM, Gilor C, Rudinsky AJ. Gut microbiota promoting propionic acid production accompanies diet-induced intentional weight loss in cats. RESEARCH SQUARE 2023:rs.3.rs-3273531. [PMID: 37693421 PMCID: PMC10491335 DOI: 10.21203/rs.3.rs-3273531/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Rodent models and human clinical studies have shown gut microbiota-derived short-chain fatty acids (SCFAs) play roles in obesity and insulin resistance. These roles have been minimally explored in cats, where in the USA an estimated 60% of cats are overweight or obese. Overweight/obese research cats (n = 7) were transitioned from a maintenance diet to a reduced calorie diet fed ad libitum for seven days, then calories were restricted to achieve 1-2% weight loss per week for an additional 77 days. Cats then received their original maintenance diet again for 14 days. Significant intentional weight loss was noted after calorie restriction (adjusted p < 0.0001). 16S rRNA gene amplicon sequencing and targeted SCFA metabolomics were performed on fecal samples. Fecal microbial community structure significantly differed between the four study phases (PERMANOVA p = 0.011). Fecal propionic acid was significantly higher during diet-induced weight loss (adjusted p < 0.05). Spearman correlation revealed the relative abundances of Prevotella 9 copri (ρ = 0.6385, p = 0.0006) and Blautia caecimuris (ρ = 0.5269, p = 0.0068) were significantly correlated with propionic acid composition. Like humans, obese cats experienced an altered microbial community structure and function, favoring propionic acid production, during diet-induced weight loss.
Collapse
Affiliation(s)
- J C Rowe
- The Ohio State University College of Veterinary Medicine
| | - J A Winston
- The Ohio State University College of Veterinary Medicine
| | - V J Parker
- The Ohio State University College of Veterinary Medicine
| | - K E McCool
- North Carolina State University College of Veterinary Medicine
| | | | - R Lopes
- Texas A&M University College of Veterinary Medicine
| | - J M Steiner
- Texas A&M University College of Veterinary Medicine
| | - C Gilor
- University of Florida College of Veterinary Medicine
| | - A J Rudinsky
- The Ohio State University College of Veterinary Medicine
| |
Collapse
|
8
|
Summers SC, Quimby J, Blake A, Keys D, Steiner JM, Suchodolski J. Serum and Fecal Amino Acid Profiles in Cats with Chronic Kidney Disease. Vet Sci 2022; 9:vetsci9020084. [PMID: 35202337 PMCID: PMC8878831 DOI: 10.3390/vetsci9020084] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
The purpose of the study was to quantify serum and fecal amino acids (AA) in cats with chronic kidney disease (CKD) and compare to healthy cats. Thirty-five cats with International Renal Interest Society Stage 1–4 CKD and 16 healthy mature adult and senior client-owned cats were included in this prospective cross-sectional study. Sera were analyzed for 25 AA concentrations using an ion exchange chromatography AA analyzer with post column ninhydrin derivatization. Voided fecal samples were analyzed for 22 AA concentrations using liquid chromatography with tandem mass spectrometry. CKD cats had lower serum concentrations of phenylalanine (mean difference ± standard error of the mean: 12.7 ± 4.3 µM; p = 0.03), threonine (29.6 ± 9.2 µM; p = 0.03), tryptophan (18.4 ± 5.4 µM; p = 0.005), serine (29.8 ± 12.6 µM; p = 0.03), and tyrosine (11.6 ± 3.8 µM; p = 0.01) and higher serum concentrations of aspartic acid (4.7 ± 2.0 µM; p = 0.01), β-alanine (3.4 ± 1.2 µM; p = 0.01), citrulline (5.7 ± 1.6 µM; p = 0.01), and taurine (109.9 ± 29.6 µM; p = 0.01) when compared to healthy cats. Fecal AA concentrations did not differ between healthy cats and CKD cats. 3-Methylhistidine-to-creatinine did not differ between healthy cats with and without muscle loss. Cats with CKD IRIS Stages 1–4 have a deranged serum amino acid profile compared to healthy cats.
Collapse
Affiliation(s)
- Stacie C. Summers
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Correspondence:
| | - Jessica Quimby
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH 43210, USA;
| | - Amanda Blake
- Texas A&M Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College Station, TX 77843, USA; (A.B.); (J.M.S.); (J.S.)
| | - Deborah Keys
- Kaleidoscope Statistics Veterinary Medical Research Consulting, Athens, GA 30606, USA;
| | - Joerg M. Steiner
- Texas A&M Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College Station, TX 77843, USA; (A.B.); (J.M.S.); (J.S.)
| | - Jan Suchodolski
- Texas A&M Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College Station, TX 77843, USA; (A.B.); (J.M.S.); (J.S.)
| |
Collapse
|
9
|
Effect of Nutrition on Age-Related Metabolic Markers and the Gut Microbiota in Cats. Microorganisms 2021; 9:microorganisms9122430. [PMID: 34946032 PMCID: PMC8706506 DOI: 10.3390/microorganisms9122430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/08/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
Age-related changes in the gut microbiota and metabolites are associated with the increased risk of detrimental conditions also seen with age. This study evaluated whether a test food with potential anti-aging benefits results in favorable changes in plasma and fecal metabolites and the fecal microbiota in senior cats. Forty healthy domestic cats aged 8.3–13.5 years were fed a washout food for 30 days, then control or test food for 30 days. After another 30-day washout, cats were switched to the other study food for 30 days. Assessment of plasma and fecal metabolites showed lower levels of metabolites associated with detrimental processes (e.g., uremic toxins) and higher levels of metabolites associated with beneficial processes (e.g., tocopherols) after cats consumed the test food compared with the control food. A shift toward proteolysis with the control food is supported by higher levels of amino acid metabolites and lower levels of carbohydrate metabolites. Operational taxonomic units of greater abundance with the test food positively correlated with carbohydrate and nicotinic acid metabolites, and negatively correlated with uremic toxins, amino acid metabolism, secondary bile salts, and branched-chain fatty acids. Taken together, the test food appears to result in greater levels of metabolites and microbiota associated with a healthier state.
Collapse
|
10
|
Wu R, Ruan XL, Ruan DD, Zhang JH, Wang HL, Zeng QZ, Lu T, Gan YM, Luo JW, Wu JB. Differences in gut microbiota structure in patients with stages 4-5 chronic kidney disease. Am J Transl Res 2021; 13:10056-10074. [PMID: 34650681 PMCID: PMC8507064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
The gut microbiota can affect human metabolism, immunity, and other biologic pathways through the complex gut-kidney axis (GKA), and in turn participate in the occurrence and development of kidney disease. In this study, 39 patients with stage 4-5 chronic kidney disease (CKD) and 40 healthy individuals were recruited and 16S rDNA sequencing was performed to analyze the V3-V4 conserved regions of their microbiota. A total of 795 operational taxonomic units (OTUs) shared between groups or specific to each group were obtained, among which 255 OTUs with significant differences between the two groups were identified (P<0.05). Adonis differential analysis showed that the diversity of gut microbiota was highly correlated with CKD stages 4-5. Additionally, 61 genera with differences in the two groups were identified (P<0.05) and 111 species with significant differences in the phyla, classes, orders, families, and genera between the two groups were identified (P<0.05). The differential bacterial genera with the greatest contribution were, in descending order: c_Bacteroidia, o_Bacteroidales, p_Bacteroidetes, c_Clostridia, o_Clostridiales, etc. Those with the greatest contribution in stages 4-5 CKD were, in descending order: p_Proteobacteria, f_Enterobacteriaceae, o_Enterobacteriales, c_Gammaproteobacteria, c_Bacilli, etc. The results suggest that the diversity of the microbiota may affect the occurrence, development, and outcome of the terminal stages of CKD.
Collapse
Affiliation(s)
- Rong Wu
- Shengli Clinical Medical College, Fujian Medical UniversityFuzhou 350001, Fujian, China
- Department of Nephrology, Fuqing City Hospital Affiliated to Fujian Medical UniversityFuzhou 350001, Fujian, China
| | - Xing-Lin Ruan
- Department of Neurology, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical UniversityFuzhou 350005, Fujian, China
| | - Dan-Dan Ruan
- Shengli Clinical Medical College, Fujian Medical UniversityFuzhou 350001, Fujian, China
- Department of Nephrology, Fujian Provincial HospitalFuzhou 350001, Fujian, China
| | - Jian-Hui Zhang
- Shengli Clinical Medical College, Fujian Medical UniversityFuzhou 350001, Fujian, China
- Department of Nephrology, Fujian Provincial HospitalFuzhou 350001, Fujian, China
| | - Han-Lu Wang
- Shengli Clinical Medical College, Fujian Medical UniversityFuzhou 350001, Fujian, China
- Department of Nephrology, Fujian Provincial HospitalFuzhou 350001, Fujian, China
| | - Quan-Zuan Zeng
- Shengli Clinical Medical College, Fujian Medical UniversityFuzhou 350001, Fujian, China
- Department of Nephrology, Fujian Provincial HospitalFuzhou 350001, Fujian, China
| | - Tao Lu
- Shengli Clinical Medical College, Fujian Medical UniversityFuzhou 350001, Fujian, China
- Department of Nephrology, Fujian Provincial HospitalFuzhou 350001, Fujian, China
| | - Yu-Mian Gan
- Shengli Clinical Medical College, Fujian Medical UniversityFuzhou 350001, Fujian, China
- Department of Nephrology, Fujian Provincial HospitalFuzhou 350001, Fujian, China
| | - Jie-Wei Luo
- Shengli Clinical Medical College, Fujian Medical UniversityFuzhou 350001, Fujian, China
- Department of Nephrology, Fujian Provincial HospitalFuzhou 350001, Fujian, China
| | - Jia-Bin Wu
- Shengli Clinical Medical College, Fujian Medical UniversityFuzhou 350001, Fujian, China
- Department of Nephrology, Fujian Provincial HospitalFuzhou 350001, Fujian, China
| |
Collapse
|
11
|
Suchodolski JS. Analysis of the gut microbiome in dogs and cats. Vet Clin Pathol 2021; 50 Suppl 1:6-17. [PMID: 34514619 PMCID: PMC9292158 DOI: 10.1111/vcp.13031] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/08/2021] [Accepted: 04/20/2021] [Indexed: 12/15/2022]
Abstract
The gut microbiome is an important immune and metabolic organ. Intestinal bacteria produce various metabolites that influence the health of the intestine and other organ systems, including kidney, brain, and heart. Changes in the microbiome in diseased states are termed dysbiosis. The concept of dysbiosis is constantly evolving and includes changes in microbiome diversity and/or structure and functional changes (eg, altered production of bacterial metabolites). Molecular tools are now the standard for microbiome analysis. Sequencing of microbial genes provides information about the bacteria present and their functional potential but lacks standardization and analytical validation of methods and consistency in the reporting of results. This makes it difficult to compare results across studies or for individual clinical patients. The Dysbiosis Index (DI) is a validated quantitative PCR assay for canine fecal samples that measures the abundance of seven important bacterial taxa and summarizes the results as one single number. Reference intervals are established for dogs, and the DI can be used to assess the microbiome in clinical patients over time and in response to therapy (eg, fecal microbiota transplantation). In situ hybridization or immunohistochemistry allows the identification of mucosa‐adherent and intracellular bacteria in animals with intestinal disease, especially granulomatous colitis. Future directions include the measurement of bacterial metabolites in feces or serum as markers for the appropriate function of the microbiome. This article summarizes different approaches to the analysis of gut microbiota and how they might be applicable to research studies and clinical practice in dogs and cats.
Collapse
Affiliation(s)
- Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
12
|
Abstract
OBJECTIVES Hyperammonemia occurs in cats with hepatobiliary and nutritional (cobalamin and arginine deficiency) disorders, and has also been documented in four cats with renal azotemia. We hypothesized that in cats with renal azotemia, fasting hyperammonemia would correlate with indices of worsening kidney function, and would be independent of cobalamin, potassium, systemic inflammation or urinary tract infection (UTI) with urease-producing bacteria. METHODS A fasted blood sample was prospectively collected for ammonia and cobalamin analysis from 18 client-owned cats with renal azotemia (creatinine [Cr] ⩾1.6 mg/dl, urine specific gravity <1.030 or documentation of historical chronic kidney disease [CKD]). Correlations between blood ammonia and selected biochemical parameters were analyzed using Pearson's correlation coefficient. RESULTS Seven castrated males and 11 spayed females with a median age of 12 years (range 4-19 years) were enrolled. Ten of 18 (56%) cats presented for acute kidney injury (AKI) or acute on chronic kidney disease (AoCKD), and 8/18 (44%) presented for progressive CKD. The median Cr was 5.9 mg/dl (range 1.9-24.7 mg/dl). Hyperammonemia was documented in 4/18 (22%) cats, with a median of 95 µmol/dl (range 85-98 µmol/dl), and all four of these cats were classified as AKI/AoCKD. Blood ammonia concentrations had a significant moderate positive correlation between blood urea nitrogen (BUN) (r = 0.645, P = 0.003), Cr (r = 0.578, P = 0.012) and serum phosphorus (r = 0.714, P = 0.0009) but not with cobalamin, potassium or white blood cell count. No cats had UTIs with urease-producing bacteria. CONCLUSIONS AND RELEVANCE A correlation exists between blood ammonia and BUN, Cr and phosphorus in cats with renal azotemia. Future studies are warranted in a larger population of cats to determine the true prevalence, etiology and potential therapeutic effect of medical management of hyperammonemia on long-term prognosis in cats with kidney disease.
Collapse
Affiliation(s)
- Lauren Carvalho
- Small Animal Internal Medicine, Cummings School of Veterinary Medicine at Tufts University, Grafton, MA, USA
| | - Denise Kelley
- Small Animal Internal Medicine, Friendship Hospital for Animals, Washington, DC, USA
| | - Mary Anna Labato
- Small Animal Internal Medicine, Cummings School of Veterinary Medicine at Tufts University, Grafton, MA, USA
| | - Cynthia RL Webster
- Small Animal Internal Medicine, Cummings School of Veterinary Medicine at Tufts University, Grafton, MA, USA
| |
Collapse
|
13
|
Rodríguez-Hernández P, Rodríguez-Estévez V, Arce L, Gómez-Laguna J. Application of Volatilome Analysis to the Diagnosis of Mycobacteria Infection in Livestock. Front Vet Sci 2021; 8:635155. [PMID: 34109231 PMCID: PMC8180594 DOI: 10.3389/fvets.2021.635155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/08/2021] [Indexed: 01/22/2023] Open
Abstract
Volatile organic compounds (VOCs) are small molecular mass metabolites which compose the volatilome, whose analysis has been widely employed in different areas. This innovative approach has emerged in research as a diagnostic alternative to different diseases in human and veterinary medicine, which still present constraints regarding analytical and diagnostic sensitivity. Such is the case of the infection by mycobacteria responsible for tuberculosis and paratuberculosis in livestock. Although eradication and control programs have been partly managed with success in many countries worldwide, the often low sensitivity of the current diagnostic techniques against Mycobacterium bovis (as well as other mycobacteria from Mycobacterium tuberculosis complex) and Mycobacterium avium subsp. paratuberculosis together with other hurdles such as low mycobacteria loads in samples, a tedious process of microbiological culture, inhibition by many variables, or intermittent shedding of the mycobacteria highlight the importance of evaluating new techniques that open different options and complement the diagnostic paradigm. In this sense, volatilome analysis stands as a potential option because it fulfills part of the mycobacterial diagnosis requirements. The aim of the present review is to compile the information related to the diagnosis of tuberculosis and paratuberculosis in livestock through the analysis of VOCs by using different biological matrices. The analytical techniques used for the evaluation of VOCs are discussed focusing on the advantages and drawbacks offered compared with the routine diagnostic tools. In addition, the differences described in the literature among in vivo and in vitro assays, natural and experimental infections, and the use of specific VOCs (targeted analysis) and complete VOC pattern (non-targeted analysis) are highlighted. This review emphasizes how this methodology could be useful in the problematic diagnosis of tuberculosis and paratuberculosis in livestock and poses challenges to be addressed in future research.
Collapse
Affiliation(s)
- Pablo Rodríguez-Hernández
- Department of Animal Production, International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Córdoba, Spain
| | - Vicente Rodríguez-Estévez
- Department of Animal Production, International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Córdoba, Spain
| | - Lourdes Arce
- Department of Analytical Chemistry, Inst Univ Invest Quim Fina and Nanoquim Inst Univ Invest Quim Fina and Nanoquim (IUNAN), International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Córdoba, Spain
| | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology and Toxicology, International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Córdoba, Spain
| |
Collapse
|
14
|
Rodríguez-Hernández P, Cardador MJ, Arce L, Rodríguez-Estévez V. Analytical Tools for Disease Diagnosis in Animals via Fecal Volatilome. Crit Rev Anal Chem 2020; 52:917-932. [PMID: 33180561 DOI: 10.1080/10408347.2020.1843130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Volatilome analysis is growing in attention for the diagnosis of diseases in animals and humans. In particular, volatilome analysis in fecal samples is starting to be proposed as a fast, easy and noninvasive method for disease diagnosis. Volatilome comprises volatile organic compounds (VOCs), which are produced during both physiological and patho-physiological processes. Thus, VOCs from a pathological condition often differ from those of a healthy state and therefore the VOCs profile can be used in the detection of some diseases. Due to their strengths and advantages, feces are currently being used to obtain information related to health status in animals. However, they are complex samples, that can present problems for some analytical techniques and require special consideration in their use and preparation before analysis. This situation demands an effort to clarify which analytic options are currently being used in the research context to analyze the possibilities these offer, with the final objectives of contributing to develop a standardized methodology and to exploit feces potential as a diagnostic matrix. The current work reviews the studies focused on the diagnosis of animal diseases through fecal volatilome in order to evaluate the analytical methods used and their advantages and limitations. The alternatives found in the literature for sampling, storage, sample pretreatment, measurement and data treatment have been summarized, considering all the steps involved in the analytical process.
Collapse
Affiliation(s)
| | - M J Cardador
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, University of Córdoba, Córdoba, Spain
| | - L Arce
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, University of Córdoba, Córdoba, Spain
| | | |
Collapse
|
15
|
Summers S, Quimby JM, Phillips RK, Stockman J, Isaiah A, Lidbury JA, Steiner JM, Suchodolski J. Preliminary evaluation of fecal fatty acid concentrations in cats with chronic kidney disease and correlation with indoxyl sulfate and p-cresol sulfate. J Vet Intern Med 2019; 34:206-215. [PMID: 31693251 PMCID: PMC6979089 DOI: 10.1111/jvim.15634] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Straight- and branched-chain (BCFA) short-chain fatty acids (SCFAs) are produced by colonic microbiota and have both beneficial and deleterious effects in humans with chronic kidney disease (CKD). Fecal SCFAs in cats with CKD have not been described. OBJECTIVE To characterize fecal SCFA concentrations in cats with CKD as compared to healthy geriatric cats and correlate SCFA to serum indoxyl sulfate (IS) and p-cresol sulfate (pCS) concentrations. ANIMALS Twenty-eight cats with CKD (International Renal Interest Society [IRIS] stages 2, 3, and 4) and 11 older (≥ 8 years) healthy geriatric cats. METHODS Prospective, cross-sectional study. Voided feces were analyzed using stable isotope dilution gas chromatography-mass spectrometry to determine fecal concentrations of SCFAs. Serum concentrations of IS and pCS were measured using liquid chromatography tandem mass spectrometry. RESULTS Fecal isovaleric acid concentrations were significantly higher in CKD cats(P = .02) Cats with IRIS CKD stage 3 and 4 had significantly higher fecal isovaleric acid concentrations compared to healthy geriatric cats (P = .03), but not compared to IRIS CKD stage 2 cats. Total fecal concentrations of BCFAs were found to correlate weakly with serum creatinine concentration (rho, 0.33; P = .05), blood urea nitrogen concentration (rho, 0.40; P = .01), and pCS concentration (rho, 0.35; P = .04). CONCLUSIONS AND CLINICAL IMPORTANCE Fecal isovaleric acid concentrations were higher in CKD cats, particularly in late stage disease, compared to healthy geriatric cats. Fecal BCFA concentrations correlated with pCS and were higher in cats with muscle wasting, providing evidence for malassimilation of protein in CKD cats.
Collapse
Affiliation(s)
- Stacie Summers
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Jessica M Quimby
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, Ohio
| | - Robert Kyle Phillips
- Gastroenterology Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas
| | - Jonathan Stockman
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Anitha Isaiah
- Gastroenterology Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas
| | - Jonathan A Lidbury
- Gastroenterology Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas
| | - Joerg M Steiner
- Gastroenterology Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas
| | - Jan Suchodolski
- Gastroenterology Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas
| |
Collapse
|